Machine learning meets enzyme engineering: examples in the design of polyethylene terephthalate hydrolases

Rohan Ali, Yifei Zhang

PDF(867 KB)
PDF(867 KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (12) : 149. DOI: 10.1007/s11705-024-2500-7
REVIEW ARTICLE

Machine learning meets enzyme engineering: examples in the design of polyethylene terephthalate hydrolases

Author information +
History +

Abstract

The trend of employing machine learning methods has been increasing to develop promising biocatalysts. Leveraging the experimental findings and simulation data, these methods facilitate enzyme engineering and even the design of new-to-nature enzymes. This review focuses on the application of machine learning methods in the engineering of polyethylene terephthalate (PET) hydrolases, enzymes that have the potential to help address plastic pollution. We introduce an overview of machine learning workflows, useful methods and tools for protein design and engineering, and discuss the recent progress of machine learning-aided PET hydrolase engineering and de novo design of PET hydrolases. Finally, as machine learning in enzyme engineering is still evolving, we foresee that advancements in computational power and quality data resources will considerably increase the use of data-driven approaches in enzyme engineering in the coming decades.

Graphical abstract

Keywords

machine learning / artificial intelligence / enzyme engineering / polyethylene terephthalate hydrolase / enzyme design

Cite this article

Download citation ▾
Rohan Ali, Yifei Zhang. Machine learning meets enzyme engineering: examples in the design of polyethylene terephthalate hydrolases. Front. Chem. Sci. Eng., 2024, 18(12): 149 https://doi.org/10.1007/s11705-024-2500-7

