Mechanistic studies of zeolite catalysis via in situ solid-state nuclear magnetic resonance spectroscopy: progress and prospects

Chao Wang , Min Hu , Jun Xu , Feng Deng

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (1) : 1

PDF (3548KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (1) : 1 DOI: 10.1007/s11705-024-2505-2
REVIEW ARTICLE

Mechanistic studies of zeolite catalysis via in situ solid-state nuclear magnetic resonance spectroscopy: progress and prospects

Author information +
History +
PDF (3548KB)

Abstract

Zeolites, with their exquisite microporous frameworks and tailorable acidities, serve as ubiquitous catalysts across a diverse spectrum of industrial applications, ranging from petroleum and coal processing to sustainable chemistry and environmental remediation. Optimizing their performance hinges on a thorough understanding of the structure-performance relationship. In situ solid-state nuclear magnetic resonance spectroscopy has emerged as a critical tool, providing unparalleled atomic-level insights into both structure and dynamic aspects of zeolite-catalyzed reactions. Herein, we review recent progress in the development and application of the in situ solid-state nuclear magnetic resonance technique to zeolite catalysis. We first review the in situ nuclear magnetic resonance techniques used in zeolite-catalyzed reaction, including batch-like and continuous-flow reaction modes. The conditions and limitations for these techniques are thoroughly summarized. Subsequently, we review the applications of in situ nuclear magnetic resonance techniques in zeolite-catalyzed reaction, focusing on some important catalytic reactions like methanol-to-hydrocarbons, ethanol dehydration, alkane activation, and beyond. Emphasis is placed on the strategies of specific in situ nuclear magnetic resonance methodologies to tackle critical challenges encountered in these fields, such as probing intermediates and unraveling reaction mechanisms. Additionally, we discuss the burgeoning opportunities and prospective challenges associated with in situ nuclear magnetic resonance studies of zeolite-catalyzed processes.

Graphical abstract

Keywords

heterogeneous catalysis / solid-state NMR / reaction mechanism / zeolites / characterization

Cite this article

Download citation ▾
Chao Wang, Min Hu, Jun Xu, Feng Deng. Mechanistic studies of zeolite catalysis via in situ solid-state nuclear magnetic resonance spectroscopy: progress and prospects. Front. Chem. Sci. Eng., 2025, 19(1): 1 DOI:10.1007/s11705-024-2505-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KirschhockČEǍFeijenE J PJacobsP AMartensJ A. Hydrothermal zeolite synthesis. ln: G ErtlHKnözingerFSchüthJweit kamp ed. Handbook of Heterogeneous Catalysis. Wiley, 2008

[2]

Choudhary V R , Kinage A K , Choudhary T V . Low-temperature nonoxidative activation of methane over H-galloaluminosilicate (MFI) zeolite. Science, 1997, 275(5304): 1286–1288

[3]

Xu Y , Liu S , Guo X , Wang L , Xie M . Methane activation without using oxidants over Mo/HZSM-5 zeolite catalysts. Catalysis Letters, 1994, 30(1): 135–149

[4]

Jin Z , Wang L , Zuidema E , Mondal K , Zhang M , Zhang J , Wang C , Meng X , Yang H , Mesters C . . Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science, 2020, 367(6474): 193–197

[5]

Mole T , Anderson J R , Creer G . The reaction of propane over ZSM-5-H and ZSM-5-Zn zeolite catalysts. Applied Catalysis, 1985, 17(1): 141–154

[6]

Kitagawa H , Sendoda Y , Ono Y . Transformation of propane into aromatic hydrocarbons over ZSM-5 zeolites. Journal of Catalysis, 1986, 101(1): 12–18

[7]

Chang C D , Silvestri A J . The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. Journal of Catalysis, 1977, 47(2): 249–259

[8]

Bjørgen M , Svelle S , Joensen F , Nerlov J , Kolboe S , Bonino F , Palumbo L , Bordiga S , Olsbye U . Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species. Journal of Catalysis, 2007, 249(2): 195–207

[9]

Olsbye U , Svelle S , Bjørgen M , Beato P , Janssens T V W , Joensen F , Bordiga S , Lillerud K P . Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angewandte Chemie International Edition, 2012, 51(24): 5810–5831

