Flame-retardancy cellulosic triboelectric materials enabled by hydroxyl ionization

Xin Wang , Huancheng Huang , Fanchao Yu , Pinle Zhang , Xinliang Liu

Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (10) : 113

PDF (1312KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (10) : 113 DOI: 10.1007/s11705-024-2464-7
RESEARCH ARTICLE

Flame-retardancy cellulosic triboelectric materials enabled by hydroxyl ionization

Author information +
History +
PDF (1312KB)

Abstract

Triboelectric nanogenerators (TENGs) are among the most promising available energy harvesting methods. Cellulose-based TENGs are flexible, renewable, and degradable. However, the flammability of cellulose prevents it from being used in open-flame environments. In this study, the lattice of cellulose was adjusted by the hydroxyl ionization of cellulose molecules, and Na+ was introduced to enhance the flame retardancy of cellulose nanofibers (CNFs). The experimental results showed that the amount of hydrogen bonding between cellulose molecules increased with the introduction of Na+ and that the limiting oxygen index reached 36.4%. The lattice spacing of cellulose increased from 0.276 to 0.286 nm, and the change in lattice structure exposed more hydroxyl groups, which changed the polarity of cellulose. The surface potential of the fibers increased from 239 to 323 mV, the maximum open-circuit voltage was 25 V·cm–2, the short-circuit current was 2.10 μA, and the output power density was 4.56 μW·cm–2. Compared with those of CNFs, the output voltage, current, and transferred charge increased by 96.8%, 517%, and 23%, respectively, and showed good stability and reliability during cyclic exposure. This study provides a valuable strategy for improving the performance of cellulose-based TENGs.

Graphical abstract

Cite this article

Download citation ▾
Xin Wang, Huancheng Huang, Fanchao Yu, Pinle Zhang, Xinliang Liu. Flame-retardancy cellulosic triboelectric materials enabled by hydroxyl ionization. Front. Chem. Sci. Eng., 2024, 18(10): 113 DOI:10.1007/s11705-024-2464-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

He K , Cheng X , Yao Y , Shi L , Yang H , Cong W . Characteristics of multiple pool fires in a tunnel with natural ventilation. Journal of Hazardous Materials, 2019, 369: 261–267

[2]

Ma L , Wu R , Liu S , Patil A , Gong H , Yi J , Sheng F , Zhang Y , Wang J , Wang J . . A machine-fabricated 3D honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue. Advanced Materials, 2020, 32(38): 2003897

[3]

Zhou J , Zhou N , Liu M , Tan H , Wang Z , Zhang X , Su Z . NiTiO3/Bi2O3/MoS2 double Z-type heterojunction catalysts realize dual-function applications of photocatalytic fuel cells and lactic acid sensing. Applied Surface Science, 2024, 649: 159095

[4]

Fan F R , Tian Z Q , Lin Wang Z . Flexible triboelectric generator. Nano Energy, 2012, 1(2): 328–334

[5]

Chen X , Xie X , Liu Y , Zhao C , Wen M , Wen Z . Advances in healthcare electronics enabled by triboelectric nanogenerators. Advanced Functional Materials, 2020, 30(43): 2004673

[6]

Gao C , Zhang W , Liu T , Luo B , Cai C , Chi M , Zhang S , Liu Y , Wang J , Zhao J . . Hierarchical porous triboelectric aerogels enabled by heterointerface engineering. Nano Energy, 2024, 121: 109223

[7]

An S , Pu X , Zhou S , Wu Y , Li G , Xing P , Zhang Y , Hu C . Deep learning enabled neck motion detection using a triboelectric nanogenerator. ACS Nano, 2022, 16(6): 9359–9367

[8]

Yin M , Lu X , Qiao G , Xu Y , Wang Y , Cheng T , Wang Z L . Mechanical regulation triboelectric nanogenerator with controllable output performance for random energy harvesting. Advanced Energy Materials, 2020, 10(22): 2000627

[9]

Li X , Wang J , Liu Y , Zhao T , Luo B , Liu T , Zhang S , Chi M , Cai C , Wei Z . . Lightweight and strong cellulosic triboelectric materials enabled by cell wall nanoengineering. Nano Letters, 2024, 24(10): 3273–3281

[10]

Wang X , Yao C , Wang F , Li Z . Cellulose-based nanomaterials for energy applications. Small, 2017, 13(42): 1702240

[11]

Liao H , Na J , Zhou W , Hur S , Chien P M , Wang C , Wang L , Yamauchi Y , Yuan Z . Enhancing energy harvesting performance and sustainability of cellulose-based triboelectric nanogenerators: strategies for performance enhancement. Nano Energy, 2023, 116: 108769

[12]