References

[1]
BescondA SPujariA. PET Polymer—Chemical Economics Handbook (IHS Markit). 2020
[2]
Carr C M , Clarke D J , Dobson A D W . Microbial polyethylene terephthalate hydrolases: current and future perspectives. Frontiers in Microbiology, 2020, 11: 571265
CrossRef Google scholar
[3]
Wei R , von Haugwitz G , Pfaff L , Mican J , Badenhorst C P S , Liu W , Weber G , Austin H P , Bednar D , Damborsky J . . Mechanism-based design of efficient PET hydrolases. ACS Catalysis, 2022, 12(6): 3382–3396
CrossRef Google scholar
[4]
Fang Y , Chao K , He J , Wang Z , Chen Z . High-efficiency depolymerization/degradation of polyethylene terephthalate plastic by a whole-cell biocatalyst. Biotech, 2023, 13(5): 138
[5]
Ambrose-Dempster E , Leipold L , Dobrijevic D , Bawn M , Carter E M , Stojanovski G , Sheppard T D , Jeffries J W , Ward J M , Hailes H C . Mechanoenzymatic reactions for the hydrolysis of PET. RSC Advances, 2023, 13(15): 9954–9962
CrossRef Google scholar
[6]
Cao F , Wang L , Zheng R , Guo L , Chen Y , Qian X . Research and progress of chemical depolymerization of waste PET and high-value application of its depolymerization products. RSC Advances, 2022, 12(49): 31564–31576
CrossRef Google scholar
[7]
Lai J , Huang H , Lin M , Xu Y , Li X , Sun B . Enzyme catalyzes ester bond synthesis and hydrolysis: the key step for sustainable usage of plastics. Frontiers in Microbiology, 2023, 13: 1113705
CrossRef Google scholar
[8]
Magalhães R P , Cunha J M , Sousa S F . Perspectives on the role of enzymatic biocatalysis for the degradation of plastic PET. International Journal of Molecular Sciences, 2021, 22(20): 11257
CrossRef Google scholar
[9]
Akram E , Cao Y , Xing H , Ding Y , Luo Y , Wei R , Zhang Y . On the temperature dependence of enzymatic degradation of poly(ethylene terephthalate). Chinese Journal of Catalysis, 2024, 60: 284–293
CrossRef Google scholar
[10]
Müller R J , Schrader H , Profe J , Dresler K , Deckwer W D . Enzymatic degradation of poly(ethylene terephthalate): rapid hydrolyse using a hydrolase from T. fusca. Macromolecular Rapid Communications, 2005, 26(17): 1400–1405
CrossRef Google scholar
[11]
Sulaiman S , Yamato S , Kanaya E , Kim J J , Koga Y , Takano K , Kanaya S . Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Applied and Environmental Microbiology, 2012, 78(5): 1556–1562
CrossRef Google scholar
[12]
Yoshida S , Hiraga K , Takehana T , Taniguchi I , Yamaji H , Maeda Y , Toyohara K , Miyamoto K , Kimura Y , Oda K . A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 2016, 351(6278): 1196–1199
CrossRef Google scholar
[13]
Cui Y , Chen Y , Liu X , Dong S , Tian Y E , Qiao Y , Mitra R , Han J , Li C , Han X . . Computational redesign of a PETase for plastic biodegradation under ambient condition by the grape strategy. ACS Catalysis, 2021, 11(3): 1340–1350
CrossRef Google scholar
[14]
Ding Z , Xu G , Miao R , Wu N , Zhang W , Yao B , Guan F , Huang H , Tian J . Rational redesign of thermophilic PET hydrolase LCCICCG to enhance hydrolysis of high crystallinity polyethylene terephthalates. Journal of Hazardous Materials, 2023, 453: 131386
CrossRef Google scholar
[15]
Li Q , Zheng Y , Su T , Wang Q , Liang Q , Zhang Z , Qi Q , Tian J . Computational design of a cutinase for plastic biodegradation by mining molecular dynamics simulations trajectories. Computational and Structural Biotechnology Journal, 2022, 20: 459–470
CrossRef Google scholar
[16]
Lu H , Diaz D J , Czarnecki N J , Zhu C , Kim W , Shroff R , Acosta D J , Alexander B R , Cole H O , Zhang Y . . Machine learning-aided engineering of hydrolases for PET depolymerization. Nature, 2022, 604(7907): 662–667
CrossRef Google scholar
[17]
