Machine learning meets enzyme engineering: examples in the design of polyethylene terephthalate hydrolases
Rohan Ali, Yifei Zhang
Machine learning meets enzyme engineering: examples in the design of polyethylene terephthalate hydrolases
The trend of employing machine learning methods has been increasing to develop promising biocatalysts. Leveraging the experimental findings and simulation data, these methods facilitate enzyme engineering and even the design of new-to-nature enzymes. This review focuses on the application of machine learning methods in the engineering of polyethylene terephthalate (PET) hydrolases, enzymes that have the potential to help address plastic pollution. We introduce an overview of machine learning workflows, useful methods and tools for protein design and engineering, and discuss the recent progress of machine learning-aided PET hydrolase engineering and de novo design of PET hydrolases. Finally, as machine learning in enzyme engineering is still evolving, we foresee that advancements in computational power and quality data resources will considerably increase the use of data-driven approaches in enzyme engineering in the coming decades.
machine learning / artificial intelligence / enzyme engineering / polyethylene terephthalate hydrolase / enzyme design
[1] |
BescondA SPujariA. PET Polymer—Chemical Economics Handbook (IHS Markit). 2020
|
[2] |
Carr C M , Clarke D J , Dobson A D W . Microbial polyethylene terephthalate hydrolases: current and future perspectives. Frontiers in Microbiology, 2020, 11: 571265
CrossRef
Google scholar
|
[3] |
Wei R , von Haugwitz G , Pfaff L , Mican J , Badenhorst C P S , Liu W , Weber G , Austin H P , Bednar D , Damborsky J .
CrossRef
Google scholar
|
[4] |
Fang Y , Chao K , He J , Wang Z , Chen Z . High-efficiency depolymerization/degradation of polyethylene terephthalate plastic by a whole-cell biocatalyst. Biotech, 2023, 13(5): 138
|
[5] |
Ambrose-Dempster E , Leipold L , Dobrijevic D , Bawn M , Carter E M , Stojanovski G , Sheppard T D , Jeffries J W , Ward J M , Hailes H C . Mechanoenzymatic reactions for the hydrolysis of PET. RSC Advances, 2023, 13(15): 9954–9962
CrossRef
Google scholar
|
[6] |
Cao F , Wang L , Zheng R , Guo L , Chen Y , Qian X . Research and progress of chemical depolymerization of waste PET and high-value application of its depolymerization products. RSC Advances, 2022, 12(49): 31564–31576
CrossRef
Google scholar
|
[7] |
Lai J , Huang H , Lin M , Xu Y , Li X , Sun B . Enzyme catalyzes ester bond synthesis and hydrolysis: the key step for sustainable usage of plastics. Frontiers in Microbiology, 2023, 13: 1113705
CrossRef
Google scholar
|
[8] |
Magalhães R P , Cunha J M , Sousa S F . Perspectives on the role of enzymatic biocatalysis for the degradation of plastic PET. International Journal of Molecular Sciences, 2021, 22(20): 11257
CrossRef
Google scholar
|
[9] |
Akram E , Cao Y , Xing H , Ding Y , Luo Y , Wei R , Zhang Y . On the temperature dependence of enzymatic degradation of poly(ethylene terephthalate). Chinese Journal of Catalysis, 2024, 60: 284–293
CrossRef
Google scholar
|
[10] |
Müller R J , Schrader H , Profe J , Dresler K , Deckwer W D . Enzymatic degradation of poly(ethylene terephthalate): rapid hydrolyse using a hydrolase from T. fusca. Macromolecular Rapid Communications, 2005, 26(17): 1400–1405
CrossRef
Google scholar
|
[11] |
Sulaiman S , Yamato S , Kanaya E , Kim J J , Koga Y , Takano K , Kanaya S . Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Applied and Environmental Microbiology, 2012, 78(5): 1556–1562
CrossRef
Google scholar
|
[12] |
Yoshida S , Hiraga K , Takehana T , Taniguchi I , Yamaji H , Maeda Y , Toyohara K , Miyamoto K , Kimura Y , Oda K . A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 2016, 351(6278): 1196–1199
CrossRef
Google scholar
|
[13] |
Cui Y , Chen Y , Liu X , Dong S , Tian Y E , Qiao Y , Mitra R , Han J , Li C , Han X .
