Flame-retardancy cellulosic triboelectric materials enabled by hydroxyl ionization
Xin Wang, Huancheng Huang, Fanchao Yu, Pinle Zhang, Xinliang Liu
Flame-retardancy cellulosic triboelectric materials enabled by hydroxyl ionization
Triboelectric nanogenerators (TENGs) are among the most promising available energy harvesting methods. Cellulose-based TENGs are flexible, renewable, and degradable. However, the flammability of cellulose prevents it from being used in open-flame environments. In this study, the lattice of cellulose was adjusted by the hydroxyl ionization of cellulose molecules, and Na+ was introduced to enhance the flame retardancy of cellulose nanofibers (CNFs). The experimental results showed that the amount of hydrogen bonding between cellulose molecules increased with the introduction of Na+ and that the limiting oxygen index reached 36.4%. The lattice spacing of cellulose increased from 0.276 to 0.286 nm, and the change in lattice structure exposed more hydroxyl groups, which changed the polarity of cellulose. The surface potential of the fibers increased from 239 to 323 mV, the maximum open-circuit voltage was 25 V·cm–2, the short-circuit current was 2.10 μA, and the output power density was 4.56 μW·cm–2. Compared with those of CNFs, the output voltage, current, and transferred charge increased by 96.8%, 517%, and 23%, respectively, and showed good stability and reliability during cyclic exposure. This study provides a valuable strategy for improving the performance of cellulose-based TENGs.
[1] |
He K , Cheng X , Yao Y , Shi L , Yang H , Cong W . Characteristics of multiple pool fires in a tunnel with natural ventilation. Journal of Hazardous Materials, 2019, 369: 261–267
CrossRef
Google scholar
|
[2] |
Ma L , Wu R , Liu S , Patil A , Gong H , Yi J , Sheng F , Zhang Y , Wang J , Wang J .
CrossRef
Google scholar
|
[3] |
Zhou J , Zhou N , Liu M , Tan H , Wang Z , Zhang X , Su Z . NiTiO3/Bi2O3/MoS2 double Z-type heterojunction catalysts realize dual-function applications of photocatalytic fuel cells and lactic acid sensing. Applied Surface Science, 2024, 649: 159095
CrossRef
Google scholar
|
[4] |
Fan F R , Tian Z Q , Lin Wang Z . Flexible triboelectric generator. Nano Energy, 2012, 1(2): 328–334
CrossRef
Google scholar
|
[5] |
Chen X , Xie X , Liu Y , Zhao C , Wen M , Wen Z . Advances in healthcare electronics enabled by triboelectric nanogenerators. Advanced Functional Materials, 2020, 30(43): 2004673
CrossRef
Google scholar
|
[6] |
Gao C , Zhang W , Liu T , Luo B , Cai C , Chi M , Zhang S , Liu Y , Wang J , Zhao J .
CrossRef
Google scholar
|
[7] |
An S , Pu X , Zhou S , Wu Y , Li G , Xing P , Zhang Y , Hu C . Deep learning enabled neck motion detection using a triboelectric nanogenerator. ACS Nano, 2022, 16(6): 9359–9367
CrossRef
Google scholar
|
[8] |
Yin M , Lu X , Qiao G , Xu Y , Wang Y , Cheng T , Wang Z L . Mechanical regulation triboelectric nanogenerator with controllable output performance for random energy harvesting. Advanced Energy Materials, 2020, 10(22): 2000627
CrossRef
Google scholar
|
[9] |
Li X , Wang J , Liu Y , Zhao T , Luo B , Liu T , Zhang S , Chi M , Cai C , Wei Z .
CrossRef
Google scholar
|
[10] |
Wang X , Yao C , Wang F , Li Z . Cellulose-based nanomaterials for energy applications. Small, 2017, 13(42): 1702240
CrossRef
Google scholar
|
[11] |
Liao H , Na J , Zhou W , Hur S , Chien P M , Wang C , Wang L , Yamauchi Y , Yuan Z . Enhancing energy harvesting performance and sustainability of cellulose-based triboelectric nanogenerators: strategies for performance enhancement. Nano Energy, 2023, 116: 108769
CrossRef
Google scholar
|
[12] |
He J , Liu Y , Wu C , Liu S , Lu Y , Wu Q . Pre-oxidation of cellulose controlled by the nitrogen-phosphorus compound catalyst to prepare fibers with ultra-high flame retardancy. Industrial Crops and Products, 2023, 195: 116355
CrossRef
Google scholar
|
[13] |
Cordner A , Mulcahy M , Brown P . Chemical regulation on fire: rapid policy advances on flame retardants. Environmental Science & Technology, 2013, 47(13): 7067–7076
CrossRef
Google scholar
|
[14] |
Guo L C , Lv Z , Zhu T , He G , Hu J , Xiao J , Liu T , Yu S , Zhang J , Zhang H .
