Petroleum pitch derived hard carbon via NaCl-template as anode materials with high rate performance for sodium ion battery
Baoyu Wu, Hao Sun, Xiaoxue Li, Yinyi Gao, Tianzeng Bao, Hongbin Wu, Kai Zhu, Dianxue Cao
Petroleum pitch derived hard carbon via NaCl-template as anode materials with high rate performance for sodium ion battery
Sodium-ion batteries (SIBs) have garnered significant interest in energy storage due to their similar working mechanism to lithium ion batteries and abundant reserves of sodium resource. Exploring facile synthesis of a carbon-based anode materials with capable electrochemical performance is key to promoting the practical application of SIBs. In this work, a combination of petroleum pitch and recyclable sodium chloride is selected as the carbon source and template to obtain hard carbon (HC) anode for SIBs. Carbonization times and temperatures are optimized by assessing the sodium ion storage behavior of different HC materials. The optimized HC exhibits a remarkable capacity of over 430 mAh·g–1 after undergoing full activation through 500 cycles at a density of current of 0.1 A·g–1. Furthermore, it demonstrates an initial discharge capacity of 276 mAh·g–1 at a density of current of 0.5 A·g–1. Meanwhile, the optimized HC shows a good capacity retention (170 mAh·g–1 after 750 cycles) and a remarkable rate ability (166 mAh·g–1 at 2 A·g–1). The enhanced capacity is attributed to the suitable degree of graphitization and surface area, which improve the sodium ion transport and storage.
petroleum pitch / hard carbon / sodium-ion batteries / high rate / recyclable template
[1] |
Li T , Chen C J , Brozena A H , Zhu J Y , Xu L X , Driemeier C , Dai J Q , Rojas O J , Isogai A .
CrossRef
Google scholar
|
[2] |
Sun Z F , Pan J H , Chen W W , Chen H Y , Zhou S H , Wu X Y , Wang Y S , Kim K , Li J , Liu H D .
CrossRef
Google scholar
|
[3] |
Fu R N , Pan J H , Wang M Y , Min H H , Dong H H , Cai R , Sun Z F , Xiong Y W , Cui F H , Lei S Y .
CrossRef
Google scholar
|
[4] |
Ma M Z , Zhang S P , Wang L F , Yao Y , Shao R W , Shen L , Yu L , Dai J Y , Jiang Y , Cheng X L .
CrossRef
Google scholar
|
[5] |
Wang M , Wang Q C , Ding X Y , Wang Y S , Xin Y H , Singh P , Wu F , Gao H C . The prospect and challenges of sodium-ion batteries for low-temperature conditions. Interdisciplinary Materials, 2022, 1(3): 373–395
CrossRef
Google scholar
|
[6] |
Ma Y , Shang R X , Liu Y H , Lake R , Ozkan M , Ozkan C S . Enabling fast-charging capability for all-solid-state lithium-ion batteries. Journal of Power Sources, 2023, 559: 232647
CrossRef
Google scholar
|
[7] |
Nayak P K , Yang L T , Brehm W , Adelhelm P . From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angewandte Chemie International Edition, 2018, 57(1): 102–120
CrossRef
Google scholar
|
[8] |
Zhang L P , Li X L , Yang M R , Chen W H . High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective. Energy Storage Materials, 2021, 41: 522–545