CrossRef
Google scholar
|
[14] |
Ding Z , Xu G , Miao R , Wu N , Zhang W , Yao B , Guan F , Huang H , Tian J . Rational redesign of thermophilic PET hydrolase LCCICCG to enhance hydrolysis of high crystallinity polyethylene terephthalates. Journal of Hazardous Materials, 2023, 453: 131386
CrossRef
Google scholar
|
[15] |
Li Q , Zheng Y , Su T , Wang Q , Liang Q , Zhang Z , Qi Q , Tian J . Computational design of a cutinase for plastic biodegradation by mining molecular dynamics simulations trajectories. Computational and Structural Biotechnology Journal, 2022, 20: 459–470
CrossRef
Google scholar
|
[16] |
Lu H , Diaz D J , Czarnecki N J , Zhu C , Kim W , Shroff R , Acosta D J , Alexander B R , Cole H O , Zhang Y .
CrossRef
Google scholar
|
[17] |
Meng S , Li Z , Zhang P , Contreras F , Ji Y , Schwaneberg U . Deep learning guided enzyme engineering of Thermobifida fusca cutinase for increased PET depolymerization. Chinese Journal of Catalysis, 2023, 50: 229–238
CrossRef
Google scholar
|
[18] |
Cui Y , Chen Y , Sun J , Zhu T , Pang H , Li C , Geng W C , Wu B . Computational redesign of a hydrolase for nearly complete PET depolymerization at industrially relevant high-solids loading. Nature Communications, 2024, 15(1): 1417
CrossRef
Google scholar
|
[19] |
Bell E L , Smithson R , Kilbride S , Foster J , Hardy F J , Ramachandran S , Tedstone A A , Haigh S J , Garforth A A , Day P J .
CrossRef
Google scholar
|
[20] |
Liu F , Wang T , Yang W , Zhang Y , Gong Y , Fan X , Wang G , Lu Z , Wang J . Current advances in the structural biology and molecular engineering of PETase. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1263996
CrossRef
Google scholar
|
[21] |
Son H F , Cho I J , Joo S , Seo H , Sagong H Y , Choi S Y , Lee S Y , Kim K J . Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation. ACS Catalysis, 2019, 9(4): 3519–3526
CrossRef
Google scholar
|
[22] |
Zurier H S , Goddard J M . A high-throughput expression and screening platform for applications-driven PETase engineering. Biotechnology and Bioengineering, 2023, 120(4): 1000–1014
CrossRef
Google scholar
|
[23] |
Tournier V , Topham C , Gilles A , David B , Folgoas C , Moya Leclair E , Kamionka E , Desrousseaux M L , Texier H , Gavalda S .
CrossRef
Google scholar
|
[24] |
Thiyagarajan S , Maaskant-Reilink E , Ewing T A , Julsing M K , Van Haveren J . Back-to-monomer recycling of polycondensation polymers: opportunities for chemicals and enzymes. RSC Advances, 2022, 12(2): 947–970
CrossRef
Google scholar
|
[25] |
YangK KWuZArnoldF H. Machine learning in protein engineering. Preprint arXiv, 2018, arXiv:181110775
|
[26] |
Mazurenko S , Prokop Z , Damborsky J . Machine learning in enzyme engineering. ACS Catalysis, 2020, 10(2): 1210–1223
CrossRef
Google scholar
|
[27] |
Chang C , Deringer V L , Katti K S , Van Speybroeck V , Wolverton C M . Simulations in the era of exascale computing. Nature Reviews. Materials, 2023, 8(5): 309–313
CrossRef
Google scholar
|
[28] |
Pyzer-Knapp E O , Pitera J W , Staar P W , Takeda S , Laino T , Sanders D P , Sexton J , Smith J R , Curioni A . Accelerating materials discovery using artificial intelligence, high performance computing and robotics. npj Computational Materials, 2022, 8(1): 84
CrossRef
Google scholar
|
[29] |
Singh V , Patra S , Murugan N A , Toncu D C , Tiwari A . Recent trends in computational tools and data-driven modeling for advanced materials. Materials Advances, 2022, 3(10): 4069–4087
CrossRef
Google scholar
|
[30] |
Beller M , Bender M , Bornscheuer U T , Schunk S . Catalysis—Far from Being a Mature Technology. Chemieingenieurtechnik, 2022, 94(11): 1559–1559
CrossRef
Google scholar
|
[31] |
Greener J G , Kandathil S M , Moffat L , Jones D T . A guide to machine learning for biologists. Nature Reviews. Molecular Cell Biology, 2022, 23(1): 40–55
CrossRef
Google scholar
|
[32] |
Feehan R , Montezano D , Slusky J S . Machine learning for enzyme engineering, selection and design. Protein Engineering, Design & Selection, 2021, 34: gzab019