[10]

Bjørgen M , Joensen F , Spangsberg Holm M , Olsbye U , Lillerud K P , Svelle S . Methanol to gasoline over zeolite H-ZSM-5: improved catalyst performance by treatment with NaOH. Applied Catalysis A, General, 2008, 345(1): 43–50

[11]

Svelle S , Joensen F , Nerlov J , Olsbye U , Lillerud K P , Kolboe S , Bjørgen M . Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes. Journal of the American Chemical Society, 2006, 128(46): 14770–14771

[12]

Inaba M , Murata K , Saito M , Takahara I . Ethanol conversion to aromatic hydrocarbons over several zeolite catalysts. Reaction Kinetics and Catalysis Letters, 2006, 88(1): 135–141

[13]

Derouane E G , Nagy J B , Dejaifve P , van Hooff J H C , Spekman B P , Védrine J C , Naccache C . Elucidation of the mechanism of conversion of methanol and ethanol to hydrocarbons on a new type of synthetic zeolite. Journal of Catalysis, 1978, 53(1): 40–55

[14]

Schulz J , Bandermann F . Conversion of ethanol over zeolite H-ZSM-5. Chemical Engineering & Technology, 1994, 17(3): 179–186

[15]

Olah G A . Beyond oil and gas: the methanol economy. Angewandte Chemie International Edition, 2005, 44(18): 2636–2639

[16]

Mentzel U V , Shunmugavel S , Hruby S L , Christensen C H , Holm M S . High yield of liquid range olefins obtained by converting i-propanol over zeolite H-ZSM-5. Journal of the American Chemical Society, 2009, 131(46): 17009–17013

[17]

Zhang X , Yang M , Tian P , Liu Z . Progress in seed-assisted synthesis of (Silico)aluminophosphate molecular sieves. Chemical Research in Chinese Universities, 2022, 38(1): 1–8

[18]

Kaeding W W , Chu C , Young L B , Butter S A . Shape-selective reactions with zeolite catalysts: II. Selective disproportionation of toluene to produce benzene and p-xylene. Journal of Catalysis, 1981, 69(2): 392–398

[19]

Young L B , Butter S A , Kaeding W W . Shape selective reactions with zeolite catalysts: III. Selectivity in xylene isomerization, toluene-methanol alkylation, and toluene disproportionation over ZSM-5 zeolite catalysts. Journal of Catalysis, 1982, 76(2): 418–432

[20]

van Santen R A , Kramer G J . Reactivity theory of zeolitic broensted acidic sites. Chemical Reviews, 1995, 95(3): 637–660

[21]

Kazanskii V B . The nature of adsorbed carbenium ions as active intermediates in catalysis by solid acids. Accounts of Chemical Research, 1991, 24(12): 379–383

[22]

Li Y , Yu J . Emerging applications of zeolites in catalysis, separation and host-guest assembly. Nature Reviews. Materials, 2021, 6(12): 1156–1174

[23]

Liang J , Fu W , Liu C , Li X , Wang Y , Ma D , Li Y , Wang Z , Yang W . Synthesis of FER zeolite using 4-(aminomethyl)pyridine as structure-directing agent. Chemical Research in Chinese Universities, 2022, 38(1): 243–249

[24]

Lewis J D , Van de Vyver S , Román-Leshkov Y . Acid-base pairs in Lewis acidic zeolites promote direct aldol reactions by soft enolization. Angewandte Chemie International Edition, 2015, 54(34): 9835–9838

[25]

Perego C , Carati A , Ingallina P , Mantegazza M A , Bellussi G . Production of titanium containing molecular sieves and their application in catalysis. Applied Catalysis A, General, 2001, 221(1): 63–72

[26]

Hammond C , Conrad S , Hermans I . Simple and scalable preparation of highly active Lewis acidic Sn-β. Angewandte Chemie International Edition, 2012, 51(47): 11736–11739

[27]

Sushkevich V L , Ivanova I I , Taarning E . Ethanol conversion into butadiene over Zr-containing molecular sieves doped with silver. Green Chemistry, 2015, 17(4): 2552–2559