CrossRef
Google scholar
|
[9] |
AbrahamK M. How comparable are sodium-ion batteries to lithium-ion counterparts? ACS Energy Letters, 2020, 5(11): 3544–3547
|
[10] |
Tian Z H , Zhang Y , Zhu J X , Li Q Y , Liu T X , Antonietti M . A reanalysis of the diverse sodium species in carbon anodes for sodium ion batteries: a thermodynamic view. Advanced Energy Materials, 2021, 11(47): 2102489
CrossRef
Google scholar
|
[11] |
Yao H , Li H Y , Ke B Y , Chu S Y , Guo S H , Zhou H S . Recent progress on honeycomb layered oxides as a durable cathode material for sodium-ion batteries. Small Methods, 2023, 7(6): 2201555
CrossRef
Google scholar
|
[12] |
Yadav K , Ray N . Aluminene as a low-cost anode material for Li- and Na-ion batteries. ACS Applied Materials & Interfaces, 2023, 15(31): 37337–37343
CrossRef
Google scholar
|
[13] |
Qiao S Y , Zhou Q W , Ma M , Liu H K , Dou S X , Chong S K . Advanced anode materials for rechargeable sodium-ion batteries. ACS Nano, 2023, 17(12): 11220–11252
CrossRef
Google scholar
|
[14] |
Thangaraj B , Solomon P R , Hassan J . Nanocarbon in sodium-ion batteries—a review. Part 1: Zero-dimensional carbon dots. ChemBioEng Reviews, 2023, 10(5): 628–646
CrossRef
Google scholar
|
[15] |
Ding J X , Zhou X Z , Gao J , Lei Z Q . Activating graphite with defects and oxygenic functional groups to boost sodium-ion storage. Nanoscale, 2023, 15(33): 13760–13769
CrossRef
Google scholar
|
[16] |
Dai C L , Sun G Q , Hu L Y , Xiao Y K , Zhang Z P , Qu L T . Recent progress in graphene-based electrodes for flexible batteries. InfoMat, 2020, 2(3): 509–526
CrossRef
Google scholar
|
[17] |
Li R , Yang B R , Hu A J , Zhou B , Liu M J , Yang L , Yan Z F , Fan Y N , Pan Y , Chen J H , Li T , Li K , Liu J , Long J . Heteroatom screening and microcrystal regulation of coal-derived hard carbon promises high-performance sodium-ion batteries. Carbon, 2023, 215: 118489
CrossRef
Google scholar
|
[18] |
Wei H Y , Cheng H K , Yao N , Li G , Du Z Q , Luo R X , Zheng Z . Invasive alien plant biomass-derived hard carbon anode for sodium-ion batteries. Chemosphere, 2023, 343: 140220
CrossRef
Google scholar
|
[19] |
Tai C W , Jao W Y , Tseng L , Wang P , Tu A P , Hu C C . Lithium-ion storage mechanism in closed pore-rich hard carbon with ultrahigh extra plateau capacity. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2023, 11(36): 19669–19684
CrossRef
Google scholar
|
[20] |
Liu R F , Li Y L , Wang C L , Xiao N , He L , Guo H Y , Wan P , Zhou Y , Qiu J S . Enhanced electrochemical performances of coal liquefaction residue derived hard carbon coated by graphene as anode materials for sodium-ion batteries. Fuel Processing Technology, 2018, 178: 35–40
CrossRef
Google scholar
|
[21] |
Saha B , Vedachalam S , Paul A K , Dalai A K , Saxena S , Roberts W L , Dryer F L . Microwave-assisted solvent deasphalting of heavy fuel oil and process parameters optimization. Fuel, 2023, 351: 128818