|
[33] |
Markus B , C G C , Andreas K , Arkadij K , Stefan L , Gustav O , Elina S , Radka S . Accelerating biocatalysis discovery with machine learning: a paradigm shift in enzyme engineering, discovery, and design. ACS Catalysis, 2023, 13(21): 14454–14469
CrossRef
Google scholar
|
[34] |
Sampaio P S , Fernandes P . Machine learning: a suitable method for biocatalysis. Catalysts, 2023, 13(6): 961
CrossRef
Google scholar
|
[35] |
Olivier ChapelleB SAlexanderZ. A continuation method for semi-supervised SVMs. In: Proceedings of the 23rd International Conference on Machine learning, NY: ACM Press, 2006, 185–192
|
[36] |
Kouba P , Kohout P , Haddadi F , Bushuiev A , Samusevich R , Sedlar J , Damborsky J , Pluskal T , Sivic J , Mazurenko S . Machine learning-guided protein engineering. ACS Catalysis, 2023, 13(21): 13863–13895
CrossRef
Google scholar
|
[37] |
Schomburg I , Chang A , Schomburg D . Brenda, enzyme data and metabolic information. Nucleic Acids Research, 2002, 30(1): 47–49
CrossRef
Google scholar
|
[38] |
Berman H M , Westbrook J , Feng Z , Gilliland G , Bhat T N , Weissig H , Shindyalov I N , Bourne P E . The Protein Data Bank. Nucleic Acids Research, 2000, 28(1): 235–242
CrossRef
Google scholar
|
[39] |
Yan B , Ran X , Gollu A , Cheng Z , Zhou X , Chen Y , Yang Z J . IntEnzyDB: an integrated structure-kinetics enzymology database. Journal of Chemical Information and Modeling, 2022, 62(22): 5841–5848
CrossRef
Google scholar
|
[40] |
Consortium T U . UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research, 2019, 47(D1): D506–D515
CrossRef
Google scholar
|
[41] |
Consortium T U . UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research, 2021, 49(D1): D480–D489
CrossRef
Google scholar
|
[42] |
Pleiss J . Standardized data, scalable documentation, sustainable storage-EnzymeML as a basis for FAIR data management in biocatalysis. ChemCatChem, 2021, 13(18): 3909–3913
CrossRef
Google scholar
|
[43] |
Velecký J , Hamsikova M , Stourac J , Musil M , Damborsky J , Bednar D , Mazurenko S . SoluProtMutDB: a manually curated database of protein solubility changes upon mutations. Computational and Structural Biotechnology Journal, 2022, 20: 6339–6347
CrossRef
Google scholar
|
[44] |
Xavier J S , Nguyen T B , Karmarkar M , Portelli S , Rezende P M , Velloso J P , Ascher D B , Pires D E . ThermoMutDB: a thermodynamic database for missense mutations. Nucleic Acids Research, 2021, 49(D1): D475–D479
CrossRef
Google scholar
|
[45] |
Stourac J , Dubrava J , Musil M , Horackova J , Damborsky J , Mazurenko S , Bednar D . FireProtDB: database of manually curated protein stability data. Nucleic Acids Research, 2021, 49(D1): D319–D324
CrossRef
Google scholar
|
[46] |
Nikam R , Kulandaisamy A , Harini K , Sharma D , Gromiha M M . ProThermDB: thermodynamic database for proteins and mutants revisited after 15 years. Nucleic Acids Research, 2021, 49(D1): D420–D424
CrossRef
Google scholar
|
[47] |
Heid E , Probst D , Green W H , Madsen G K . EnzymeMap: curation, validation and data-driven prediction of enzymatic reactions. Chemical Science, 2023, 48(14): 14229–14242
CrossRef
Google scholar
|
[48] |
Probst D , Manica M , Nana Teukam Y G , Castrogiovanni A , Paratore F , Laino T . Biocatalysed synthesis planning using data-driven learning. Nature Communications, 2022, 13(1): 964
CrossRef
Google scholar
|
[49] |
Ganter M , Bernard T , Moretti S , Stelling J , Pagni M . MetaNetX. org: a website and repository for accessing, analysing and manipulating metabolic networks. Bioinformatics, 2013, 29(6): 815–816
CrossRef
Google scholar
|
[50] |
Hafner J , MohammadiPeyhani H , Sveshnikova A , Scheidegger A , Hatzimanikatis V . MohammadiPeyhani H, Sveshnikova A, Scheidegger A, Hatzimanikatis V. Updated atlas of biochemistry with new metabolites and improved enzyme prediction power. ACS Synthetic Biology, 2020, 9(6): 1479–1482
CrossRef
Google scholar
|
[51] |
Wishart D S , Li C , Marcu A , Badran H , Pon A , Budinski Z , Patron J , Lipton D , Cao X , Oler E .