Meng S , Li Z , Zhang P , Contreras F , Ji Y , Schwaneberg U . Deep learning guided enzyme engineering of Thermobifida fusca cutinase for increased PET depolymerization. Chinese Journal of Catalysis, 2023, 50: 229–238
CrossRef Google scholar
[18]
Cui Y , Chen Y , Sun J , Zhu T , Pang H , Li C , Geng W C , Wu B . Computational redesign of a hydrolase for nearly complete PET depolymerization at industrially relevant high-solids loading. Nature Communications, 2024, 15(1): 1417
CrossRef Google scholar
[19]
Bell E L , Smithson R , Kilbride S , Foster J , Hardy F J , Ramachandran S , Tedstone A A , Haigh S J , Garforth A A , Day P J . . Directed evolution of an efficient and thermostable PET depolymerase. Nature Catalysis, 2022, 5(8): 673–681
CrossRef Google scholar
[20]
Liu F , Wang T , Yang W , Zhang Y , Gong Y , Fan X , Wang G , Lu Z , Wang J . Current advances in the structural biology and molecular engineering of PETase. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1263996
CrossRef Google scholar
[21]
Son H F , Cho I J , Joo S , Seo H , Sagong H Y , Choi S Y , Lee S Y , Kim K J . Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation. ACS Catalysis, 2019, 9(4): 3519–3526
CrossRef Google scholar
[22]
Zurier H S , Goddard J M . A high-throughput expression and screening platform for applications-driven PETase engineering. Biotechnology and Bioengineering, 2023, 120(4): 1000–1014
CrossRef Google scholar
[23]
Tournier V , Topham C , Gilles A , David B , Folgoas C , Moya Leclair E , Kamionka E , Desrousseaux M L , Texier H , Gavalda S . . An engineered PET depolymerase to break down and recycle plastic bottles. Nature, 2020, 580(7802): 216–219
CrossRef Google scholar
[24]
Thiyagarajan S , Maaskant-Reilink E , Ewing T A , Julsing M K , Van Haveren J . Back-to-monomer recycling of polycondensation polymers: opportunities for chemicals and enzymes. RSC Advances, 2022, 12(2): 947–970
CrossRef Google scholar
[25]
YangK KWuZArnoldF H. Machine learning in protein engineering. Preprint arXiv, 2018, arXiv:181110775
[26]
Mazurenko S , Prokop Z , Damborsky J . Machine learning in enzyme engineering. ACS Catalysis, 2020, 10(2): 1210–1223
CrossRef Google scholar
[27]
Chang C , Deringer V L , Katti K S , Van Speybroeck V , Wolverton C M . Simulations in the era of exascale computing. Nature Reviews. Materials, 2023, 8(5): 309–313
CrossRef Google scholar
[28]
Pyzer-Knapp E O , Pitera J W , Staar P W , Takeda S , Laino T , Sanders D P , Sexton J , Smith J R , Curioni A . Accelerating materials discovery using artificial intelligence, high performance computing and robotics. npj Computational Materials, 2022, 8(1): 84
CrossRef Google scholar
[29]
Singh V , Patra S , Murugan N A , Toncu D C , Tiwari A . Recent trends in computational tools and data-driven modeling for advanced materials. Materials Advances, 2022, 3(10): 4069–4087
CrossRef Google scholar
[30]
Beller M , Bender M , Bornscheuer U T , Schunk S . Catalysis—Far from Being a Mature Technology. Chemieingenieurtechnik, 2022, 94(11): 1559–1559
CrossRef Google scholar
[31]
Greener J G , Kandathil S M , Moffat L , Jones D T . A guide to machine learning for biologists. Nature Reviews. Molecular Cell Biology, 2022, 23(1): 40–55
CrossRef Google scholar
[32]
Feehan R , Montezano D , Slusky J S . Machine learning for enzyme engineering, selection and design. Protein Engineering, Design & Selection, 2021, 34: gzab019
[33]
Markus B , C G C , Andreas K , Arkadij K , Stefan L , Gustav O , Elina S , Radka S . Accelerating biocatalysis discovery with machine learning: a paradigm shift in enzyme engineering, discovery, and design. ACS Catalysis, 2023, 13(21): 14454–14469
CrossRef Google scholar
[34]
Sampaio P S , Fernandes P . Machine learning: a suitable method for biocatalysis. Catalysts, 2023, 13(6): 961