CrossRef
Google scholar
|
[22] |
Saad S , Zeraati A S , Roy S , Shahriar Rahman Saadi M A , Radović J R , Rajeev A , Miller K A , Bhattacharyya S , Larter S R , Natale G , Sundararaj U , Ajayan P M , Rahman M M , Kibria M G . Transformation of petroleum asphaltenes to carbon fibers. Carbon, 2022, 190: 92–103
CrossRef
Google scholar
|
[23] |
Tazikeh S , Sayyad Amin J , Zendehboudi S , Dejam M , Chatzis I . Bi-fractal and bi-Gaussian theories to evaluate impact of polythiophene-coated Fe3O4 nanoparticles on asphaltene precipitation and surface topography. Fuel, 2020, 272: 117535
CrossRef
Google scholar
|
[24] |
Kamkar M , Natale G . A review on novel applications of asphaltenes: a valuable waste. Fuel, 2021, 285: 119272
CrossRef
Google scholar
|
[25] |
Hung A M , Fini E H . Absorption spectroscopy to determine the extent and mechanisms of aging in bitumen and asphaltenes. Fuel, 2019, 242: 408–415
CrossRef
Google scholar
|
[26] |
Kim J W , Kim D W , Lee S Y , Park S J . A study on pre-oxidation of petroleum pitch-based activated carbons for electric double-layer capacitors. Molecules, 2022, 27(10): 3241
CrossRef
Google scholar
|
[27] |
Scherschel A , Harrell T , Sushchenko A , Li X D . Exploration of fibers produced from petroleum based-mesophase pitch and pet blends for carbon fiber production. Journal of Polymer Research, 2023, 30(9): 351
CrossRef
Google scholar
|
[28] |
Ma W , Li W L , Ran S , Yang G F , Wang T M . A superior microwave absorption material of porous carbon nanosheet/Fe3O4 composites from petroleum asphalt as carbon source. Journal of Materials Science, 2023, 58(33): 13279–13294
CrossRef
Google scholar
|
[29] |
Yang W , Deng B J , Hou L Q , Wang T H , Tian J B , Wang S , Li R , Yang F , Li Y F . Sulfur-fixation strategy toward controllable synthesis of molybdenum-based/carbon nanosheets derived from petroleum asphalt. Chemical Engineering Journal, 2020, 380: 122552
CrossRef
Google scholar
|
[30] |
Ning H , Wang X S , Wang W H , Mao Q H , Yang Z X , Zhao Q S , Song Y , Wu M B . Cubic Cu2O on nitrogen-doped carbon shells for electrocatalytic CO2 reduction to C2H4. Carbon, 2019, 146: 218–223
CrossRef
Google scholar
|
[31] |
Lu Y X , Zhao C L , Qi X G , Qi Y R , Li H , Huang X J , Chen L Q , Hu Y S . Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance. Advanced Energy Materials, 2018, 8(27): 1800108
CrossRef
Google scholar
|
[32] |
Cao B , Liu H , Xu B , Lei Y F , Chen X H , Song H H . Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(17): 6472–6478
CrossRef
Google scholar
|
[33] |
Kamiyama A , Kubota K , Igarashi D , Youn Y , Tateyama Y , Ando H , Gotoh K , Komaba S . MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery. Angewandte Chemie International Edition, 2021, 60(10): 5114–5120
CrossRef
Google scholar
|
[34] |
Li Y Q , Lu Y X , Meng Q S , Jensen A C S , Zhang Q Q , Zhang Q H , Tong Y X , Qi Y , Gu L , Titirici M M .