[28]

Corma A , Domine M E , Nemeth L , Valencia S . Al-free Sn-Beta zeolite as a catalyst for the selective reduction of carbonyl compounds (Meerwein-Ponndorf-Verley reaction). Journal of the American Chemical Society, 2002, 124(13): 3194–3195

[29]

Ravi M , Sushkevich V L , van Bokhoven J A . Towards a better understanding of Lewis acidic aluminium in zeolites. Nature Materials, 2020, 19(10): 1047–1056

[30]

Brus J , Kobera L , Schoefberger W , Urbanová M , Klein P , Sazama P , Tabor E , Sklenak S , Fishchuk A V , Dědeček J . Structure of framework aluminum Lewis sites and perturbed aluminum atoms in zeolites as determined by 27Al{1H} REDOR (3Q) MAS NMR spectroscopy and DFT/molecular mechanics. Angewandte Chemie International Edition, 2015, 54(2): 541–545

[31]

Yu Z , Zheng A , Wang Q , Chen L , Xu J , Amoureux J P , Deng F . Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced 27Al DQ-MAS NMR spectroscopy at high field. Angewandte Chemie International Edition, 2010, 49(46): 8657–8661

[32]

del Campo P , Martínez C , Corma A . Activation and conversion of alkanes in the confined space of zeolite-type materials. Chemical Society Reviews, 2021, 50(15): 8511–8595

[33]

Spivey J J , Hutchings G . Catalytic aromatization of methane. Chemical Society Reviews, 2014, 43(3): 792–803

[34]

Shan J , Li M , Allard L F , Lee S , Flytzani-Stephanopoulos M . Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature, 2017, 551(7682): 605–608

[35]

Snyder B E R , Vanelderen P , Bols M L , Hallaert S D , Böttger L H , Ungur L , Pierloot K , Schoonheydt R A , Sels B F , Solomon E I . The active site of low-temperature methane hydroxylation in iron-containing zeolites. Nature, 2016, 536(7616): 317–321

[36]

Jiao F , Li J , Pan X , Xiao J , Li H , Ma H , Wei M , Pan Y , Zhou Z , Li M . . Selective conversion of syngas to light olefins. Science, 2016, 351(6277): 1065–1068

[37]

Zhou W , Cheng K , Kang J , Zhou C , Subramanian V , Zhang Q , Wang Y . New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chemical Society Reviews, 2019, 48(12): 3193–3228

[38]

Cheng K , Gu B , Liu X , Kang J , Zhang Q , Wang Y . Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling. Angewandte Chemie International Edition, 2016, 55(15): 4725–4728

[39]

van Donk S , Janssen A H , Bitter J H , de Jong K P . Generation, characterization, and impact of mesopores in zeolite catalysts. Catalysis Reviews. Science and Engineering, 2003, 45(2): 297–319

[40]

Li Y , Li L , Yu J . Applications of zeolites in sustainable chemistry. Chem, 2017, 3(6): 928–949

[41]

Zhang Q , Yu J , Corma A . Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities. Advanced Materials, 2020, 32(44): 2002927

[42]

Fisher I A , Bell A T . in situ infrared study of methanol synthesis from H2/CO over Cu/SiO2 and Cu/ZrO2/SiO2. Journal of Catalysis, 1998, 178(1): 153–173

[43]

Lercher J A , Veefkind V , Fajerwerg K . in situ IR spectroscopy for developing catalysts and catalytic processes. Vibrational Spectroscopy, 1999, 19(1): 107–121

[44]

Knözinger H , Mestl G . Laser Raman spectroscopy—a powerful tool for in situ studies of catalytic materials. Topics in Catalysis, 1999, 8(1): 45–55

[45]

Wachs I E . in situ Raman spectroscopy studies of catalysts. Topics in Catalysis, 1999, 8(1): 57–63

[46]

An H , Zhang F , Guan Z , Liu X , Fan F , Li C . Investigating the coke formation mechanism of H-ZSM-5 during methanol dehydration using operando UV-Raman spectroscopy. ACS Catalysis, 2018, 8(10): 9207–9215

[47]