CrossRef Google scholar
[35]
Olivier ChapelleB SAlexanderZ. A continuation method for semi-supervised SVMs. In: Proceedings of the 23rd International Conference on Machine learning, NY: ACM Press, 2006, 185–192
[36]
Kouba P , Kohout P , Haddadi F , Bushuiev A , Samusevich R , Sedlar J , Damborsky J , Pluskal T , Sivic J , Mazurenko S . Machine learning-guided protein engineering. ACS Catalysis, 2023, 13(21): 13863–13895
CrossRef Google scholar
[37]
Schomburg I , Chang A , Schomburg D . Brenda, enzyme data and metabolic information. Nucleic Acids Research, 2002, 30(1): 47–49
CrossRef Google scholar
[38]
Berman H M , Westbrook J , Feng Z , Gilliland G , Bhat T N , Weissig H , Shindyalov I N , Bourne P E . The Protein Data Bank. Nucleic Acids Research, 2000, 28(1): 235–242
CrossRef Google scholar
[39]
Yan B , Ran X , Gollu A , Cheng Z , Zhou X , Chen Y , Yang Z J . IntEnzyDB: an integrated structure-kinetics enzymology database. Journal of Chemical Information and Modeling, 2022, 62(22): 5841–5848
CrossRef Google scholar
[40]
Consortium T U . UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research, 2019, 47(D1): D506–D515
CrossRef Google scholar
[41]
Consortium T U . UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research, 2021, 49(D1): D480–D489
CrossRef Google scholar
[42]
Pleiss J . Standardized data, scalable documentation, sustainable storage-EnzymeML as a basis for FAIR data management in biocatalysis. ChemCatChem, 2021, 13(18): 3909–3913
CrossRef Google scholar
[43]
Velecký J , Hamsikova M , Stourac J , Musil M , Damborsky J , Bednar D , Mazurenko S . SoluProtMutDB: a manually curated database of protein solubility changes upon mutations. Computational and Structural Biotechnology Journal, 2022, 20: 6339–6347
CrossRef Google scholar
[44]
Xavier J S , Nguyen T B , Karmarkar M , Portelli S , Rezende P M , Velloso J P , Ascher D B , Pires D E . ThermoMutDB: a thermodynamic database for missense mutations. Nucleic Acids Research, 2021, 49(D1): D475–D479
CrossRef Google scholar
[45]
Stourac J , Dubrava J , Musil M , Horackova J , Damborsky J , Mazurenko S , Bednar D . FireProtDB: database of manually curated protein stability data. Nucleic Acids Research, 2021, 49(D1): D319–D324
CrossRef Google scholar
[46]
Nikam R , Kulandaisamy A , Harini K , Sharma D , Gromiha M M . ProThermDB: thermodynamic database for proteins and mutants revisited after 15 years. Nucleic Acids Research, 2021, 49(D1): D420–D424
CrossRef Google scholar
[47]
Heid E , Probst D , Green W H , Madsen G K . EnzymeMap: curation, validation and data-driven prediction of enzymatic reactions. Chemical Science, 2023, 48(14): 14229–14242
CrossRef Google scholar
[48]
Probst D , Manica M , Nana Teukam Y G , Castrogiovanni A , Paratore F , Laino T . Biocatalysed synthesis planning using data-driven learning. Nature Communications, 2022, 13(1): 964
CrossRef Google scholar
[49]
Ganter M , Bernard T , Moretti S , Stelling J , Pagni M . MetaNetX. org: a website and repository for accessing, analysing and manipulating metabolic networks. Bioinformatics, 2013, 29(6): 815–816
CrossRef Google scholar
[50]
Hafner J , MohammadiPeyhani H , Sveshnikova A , Scheidegger A , Hatzimanikatis V . MohammadiPeyhani H, Sveshnikova A, Scheidegger A, Hatzimanikatis V. Updated atlas of biochemistry with new metabolites and improved enzyme prediction power. ACS Synthetic Biology, 2020, 9(6): 1479–1482
CrossRef Google scholar
[51]
Wishart D S , Li C , Marcu A , Badran H , Pon A , Budinski Z , Patron J , Lipton D , Cao X , Oler E . . PathBank: a comprehensive pathway database for model organisms. Nucleic Acids Research, 2020, 48(D1): D470–D478
CrossRef Google scholar
[52]