CrossRef
Google scholar
|
[52] |
Wittig U , Rey M , Weidemann A , Kania R , Müller W . SABIO-RK: an updated resource for manually curated biochemical reaction kinetics. Nucleic Acids Research, 2018, 46(D1): D656–D660
CrossRef
Google scholar
|
[53] |
Afify H M , Abdelhalim M B , Mabrouk M S , Sayed A Y . Protein secondary structure prediction (PSSP) using different machine algorithms. Egyptian Journal of Medical Human Genetics, 2021, 22(1): 1–10
CrossRef
Google scholar
|
[54] |
Liu B , Wang X , Lin L , Tang B , Dong Q , Wang X . Prediction of protein binding sites in protein structures using hidden Markov support vector machine. BMC Bioinformatics, 2009, 10(1): 1–14
CrossRef
Google scholar
|
[55] |
Palla M , Punthambaker S , Stranges B , Vigneault F , Nivala J , Wiegand D , Ayer A , Craig T , Gremyachinskiy D , Franklin H .
CrossRef
Google scholar
|
[56] |
Fang X , Huang J , Zhang R , Wang F , Zhang Q , Li G , Yan J , Zhang H , Yan Y , Xu L . Convolution neural network-based prediction of protein thermostability. Journal of Chemical Information and Modeling, 2019, 59(11): 4833–4843
CrossRef
Google scholar
|
[57] |
Gelman S , Fahlberg S A , Heinzelman P , Romero P A , Gitter A . Neural networks to learn protein sequence-function relationships from deep mutational scanning data. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(48): e2104878118
CrossRef
Google scholar
|
[58] |
Mellor J , Grigoras I , Carbonell P , Faulon J L . Semisupervised gaussian process for automated enzyme search. ACS Synthetic Biology, 2016, 5(6): 518–528
CrossRef
Google scholar
|
[59] |
Pires D E , Ascher D B , Blundell T L . mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics, 2014, 30(3): 335–342
CrossRef
Google scholar
|
[60] |
Hakala K , Kaewphan S , Björne J , Mehryary F , Moen H , Tolvanen M , Salakoski T , Ginter F . Neural network and random forest models in protein function prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19(3): 1772–1781
CrossRef
Google scholar
|
[61] |
Kathuria C , Mehrotra D , Misra N K . Predicting the protein structure using random forest approach. Procedia Computer Science, 2018, 132: 1654–1662
CrossRef
Google scholar
|
[62] |
Wang C , Chen Y , Zhang Y , Li K , Lin M , Pan F , Wu W , Zhang J . A reinforcement learning approach for protein-ligand binding pose prediction. BMC Bioinformatics, 2022, 23(1): 1–18
CrossRef
Google scholar
|
[63] |
Ryu J Y , Kim H U , Lee S Y . Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(28): 13996–14001
CrossRef
Google scholar
|
[64] |
Dalkiran A , Rifaioglu A S , Martin M J , Cetin A R , Atalay V , Doğan T . ECPred: a tool for the prediction of the enzymatic functions of protein sequences based on the EC nomenclature. BMC Bioinformatics, 2018, 19(1): 1–13
CrossRef
Google scholar
|
[65] |
Zou Z , Tian S , Gao X , Li Y . mlDEEPre: multi-functional enzyme function prediction with hierarchical multi-label deep learning. Frontiers in Genetics, 2019, 9: 714
CrossRef
Google scholar
|
[66] |
Cadet F , Fontaine N , Li G , Sanchis J , Ng F C M , Pandjaitan R , Vetrivel I , Offmann B , Reetz M T . A machine learning approach for reliable prediction of amino acid interactions and its application in the directed evolution of enantioselective enzymes. Scientific Reports, 2018, 8(1): 16757
CrossRef
Google scholar
|
[67] |
Robinson S L , Smith M D , Richman J E , Aukema K G , Wackett L P . Machine learning-based prediction of activity and substrate specificity for OleA enzymes in the thiolase superfamily. Synthetic Biology, 2020, 5(1): ysaa004