CrossRef
Google scholar
|
[15] |
Duan Q , Zhang Z , Zhao J , He J , Peng W , Zhang Y , Liu T , Wang S , Nie S . Fire-retardant hydroxyapatite/cellulosic triboelectric materials for energy harvesting and sensing at extreme conditions. Nano Energy, 2023, 117: 108851
CrossRef
Google scholar
|
[16] |
Wang R , Ma J , Ma S , Zhang Q , Li N , Ji M , Jiao T , Cao X . A biodegradable cellulose-based flame-retardant triboelectric nanogenerator for fire warning. Chemical Engineering Journal, 2022, 450: 137985
CrossRef
Google scholar
|
[17] |
Li Y C , Mannen S , Morgan A B , Chang S , Yang Y H , Condon B , Grunlan J C . Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric. Advanced Materials, 2011, 23(34): 3926–3931
CrossRef
Google scholar
|
[18] |
Zheng Y , Miao J , Maeda N , Frey D , Linhardt R J , Simmons T J . Uniform nanoparticle coating of cellulose fibers during wet electrospinning. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(36): 15029–15034
CrossRef
Google scholar
|
[19] |
Schindler D W , Carpenter S R , Chapra S C , Hecky R E , Orihel D M . Reducing phosphorus to curb lake eutrophication is a success. Environmental Science & Technology, 2016, 50(17): 8923–8929
CrossRef
Google scholar
|
[20] |
Yiga V A , Lubwama M , Olupot P W . Thermal stability of unmodified and alkali-modified rice husks for flame retardant fiber-reinforced PLA composites. Journal of Thermal Analysis and Calorimetry, 2022, 147(20): 11049–11075
CrossRef
Google scholar
|
[21] |
Shi R , Tan L , Zong L , Ji Q , Li X , Zhang K , Cheng L , Xia Y . Influence of Na+ and Ca2+ on flame retardancy, thermal degradation, and pyrolysis behavior of cellulose fibers. Carbohydrate Polymers, 2017, 157: 1594–1603
CrossRef
Google scholar
|
[22] |
Liu X , Zhang Q , Peng B , Ren Y , Cheng B , Ding C , Su X , He J , Lin S . Flame retardant cellulosic fabrics via layer-by-layer self-assembly double coating with egg white protein and phytic acid. Journal of Cleaner Production, 2020, 243: 118641
CrossRef
Google scholar
|
[23] |
Zhu S , Liu Y , Du G , Shao Y , Wei Z , Wang J , Luo B , Cai C , Meng X , Zhang S .
CrossRef
Google scholar
|
[24] |
Pöhler T , Widsten P , Hakkarainen T . Improved fire retardancy of cellulose fibres via deposition of nitrogen-modified biopolyphenols. Molecules, 2022, 27(12): 3741
CrossRef
Google scholar
|
[25] |
Kim H , Youn J R , Song Y S . Eco-friendly flame retardant nanocrystalline cellulose prepared via silylation. Nanotechnology, 2018, 29(45): 455702
CrossRef
Google scholar
|
[26] |
Karaj-Abad S G , Abbasian M , Jaymand M . Grafting of poly[(methyl methacrylate)-block-styrene] onto cellulose via nitroxide-mediated polymerization, and its polymer/clay nanocomposite. Carbohydrate Polymers, 2016, 152: 297–305
CrossRef
Google scholar
|
[27] |
Van Hai L , Zhai L , Kim H C , Kim J W , Choi E S , Kim J . Cellulose nanofibers isolated by TEMPO-oxidation and aqueous counter collision methods. Carbohydrate Polymers, 2018, 191: 65–70
CrossRef
Google scholar
|
[28] |
Du S , Li T , Wang X , Zhang L , Yang Z , Lin R , Zhu T . Molecular simulation on mechanism of thiophene hydrodesulfurization on surface of Ni2P. Energy Exploration & Exploitation, 2021, 39(3): 975–992
CrossRef
Google scholar
|
[29] |
Peter Z . Order in cellulosics: historical review of crystal structure research on cellulose. Carbohydrate Polymers, 2021, 254: 117417
CrossRef
Google scholar
|
[30] |
Zhang Y H , Shao Y , Luo C , Ma H Z , Yu H , Liu X , Yin B , Wu J L , Yang M B . Preparation of a high-performance chitosan-based triboelectric nanogenerator by regulating the surface microstructure and dielectric constant. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2022, 11(1): 260–268
CrossRef
Google scholar
|
[31] |
Thakur A , Jangra M , Dam S , Hussain S . Impedance studies of free-standing, flexible thin films of PVDF filled with gallium nitride nanoparticles. Journal of Materials Science Materials in Electronics, 2022, 33(23): 18658–18672
CrossRef
Google scholar
|
[32] |
Du G , Wang J , Liu Y , Yuan J , Liu T , Cai C , Luo B , Zhu S , Wei Z , Wang S .