Wittig U , Rey M , Weidemann A , Kania R , Müller W . SABIO-RK: an updated resource for manually curated biochemical reaction kinetics. Nucleic Acids Research, 2018, 46(D1): D656–D660
CrossRef Google scholar
[53]
Afify H M , Abdelhalim M B , Mabrouk M S , Sayed A Y . Protein secondary structure prediction (PSSP) using different machine algorithms. Egyptian Journal of Medical Human Genetics, 2021, 22(1): 1–10
CrossRef Google scholar
[54]
Liu B , Wang X , Lin L , Tang B , Dong Q , Wang X . Prediction of protein binding sites in protein structures using hidden Markov support vector machine. BMC Bioinformatics, 2009, 10(1): 1–14
CrossRef Google scholar
[55]
Palla M , Punthambaker S , Stranges B , Vigneault F , Nivala J , Wiegand D , Ayer A , Craig T , Gremyachinskiy D , Franklin H . . Multiplex single-molecule kinetics of nanopore-coupled polymerases. ACS Nano, 2021, 15(1): 489–502
CrossRef Google scholar
[56]
Fang X , Huang J , Zhang R , Wang F , Zhang Q , Li G , Yan J , Zhang H , Yan Y , Xu L . Convolution neural network-based prediction of protein thermostability. Journal of Chemical Information and Modeling, 2019, 59(11): 4833–4843
CrossRef Google scholar
[57]
Gelman S , Fahlberg S A , Heinzelman P , Romero P A , Gitter A . Neural networks to learn protein sequence-function relationships from deep mutational scanning data. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(48): e2104878118
CrossRef Google scholar
[58]
Mellor J , Grigoras I , Carbonell P , Faulon J L . Semisupervised gaussian process for automated enzyme search. ACS Synthetic Biology, 2016, 5(6): 518–528
CrossRef Google scholar
[59]
Pires D E , Ascher D B , Blundell T L . mCSM: predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics, 2014, 30(3): 335–342
CrossRef Google scholar
[60]
Hakala K , Kaewphan S , Björne J , Mehryary F , Moen H , Tolvanen M , Salakoski T , Ginter F . Neural network and random forest models in protein function prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19(3): 1772–1781
CrossRef Google scholar
[61]
Kathuria C , Mehrotra D , Misra N K . Predicting the protein structure using random forest approach. Procedia Computer Science, 2018, 132: 1654–1662
CrossRef Google scholar
[62]
Wang C , Chen Y , Zhang Y , Li K , Lin M , Pan F , Wu W , Zhang J . A reinforcement learning approach for protein-ligand binding pose prediction. BMC Bioinformatics, 2022, 23(1): 1–18
CrossRef Google scholar
[63]
Ryu J Y , Kim H U , Lee S Y . Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(28): 13996–14001
CrossRef Google scholar
[64]
Dalkiran A , Rifaioglu A S , Martin M J , Cetin A R , Atalay V , Doğan T . ECPred: a tool for the prediction of the enzymatic functions of protein sequences based on the EC nomenclature. BMC Bioinformatics, 2018, 19(1): 1–13
CrossRef Google scholar
[65]
Zou Z , Tian S , Gao X , Li Y . mlDEEPre: multi-functional enzyme function prediction with hierarchical multi-label deep learning. Frontiers in Genetics, 2019, 9: 714
CrossRef Google scholar
[66]
Cadet F , Fontaine N , Li G , Sanchis J , Ng F C M , Pandjaitan R , Vetrivel I , Offmann B , Reetz M T . A machine learning approach for reliable prediction of amino acid interactions and its application in the directed evolution of enantioselective enzymes. Scientific Reports, 2018, 8(1): 16757
CrossRef Google scholar
[67]
Robinson S L , Smith M D , Richman J E , Aukema K G , Wackett L P . Machine learning-based prediction of activity and substrate specificity for OleA enzymes in the thiolase superfamily. Synthetic Biology, 2020, 5(1): ysaa004
CrossRef Google scholar
[68]
Robinson S L , Terlouw B R , Smith M D , Pidot S J , Stinear T P , Medema M H , Wackett L P . Global analysis of adenylate-forming enzymes reveals β-lactone biosynthesis pathway in pathogenic nocardia. Journal of Biological Chemistry, 2020, 295(44): 14826–14839