Borodina E , Sharbini Harun Kamaluddin H , Meirer F , Mokhtar M , Asiri A M , Al-Thabaiti S A , Basahel S N , Ruiz-Martinez J , Weckhuysen B M . Influence of the reaction temperature on the nature of the active and deactivating species during methanol-to-olefins conversion over H-SAPO-34. ACS Catalysis, 2017, 7(8): 5268–5281

[48]

Bañares M A , Martínez-Huerta M V , Gao X , Fierro J L G , Wachs I E . Dynamic behavior of supported vanadia catalysts in the selective oxidation of ethane: in situ Raman, UV-Vis DRS and reactivity studies. Catalysis Today, 2000, 61(1): 295–301

[49]

Singh J , Lamberti C , van Bokhoven J A . Advanced X-ray absorption and emission spectroscopy: in situ catalytic studies. Chemical Society Reviews, 2010, 39(12): 4754–4766

[50]

Sankar G , Thomas J M . in situ combined X-ray absorption spectroscopic and X-ray diffractometric studies of solid catalysts. Topics in Catalysis, 1999, 8(1): 1–21

[51]

Brückner A . in situ electron paramagnetic resonance: a unique tool for analyzing structure-reactivity relationships in heterogeneous catalysis. Chemical Society Reviews, 2010, 39(12): 4673–4684

[52]

Brückner A , Kubias B , Lücke B . in situ-electron spin resonance: a useful tool for the investigation of vanadium phosphate catalysts (VPO) under working conditions. Catalysis Today, 1996, 32(1): 215–222

[53]

Palmer A G III . NMR characterization of the dynamics of biomacromolecules. Chemical Reviews, 2004, 104(8): 3623–3640

[54]

KeelerJ. Understanding NMR Spectroscopy. John Wiley & Sons, 2010

[55]

Johnson B A , Blevins R A . NMR view: a computer program for the visualization and analysis of NMR data. Journal of Biomolecular NMR, 1994, 4(5): 603–614

[56]

Chien P H , Griffith K J , Liu H , Gan Z , Hu Y Y . Recent advances in solid-state nuclear magnetic resonance techniques for materials research. Annual Review of Materials Research, 2020, 50(1): 493–520

[57]

Li S , Lafon O , Wang W , Wang Q , Wang X , Li Y , Xu J , Deng F . Recent advances of solid-state NMR spectroscopy for microporous materials. Advanced Materials, 2020, 32(44): 2002879

[58]

Qi G , Wang Q , Xu J , Deng F . Solid-state NMR studies of internuclear correlations for characterizing catalytic materials. Chemical Society Reviews, 2021, 50(15): 8382–8399

[59]

Xu J , Wang Q , Deng F . Metal active sites and their catalytic functions in zeolites: insights from solid-state NMR spectroscopy. Accounts of Chemical Research, 2019, 52(8): 2179–2189

[60]

Blasco T . Insights into reaction mechanisms in heterogeneous catalysis revealed by in situ NMR spectroscopy. Chemical Society Reviews, 2010, 39(12): 4685–4702

[61]

HungerMWangW. Characterization of solid catalysts in the functioning state by nuclear magnetic resonance spectroscopy. In: Gates B C, Knzinger H, eds. Advances in Catalysis. Massachusetts: Academic Press, 2006, 149–225

[62]

ZhengMChuYWangQWangYXuJDengF. Advanced solid-state NMR spectroscopy and its applications in zeolite chemistry. Progress in Nuclear Magnetic Resonance Spectroscopy, 2024, 140–141: 1–41

[63]

Klinowski J . Solid-state NMR studies of molecular sieve catalysts. Chemical Reviews, 1991, 91(7): 1459–1479

[64]

XuJWangQLiSDengF. Solid-State NMR in Zeolite Catalysis. Berlin: Springer, 2019

[65]

Yan Z , Ma D , Zhuang J , Liu X , Liu X , Han X , Bao X , Chang F , Xu L , Liu Z . On the acid-dealumination of USY zeolite: a solid state NMR investigation. Journal of Molecular Catalysis A Chemical, 2003, 194(1): 153–167

[66]