CrossRef
Google scholar
|
[35] |
Üstün B , Aydın H , Koç S N , Uluslu A , Kurtan Ü . Electrospun polyethylenimine (PEI)-derived nitrogen enriched carbon nanofiber for supercapacitors with artificial neural network modeling. Journal of Energy Storage, 2023, 73: 108970
CrossRef
Google scholar
|
[36] |
Wang J F , Yuan Y F , Lin Z C , Lin J J , Li S B , Huang Y Z , Guo S Y , Yan W W . Boosting lithium storage performance of Co-Sn double hydroxide nanocubes in-situ grown in mesoporous hollow carbon nanospheres. Electrochimica Acta, 2023, 465: 142971
CrossRef
Google scholar
|
[37] |
Tang Z , Zhang R , Wang H Y , Zhou S Y , Pan Z Y , Huang Y C , Sun D , Tang Y G , Ji X B , Amine K , Shao M . Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery. Nature Communications, 2023, 14(1): 6024
CrossRef
Google scholar
|
[38] |
Long B J , Zhao R , Zhang J , Wang L , Chen X Q , Du Y X , Yuan G M , Dong Z J , Li X K . Stabilization residual oxygen reduces sulfur activity in hard carbon anode for sodium-ion batteries. Journal of Materials Science, 2022, 57(37): 17711–17721
CrossRef
Google scholar
|
[39] |
Li W B , Guo X N , Song K M , Chen J C , Zhang J Y , Tang G C , Liu C T , Chen W H , Shen C Y . Binder-induced ultrathin SEI for defect-passivated hard carbon enables highly reversible sodium-ion storage. Advanced Energy Materials, 2023, 13(22): 2300648
CrossRef
Google scholar
|
[40] |
Ma L A , Buckel A , Hofmann A , Nyholm L , Younesi R . Fundamental understanding and quantification of capacity losses involving the negative electrode in sodium-ion batteries. Advancement of Science, 2023, 20: 2306771
|
[41] |
Glatthaar C , Wang M , Wagner L Q , Breckwoldt F , Guo Z Y , Zheng K T , Kriechbaum M , Amenitsch H , Titirici M M , Smarsly B M . Lignin-derived mesoporous carbon for sodium-ion batteries: block copolymer soft templating and carbon microstructure analysis. Chemistry of Materials, 2023, 35(24): 10416–10433
CrossRef
Google scholar
|
[42] |
Chen H , Sun N , Wang Y X , Soomro R A , Xu B . One stone two birds: pitch assisted microcrystalline regulation and defect engineering in coal-based carbon anodes for sodium-ion batteries. Energy Storage Materials, 2023, 56: 532–541
CrossRef
Google scholar
|
[43] |
Xie F , Xu Z , Jensen A C S , Au H , Lu Y X , Araullo-Peters V , Drew A J , Hu Y S , Titirici M M . Hard-soft carbon composite anodes with synergistic sodium storage performance. Advanced Functional Materials, 2019, 29(24): 1901072
CrossRef
Google scholar
|
[44] |
Wang M H , Ji S , Wang H , Linkov V , Wang X Y , Wang R F . Electrocatalytic performance of Ni-promoted Co nanoclusters supported by N-doped carbon foams for rechargeable Zn-air batteries. Journal of Power Sources, 2023, 571: 233069
CrossRef
Google scholar
|
[45] |
Zhang P , Shu Y R , Wang Y , Ye J H , Yang L . Simple and efficient synthesis methods for fabricating anode materials of sodium-ion batteries and their sodium-ion storage mechanism study. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2023, 11(6): 2920–2932
CrossRef
Google scholar
|
[46] |
Zhang Z H , Huang G X , Qu X X , Liu Y H , Liu Z Y , Jia J B , Xing B L , Zhang C X . An effective strategy to prepare non-graphitic carbon with increased pseudo-graphitic content for sodium-ion battery anode with enhanced plateau capacity. Chemical Engineering Journal, 2023, 477: 147188
CrossRef
Google scholar
|
[47] |
Siebert A , Dou X W , Garcia-Diez R , Buchholz D , Félix R , Handick E , Wilks R G , Passerini S , Bär M . Solid electrolyte interphase formation on anatase TiO2 nanoparticle-based electrodes for sodium-ion batteries. ACS Applied Energy Materials, 2024, 7(1): 125–132
CrossRef
Google scholar
|
[48] |
Liang Y Z , Song N , Zhang M Z , An X G , Song K P , Chen W H , Feng J K , Xiong S L , Xi B J . Robust interfacial chemistry induced by B-doping enables rapid, stable sodium storage. Advanced Energy Materials, 2023, 13(47): 2302825
CrossRef
Google scholar
|
[49] |
Han B , Zou Y C , Zhang Z , Yang X M , Shi X B , Meng H , Wang H , Xu K , Deng Y H , Gu M . Probing the Na metal solid electrolyte interphase via cryo-transmission electron microscopy. Nature Communications, 2021, 12(1): 3066
CrossRef
Google scholar
|
/
〈 | 〉 |