CrossRef Google scholar
[69]
Song J , Li F , Takemoto K , Haffari G , Akutsu T , Chou K C , Webb G I . Prevail, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework. Journal of Theoretical Biology, 2018, 443: 125–137
CrossRef Google scholar
[70]
Torng W , Altman R B . High precision protein functional site detection using 3D convolutional neural networks. Bioinformatics, 2019, 35(9): 1503–1512
CrossRef Google scholar
[71]
Somarowthu S , Yang H , Hildebrand D G , Ondrechen M J . High-performance prediction of functional residues in proteins with machine learning and computed input features. Biopolymers, 2011, 95(6): 390–400
CrossRef Google scholar
[72]
Li G , Rabe K S , Nielsen J , Engqvist M K . Machine learning applied to predicting microorganism growth temperatures and enzyme catalytic optima. ACS Synthetic Biology, 2019, 8(6): 1411–1420
CrossRef Google scholar
[73]
Foroozandeh S M , Farhadyar K , Kavousi K , Azarabad M H , Boroomand A , Ariaeenejad S , Hosseini S G . A generalized machine-learning aided method for targeted identification of industrial enzymes from metagenome: a xylanase temperature dependence case study. Biotechnology and Bioengineering, 2021, 118(2): 759–769
CrossRef Google scholar
[74]
Li F , Yuan L , Lu H , Li G , Chen Y , Engqvist M K , Kerkhoven E J , Nielsen J . Deep learning-based kcat prediction enables improved enzyme-constrained model reconstruction. Nature Catalysis, 2022, 5(8): 662–672
CrossRef Google scholar
[75]
Xie W J , Asadi M , Warshel A . Enhancing computational enzyme design by a maximum entropy strategy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(7): e2122355119
CrossRef Google scholar
[76]
Shroff R , Cole A W , Diaz D J , Morrow B R , Donnell I , Annapareddy A , Gollihar J , Ellington A D , Thyer R . Discovery of novel gain-of-function mutations guided by structure-based deep learning. ACS Synthetic Biology, 2020, 9(11): 2927–2935
CrossRef Google scholar
[77]
Ostafe R , Fontaine N , Frank D , Ng F C M , Prodanovic R , Pandjaitan R , Offmann B , Cadet F , Fischer R . One-shot optimization of multiple enzyme parameters: tailoring glucose oxidase for pH and electron mediators. Biotechnology and Bioengineering, 2020, 117(1): 17–29
CrossRef Google scholar
[78]
Høie M H , Cagiada M , Frederiksen A H B , Stein A , Lindorff Larsen K . Predicting and interpreting large-scale mutagenesis data using analyses of protein stability and conservation. Cell Reports, 2022, 38(2): 110207
CrossRef Google scholar
[79]
Chew A K , Jiang S , Zhang W , Zavala V M , Van Lehn R C . Fast predictions of liquid-phase acid-catalyzed reaction rates using molecular dynamics simulations and convolutional neural networks. Chemical Science, 2020, 11(46): 12464–12476
CrossRef Google scholar
[80]
RanXJiangYShaoQYangZ J. EnzyKR: a chirality-aware deep learning model for predicting the outcomes of the hydrolase-catalyzed kinetic resolution. Chemical Science, 2023, 14(43): 12073–12082
[81]
Wang S , Tang H , Zhao Y , Zuo L . BayeStab: predicting effects of mutations on protein stability with uncertainty quantification. Protein Science, 2022, 31(11): e4467
CrossRef Google scholar
[82]
Iqbal S , Ge F , Li F , Akutsu T , Zheng Y , Gasser R B , Yu D J , Webb G I , Song J . PROST: Alphafold2-aware sequence-based predictor to estimate protein stability changes upon missense mutations. Journal of Chemical Information and Modeling, 2022, 62(17): 4270–4282
CrossRef Google scholar
[83]
Hernández I M , Dehouck Y , Bastolla U , López-Blanco J R , Chacón P . Predicting protein stability changes upon mutation using a simple orientational potential. Bioinformatics, 2023, 39(1): btad011