CrossRef
Google scholar
|
[33] |
Zhang R , Hummelgård M , Örtegren J , Andersson H , Olsen M , Chen D , Li J , Eivazi A , Dahlström C , Norgren M .
CrossRef
Google scholar
|
[34] |
Lee H , Sundaram J , Zhu L , Zhao Y , Mani S . Improved thermal stability of cellulose nanofibrils using low-concentration alkaline pretreatment. Carbohydrate Polymers, 2018, 181: 506–513
CrossRef
Google scholar
|
[35] |
YueY. A comparative study of cellulose I and II and fibers and nanocrystals. LSU Digital Commons. Dissertation for the Master of Science Degree. Baton Rouge: Louisiana State University, 2011, 57–58
|
[36] |
Liu Y , Hu H . X-ray diffraction study of bamboo fibers treated with NaOH. Fibers and Polymers, 2008, 9(6): 735–739
CrossRef
Google scholar
|
[37] |
Kathirselvam M , Kumaravel A , Arthanarieswaran V P , Saravanakumar S S . Characterization of cellulose fibers in thespesia populnea barks: influence of alkali treatment. Carbohydrate Polymers, 2019, 217: 178–189
CrossRef
Google scholar
|
[38] |
Lin Q , Liu S , Wang X , Huang Y , Yu W . Preparation of ultra-conductive bamboo cellulose fiber via a facile pretreatment. Applied Surface Science, 2022, 575: 151700
CrossRef
Google scholar
|
[39] |
Li Z , Chen C , Xie H , Yao Y , Zhang X , Brozena A , Li J , Ding Y , Zhao X , Hong M .
CrossRef
Google scholar
|
[40] |
Hishikawa Y , Togawa E , Kondo T . Characterization of individual hydrogen bonds in crystalline regenerated cellulose using resolved polarized FTIR spectra. ACS Omega, 2017, 2(4): 1469–1476
CrossRef
Google scholar
|
[41] |
Lu Z , Zhang H , Liu L , Cao H , Cheng Z , Liu H , An X . Study on cellulose nanofibers (CNF) distribution behaviors and their roles in improving paper property. Industrial Crops and Products, 2023, 201: 116897
CrossRef
Google scholar
|
[42] |
Yang H , Yan R , Chen H , Lee D H , Zheng C . Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 2007, 86(12-13): 1781–1788
CrossRef
Google scholar
|
[43] |
Ge L , Zhao C , Zuo M , Du Y , Tang J , Chu H , Wang Y , Xu C . Effects of Fe addition on pyrolysis characteristics of lignin, cellulose and hemicellulose. Journal of the Energy Institute, 2023, 107: 101177
CrossRef
Google scholar
|
[44] |
Chen D , Cen K , Zhuang X , Gan Z , Zhou J , Zhang Y , Zhang H . Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio-oil. Combustion and Flame, 2022, 242: 112142
CrossRef
Google scholar
|
[45] |
Xu D , Ji Q , Tan L , Tian G , Quan F , Xia Y . Influence of alkaline metal ions on flame retardancy and thermal degradation of cellulose fibers. Fibers and Polymers, 2014, 15(2): 220–225
CrossRef
Google scholar
|
[46] |
Shen W , Wang H , Liu Y , Guo Q , Zhang Y . Oxidization activated carbon fiber through nitrocellulose combustion. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2007, 308(1–3): 20–24
CrossRef
Google scholar
|
[47] |
Sonnier R , Otazaghine B , Ferry L , Lopez-Cuesta J M . Study of the combustion efficiency of polymers using a pyrolysis-combustion flow calorimeter. Combustion and Flame, 2013, 160(10): 2182–2193
CrossRef
Google scholar
|
[48] |
Lin C , Sun L , Meng X , Yuan X , Cui C X , Qiao H , Chen P , Cui S , Zhai L , Mi L . Covalent organic frameworks with tailored functionalities for modulating surface potentials in triboelectric nanogenerators. Angewandte Chemie International Edition, 2022, 61(42): e202211601
CrossRef
Google scholar
|
[49] |
Wang Y M , Zhang X , Yang D , Wu L , Zhang J , Lei T , Yang R . Highly stable metal-organic framework UiO-66-NH2 for high-performance triboelectric nanogenerators. Nanotechnology, 2022, 33(6): 065402
CrossRef
Google scholar
|
/
〈 | 〉 |