CrossRef
Google scholar
|
[68] |
Robinson S L , Terlouw B R , Smith M D , Pidot S J , Stinear T P , Medema M H , Wackett L P . Global analysis of adenylate-forming enzymes reveals β-lactone biosynthesis pathway in pathogenic nocardia. Journal of Biological Chemistry, 2020, 295(44): 14826–14839
CrossRef
Google scholar
|
[69] |
Song J , Li F , Takemoto K , Haffari G , Akutsu T , Chou K C , Webb G I . Prevail, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework. Journal of Theoretical Biology, 2018, 443: 125–137
CrossRef
Google scholar
|
[70] |
Torng W , Altman R B . High precision protein functional site detection using 3D convolutional neural networks. Bioinformatics, 2019, 35(9): 1503–1512
CrossRef
Google scholar
|
[71] |
Somarowthu S , Yang H , Hildebrand D G , Ondrechen M J . High-performance prediction of functional residues in proteins with machine learning and computed input features. Biopolymers, 2011, 95(6): 390–400
CrossRef
Google scholar
|
[72] |
Li G , Rabe K S , Nielsen J , Engqvist M K . Machine learning applied to predicting microorganism growth temperatures and enzyme catalytic optima. ACS Synthetic Biology, 2019, 8(6): 1411–1420
CrossRef
Google scholar
|
[73] |
Foroozandeh S M , Farhadyar K , Kavousi K , Azarabad M H , Boroomand A , Ariaeenejad S , Hosseini S G . A generalized machine-learning aided method for targeted identification of industrial enzymes from metagenome: a xylanase temperature dependence case study. Biotechnology and Bioengineering, 2021, 118(2): 759–769
CrossRef
Google scholar
|
[74] |
Li F , Yuan L , Lu H , Li G , Chen Y , Engqvist M K , Kerkhoven E J , Nielsen J . Deep learning-based kcat prediction enables improved enzyme-constrained model reconstruction. Nature Catalysis, 2022, 5(8): 662–672
CrossRef
Google scholar
|
[75] |
Xie W J , Asadi M , Warshel A . Enhancing computational enzyme design by a maximum entropy strategy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(7): e2122355119
CrossRef
Google scholar
|
[76] |
Shroff R , Cole A W , Diaz D J , Morrow B R , Donnell I , Annapareddy A , Gollihar J , Ellington A D , Thyer R . Discovery of novel gain-of-function mutations guided by structure-based deep learning. ACS Synthetic Biology, 2020, 9(11): 2927–2935
CrossRef
Google scholar
|
[77] |
Ostafe R , Fontaine N , Frank D , Ng F C M , Prodanovic R , Pandjaitan R , Offmann B , Cadet F , Fischer R . One-shot optimization of multiple enzyme parameters: tailoring glucose oxidase for pH and electron mediators. Biotechnology and Bioengineering, 2020, 117(1): 17–29
CrossRef
Google scholar
|
[78] |
Høie M H , Cagiada M , Frederiksen A H B , Stein A , Lindorff Larsen K . Predicting and interpreting large-scale mutagenesis data using analyses of protein stability and conservation. Cell Reports, 2022, 38(2): 110207
CrossRef
Google scholar
|
[79] |
Chew A K , Jiang S , Zhang W , Zavala V M , Van Lehn R C . Fast predictions of liquid-phase acid-catalyzed reaction rates using molecular dynamics simulations and convolutional neural networks. Chemical Science, 2020, 11(46): 12464–12476
CrossRef
Google scholar
|
[80] |
RanXJiangYShaoQYangZ J. EnzyKR: a chirality-aware deep learning model for predicting the outcomes of the hydrolase-catalyzed kinetic resolution. Chemical Science, 2023, 14(43): 12073–12082
|
[81] |
Wang S , Tang H , Zhao Y , Zuo L . BayeStab: predicting effects of mutations on protein stability with uncertainty quantification. Protein Science, 2022, 31(11): e4467