CrossRef Google scholar
[84]
Pak M A , Markhieva K A , Novikova M S , Petrov D S , Vorobyev I S , Maksimova E S , Kondrashov F A , Ivankov D N . Using Alphafold to predict the impact of single mutations on protein stability and function. PLoS One, 2023, 18(3): e0282689
CrossRef Google scholar
[85]
Gado J E , Beckham G T , Payne C M . Improving enzyme optimum temperature prediction with resampling strategies and ensemble learning. Journal of Chemical Information and Modeling, 2020, 60(8): 4098–4107
CrossRef Google scholar
[86]
Yang Y , Zeng L , Vihinen M . PON-Sol2: prediction of effects of variants on protein solubility. International Journal of Molecular Sciences, 2021, 22(15): 8027
CrossRef Google scholar
[87]
Russ W P , Figliuzzi M , Stocker C , Barrat-Charlaix P , Socolich M , Kast P , Hilvert D , Monasson R , Cocco S , Weigt M . An evolution-based model for designing chorismate mutase enzymes. Science, 2020, 369(6502): 440–445
CrossRef Google scholar
[88]
Mak W S , Wang X , Arenas R , Cui Y , Bertolani S , Deng W Q , Tagkopoulos I , Wilson D K , Siegel J B . Discovery, design, and structural characterization of alkane-producing enzymes across the ferritin-like superfamily. Biochemistry, 2020, 59(40): 3834–3843
CrossRef Google scholar
[89]
Dauparas J , Anishchenko I , Bennett N , Bai H , Ragotte R J , Milles L F , Wicky B I , Courbet A , de Haas R J , Bethel N . . Robust deep learning-based protein sequence design using ProteinMPNN. Science, 2022, 378(6615): 49–56
CrossRef Google scholar
[90]
Watson J L , Juergens D , Bennett N R , Trippe B L , Yim J , Eisenach H E , Ahern W , Borst A J , Ragotte R J , Milles L F . . De novo design of protein structure and function with RFdiffusion. Nature, 2023, 620(7976): 1089–1100
CrossRef Google scholar
[91]
Wu K E , Yang K K , van den Berg R , Alamdari S , Zou J Y , Lu A X , Amini A P . Berg R V D, Zou J Y, Lu A X, et al. Protein structure generation via folding diffusion. Nature Communications, 2024, 15(1): 1059
CrossRef Google scholar
[92]
ZhangZXuMJamasbAChenthamarakshanVLozanoADasPTangJ. Protein representation learning by geometric structure pretraining. Preprint arXiv: 2203.06125, 2022
[93]
Zhang J , Wang H , Luo Z , Yang Z , Zhang Z , Wang P , Li M , Zhang Y , Feng Y , Lu D . . Computational design of highly efficient thermostable MHET hydrolases and dual enzyme system for PET recycling. Communications Biology, 2023, 6(1): 1135
CrossRef Google scholar
[94]
Xu A , Zhou J , Blank L M , Jiang M . Future focuses of enzymatic plastic degradation. Trends in Microbiology, 2023, 31(7): 668–671
CrossRef Google scholar
[95]
Zhang Y . A relay for improving the catalytic efficiency and thermostability of PET hydrolases. Chem Catalysis, 2022, 2(10): 2420–2422
CrossRef Google scholar
[96]
SchymkowitzJBorgJStricherFNysRRousseauFSerranoL. The FoldX web server: an online force field. Nucleic Acids Research, 2005, 33: W382–W388
[97]
GuptaAAgrawalS. Machine learning-based enzyme engineering of PETase for improved efficiency in plastic degradation. Journal of Emgerging Investigators, 2023, 6: doi:10.59720/22-016
[98]
DingYZhangSHessHKongXZhangY. Replicating enzymatic activity by positioning active sites with synthetic protein scaffolds. BioRxiv, 2024, bioRxiv 2024.01.31.577620

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the National Natural Science Foundation of China under grant number 32371325, the Seed Funding of China Petrochemical Corporation (Sinopec Group) under grant number 223260, and the Fundamental Research Funds for the Central Universities (QNTD2023-01).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(867 KB)

Accesses

Citations

Detail

Sections
Recommended

/