He J , Liu Y , Wu C , Liu S , Lu Y , Wu Q . Pre-oxidation of cellulose controlled by the nitrogen-phosphorus compound catalyst to prepare fibers with ultra-high flame retardancy. Industrial Crops and Products, 2023, 195: 116355

[13]

Cordner A , Mulcahy M , Brown P . Chemical regulation on fire: rapid policy advances on flame retardants. Environmental Science & Technology, 2013, 47(13): 7067–7076

[14]

Guo L C , Lv Z , Zhu T , He G , Hu J , Xiao J , Liu T , Yu S , Zhang J , Zhang H . . Associations between serum polychlorinated biphenyls, halogen flame retardants, and renal function indexes in residents of an e-waste recycling area. Science of the Total Environment, 2023, 858: 159746

[15]

Duan Q , Zhang Z , Zhao J , He J , Peng W , Zhang Y , Liu T , Wang S , Nie S . Fire-retardant hydroxyapatite/cellulosic triboelectric materials for energy harvesting and sensing at extreme conditions. Nano Energy, 2023, 117: 108851

[16]

Wang R , Ma J , Ma S , Zhang Q , Li N , Ji M , Jiao T , Cao X . A biodegradable cellulose-based flame-retardant triboelectric nanogenerator for fire warning. Chemical Engineering Journal, 2022, 450: 137985

[17]

Li Y C , Mannen S , Morgan A B , Chang S , Yang Y H , Condon B , Grunlan J C . Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric. Advanced Materials, 2011, 23(34): 3926–3931

[18]

Zheng Y , Miao J , Maeda N , Frey D , Linhardt R J , Simmons T J . Uniform nanoparticle coating of cellulose fibers during wet electrospinning. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(36): 15029–15034

[19]

Schindler D W , Carpenter S R , Chapra S C , Hecky R E , Orihel D M . Reducing phosphorus to curb lake eutrophication is a success. Environmental Science & Technology, 2016, 50(17): 8923–8929

[20]

Yiga V A , Lubwama M , Olupot P W . Thermal stability of unmodified and alkali-modified rice husks for flame retardant fiber-reinforced PLA composites. Journal of Thermal Analysis and Calorimetry, 2022, 147(20): 11049–11075

[21]

Shi R , Tan L , Zong L , Ji Q , Li X , Zhang K , Cheng L , Xia Y . Influence of Na+ and Ca2+ on flame retardancy, thermal degradation, and pyrolysis behavior of cellulose fibers. Carbohydrate Polymers, 2017, 157: 1594–1603

[22]

Liu X , Zhang Q , Peng B , Ren Y , Cheng B , Ding C , Su X , He J , Lin S . Flame retardant cellulosic fabrics via layer-by-layer self-assembly double coating with egg white protein and phytic acid. Journal of Cleaner Production, 2020, 243: 118641

[23]

Zhu S , Liu Y , Du G , Shao Y , Wei Z , Wang J , Luo B , Cai C , Meng X , Zhang S . . Customizing temperature-resistant cellulosic triboelectric materials for energy harvesting and emerging applications. Nano Energy, 2024, 124: 109449

[24]

Pöhler T , Widsten P , Hakkarainen T . Improved fire retardancy of cellulose fibres via deposition of nitrogen-modified biopolyphenols. Molecules, 2022, 27(12): 3741

[25]

Kim H , Youn J R , Song Y S . Eco-friendly flame retardant nanocrystalline cellulose prepared via silylation. Nanotechnology, 2018, 29(45): 455702

[26]

Karaj-Abad S G , Abbasian M , Jaymand M . Grafting of poly[(methyl methacrylate)-block-styrene] onto cellulose via nitroxide-mediated polymerization, and its polymer/clay nanocomposite. Carbohydrate Polymers, 2016, 152: 297–305

[27]

Van Hai L , Zhai L , Kim H C , Kim J W , Choi E S , Kim J . Cellulose nanofibers isolated by TEMPO-oxidation and aqueous counter collision methods. Carbohydrate Polymers, 2018, 191: 65–70

[28]

Du S , Li T , Wang X , Zhang L , Yang Z , Lin R , Zhu T . Molecular simulation on mechanism of thiophene hydrodesulfurization on surface of Ni2P. Energy Exploration & Exploitation, 2021, 39(3): 975–992

[29]

Peter Z . Order in cellulosics: historical review of crystal structure research on cellulose. Carbohydrate Polymers, 2021, 254: 117417

[30]

Zhang Y H , Shao Y , Luo C , Ma H Z , Yu H , Liu X , Yin B , Wu J L , Yang M B . Preparation of a high-performance chitosan-based triboelectric nanogenerator by regulating the surface microstructure and dielectric constant. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2022, 11(1): 260–268