CrossRef
Google scholar
|
[82] |
Iqbal S , Ge F , Li F , Akutsu T , Zheng Y , Gasser R B , Yu D J , Webb G I , Song J . PROST: Alphafold2-aware sequence-based predictor to estimate protein stability changes upon missense mutations. Journal of Chemical Information and Modeling, 2022, 62(17): 4270–4282
CrossRef
Google scholar
|
[83] |
Hernández I M , Dehouck Y , Bastolla U , López-Blanco J R , Chacón P . Predicting protein stability changes upon mutation using a simple orientational potential. Bioinformatics, 2023, 39(1): btad011
CrossRef
Google scholar
|
[84] |
Pak M A , Markhieva K A , Novikova M S , Petrov D S , Vorobyev I S , Maksimova E S , Kondrashov F A , Ivankov D N . Using Alphafold to predict the impact of single mutations on protein stability and function. PLoS One, 2023, 18(3): e0282689
CrossRef
Google scholar
|
[85] |
Gado J E , Beckham G T , Payne C M . Improving enzyme optimum temperature prediction with resampling strategies and ensemble learning. Journal of Chemical Information and Modeling, 2020, 60(8): 4098–4107
CrossRef
Google scholar
|
[86] |
Yang Y , Zeng L , Vihinen M . PON-Sol2: prediction of effects of variants on protein solubility. International Journal of Molecular Sciences, 2021, 22(15): 8027
CrossRef
Google scholar
|
[87] |
Russ W P , Figliuzzi M , Stocker C , Barrat-Charlaix P , Socolich M , Kast P , Hilvert D , Monasson R , Cocco S , Weigt M . An evolution-based model for designing chorismate mutase enzymes. Science, 2020, 369(6502): 440–445
CrossRef
Google scholar
|
[88] |
Mak W S , Wang X , Arenas R , Cui Y , Bertolani S , Deng W Q , Tagkopoulos I , Wilson D K , Siegel J B . Discovery, design, and structural characterization of alkane-producing enzymes across the ferritin-like superfamily. Biochemistry, 2020, 59(40): 3834–3843
CrossRef
Google scholar
|
[89] |
Dauparas J , Anishchenko I , Bennett N , Bai H , Ragotte R J , Milles L F , Wicky B I , Courbet A , de Haas R J , Bethel N .
CrossRef
Google scholar
|
[90] |
Watson J L , Juergens D , Bennett N R , Trippe B L , Yim J , Eisenach H E , Ahern W , Borst A J , Ragotte R J , Milles L F .
CrossRef
Google scholar
|
[91] |
Wu K E , Yang K K , van den Berg R , Alamdari S , Zou J Y , Lu A X , Amini A P . Berg R V D, Zou J Y, Lu A X, et al. Protein structure generation via folding diffusion. Nature Communications, 2024, 15(1): 1059
CrossRef
Google scholar
|
[92] |
ZhangZXuMJamasbAChenthamarakshanVLozanoADasPTangJ. Protein representation learning by geometric structure pretraining. Preprint arXiv: 2203.06125, 2022
|
[93] |
Zhang J , Wang H , Luo Z , Yang Z , Zhang Z , Wang P , Li M , Zhang Y , Feng Y , Lu D .
CrossRef
Google scholar
|
[94] |
Xu A , Zhou J , Blank L M , Jiang M . Future focuses of enzymatic plastic degradation. Trends in Microbiology, 2023, 31(7): 668–671
CrossRef
Google scholar
|
[95] |
Zhang Y . A relay for improving the catalytic efficiency and thermostability of PET hydrolases. Chem Catalysis, 2022, 2(10): 2420–2422
CrossRef
Google scholar
|
[96] |
SchymkowitzJBorgJStricherFNysRRousseauFSerranoL. The FoldX web server: an online force field. Nucleic Acids Research, 2005, 33: W382–W388
|
[97] |
GuptaAAgrawalS. Machine learning-based enzyme engineering of PETase for improved efficiency in plastic degradation. Journal of Emgerging Investigators, 2023, 6: doi:10.59720/22-016
|
[98] |
DingYZhangSHessHKongXZhangY. Replicating enzymatic activity by positioning active sites with synthetic protein scaffolds. BioRxiv, 2024, bioRxiv 2024.01.31.577620
|
/
〈 | 〉 |