[31]

Thakur A , Jangra M , Dam S , Hussain S . Impedance studies of free-standing, flexible thin films of PVDF filled with gallium nitride nanoparticles. Journal of Materials Science Materials in Electronics, 2022, 33(23): 18658–18672

[32]

Du G , Wang J , Liu Y , Yuan J , Liu T , Cai C , Luo B , Zhu S , Wei Z , Wang S . . Fabrication of advanced cellulosic triboelectric materials via dielectric modulation. Advanced Science, 2023, 10(15): 2206243

[33]

Zhang R , Hummelgård M , Örtegren J , Andersson H , Olsen M , Chen D , Li J , Eivazi A , Dahlström C , Norgren M . . Triboelectric nanogenerators with ultrahigh current density enhanced by hydrogen bonding between nylon and graphene oxide. Nano Energy, 2023, 115: 108737

[34]

Lee H , Sundaram J , Zhu L , Zhao Y , Mani S . Improved thermal stability of cellulose nanofibrils using low-concentration alkaline pretreatment. Carbohydrate Polymers, 2018, 181: 506–513

[35]

YueY. A comparative study of cellulose I and II and fibers and nanocrystals. LSU Digital Commons. Dissertation for the Master of Science Degree. Baton Rouge: Louisiana State University, 2011, 57–58

[36]

Liu Y , Hu H . X-ray diffraction study of bamboo fibers treated with NaOH. Fibers and Polymers, 2008, 9(6): 735–739

[37]

Kathirselvam M , Kumaravel A , Arthanarieswaran V P , Saravanakumar S S . Characterization of cellulose fibers in thespesia populnea barks: influence of alkali treatment. Carbohydrate Polymers, 2019, 217: 178–189

[38]

Lin Q , Liu S , Wang X , Huang Y , Yu W . Preparation of ultra-conductive bamboo cellulose fiber via a facile pretreatment. Applied Surface Science, 2022, 575: 151700

[39]

Li Z , Chen C , Xie H , Yao Y , Zhang X , Brozena A , Li J , Ding Y , Zhao X , Hong M . . Sustainable high-strength macrofibres extracted from natural bamboo. Nature Sustainability, 2021, 5(3): 235–244

[40]

Hishikawa Y , Togawa E , Kondo T . Characterization of individual hydrogen bonds in crystalline regenerated cellulose using resolved polarized FTIR spectra. ACS Omega, 2017, 2(4): 1469–1476

[41]

Lu Z , Zhang H , Liu L , Cao H , Cheng Z , Liu H , An X . Study on cellulose nanofibers (CNF) distribution behaviors and their roles in improving paper property. Industrial Crops and Products, 2023, 201: 116897

[42]

Yang H , Yan R , Chen H , Lee D H , Zheng C . Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 2007, 86(12-13): 1781–1788

[43]

Ge L , Zhao C , Zuo M , Du Y , Tang J , Chu H , Wang Y , Xu C . Effects of Fe addition on pyrolysis characteristics of lignin, cellulose and hemicellulose. Journal of the Energy Institute, 2023, 107: 101177

[44]

Chen D , Cen K , Zhuang X , Gan Z , Zhou J , Zhang Y , Zhang H . Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio-oil. Combustion and Flame, 2022, 242: 112142

[45]

Xu D , Ji Q , Tan L , Tian G , Quan F , Xia Y . Influence of alkaline metal ions on flame retardancy and thermal degradation of cellulose fibers. Fibers and Polymers, 2014, 15(2): 220–225

[46]

Shen W , Wang H , Liu Y , Guo Q , Zhang Y . Oxidization activated carbon fiber through nitrocellulose combustion. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2007, 308(1–3): 20–24

[47]

Sonnier R , Otazaghine B , Ferry L , Lopez-Cuesta J M . Study of the combustion efficiency of polymers using a pyrolysis-combustion flow calorimeter. Combustion and Flame, 2013, 160(10): 2182–2193

[48]

Lin C , Sun L , Meng X , Yuan X , Cui C X , Qiao H , Chen P , Cui S , Zhai L , Mi L . Covalent organic frameworks with tailored functionalities for modulating surface potentials in triboelectric nanogenerators. Angewandte Chemie International Edition, 2022, 61(42): e202211601

[49]

Wang Y M , Zhang X , Yang D , Wu L , Zhang J , Lei T , Yang R . Highly stable metal-organic framework UiO-66-NH2 for high-performance triboelectric nanogenerators. Nanotechnology, 2022, 33(6): 065402

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1312KB)

Supplementary files

FCE-24019-OF-WX_suppl_1

FCE-24019-OF-WX_suppl_2

1639

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/