EngelhardtGMichelD. High-Resolution Solid-State NMR of Silicates and Zeolites. New Jersey: John Wiley & Sons, 1987

[67]

Pugh S M , Wright P A , Law D J , Thompson N , Ashbrook S E . Facile, room-temperature 17O enrichment of zeolite frameworks revealed by solid-state NMR spectroscopy. Journal of the American Chemical Society, 2020, 142(2): 900–906

[68]

Zhao X , Xu J , Deng F . Solid-state NMR for metal-containing zeolites: from active sites to reaction mechanism. Frontiers of Chemical Science and Engineering, 2020, 14(2): 159–187

[69]

Haw J F , Song W , Marcus D M , Nicholas J B . The mechanism of methanol to hydrocarbon catalysis. Accounts of Chemical Research, 2003, 36(5): 317–326

[70]

Wang W , Seiler M , Weitkamp J , Hunger M , Ivanova I I . Stopped-flow (SF) MAS NMR spectroscopy: a novel NMR technique applied for the study of aniline methylation on a solid base catalyst. Chemical Communications, 2001, (15): 1362–1363

[71]

Wang W , Buchholz A , Seiler M , Hunger M . Evidence for an initiation of the methanol-to-olefin process by reactive surface methoxy groups on acidic zeolite catalysts. Journal of the American Chemical Society, 2003, 125(49): 15260–15267

[72]

Gao W , Wang Q , Qi G , Liang J , Wang C , Xu J , Deng F . Active ensembles in methane dehydroaromatization over molybdenum/ZSM-5 zeolite identified by 2D 1H-95Mo magic angle spinning nuclear magnetic resonance correlation spectroscopy. Angewandte Chemie International Edition, 2023, 62(31): e202306133

[73]

Wang W , Xu J , Deng F . Recent advances in solid-state NMR of zeolite catalysts. National Science Review, 2022, 9(9): nwac155

[74]

Gao W , Qi G , Wang Q , Wang W , Li S , Hung I , Gan Z , Xu J , Deng F . Dual active sites on molybdenum/ZSM-5 catalyst for methane dehydroaromatization: insights from solid-state NMR spectroscopy. Angewandte Chemie International Edition, 2021, 60(19): 10709–10715

[75]

Wang C , Xu J , Deng F . Mechanism of methanol-to-hydrocarbon reaction over zeolites: a solid-state NMR perspective. ChemCatChem, 2020, 12(4): 965–980

[76]

Gong X , Çağlayan M , Ye Y , Liu K , Gascon J , Dutta Chowdhury A . First-generation organic reaction intermediates in zeolite chemistry and catalysis. Chemical Reviews, 2022, 122(18): 14275–14345

[77]

Ivanova I I , Kolyagin Y G . Impact of in situ MAS NMR techniques to the understanding of the mechanisms of zeolite catalyzed reactions. Chemical Society Reviews, 2010, 39(12): 5018–5050

[78]

Zhang W , Xu S , Han X , Bao X . in situ solid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach. Chemical Society Reviews, 2012, 41(1): 192–210

[79]

Wang W , Hunger M . Reactivity of surface alkoxy species on acidic zeolite catalysts. Accounts of Chemical Research, 2008, 41(8): 895–904

[80]

Derouane E G , Gilson J P , Nagy J B . in situ characterization of carbonaceous residues from zeolite-catalysed reactions using high resolution solid state 13C-NMR spectroscopy. Zeolites, 1982, 2(1): 42–46

[81]

Blanc F , Leskes M , Grey C P . in situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells. Accounts of Chemical Research, 2013, 46(9): 1952–1963

[82]

Kubicki D J , Stranks S D , Grey C P , Emsley L . NMR spectroscopy probes microstructure, dynamics and doping of metal halide perovskites. Nature Reviews. Chemistry, 2021, 5(9): 624–645

[83]

Hunger M , Horvath T . A new MAS NMR probe for in situ investigations of hydrocarbon conversion on solid catalysts under continuous-flow conditions. Journal of the Chemical Society. Chemical Communications, 1995, (14): 1423–1424

[84]

Anderson M W , Klinowski J . Direct observation of shape selectivity in zeolite ZSM-5 by magic-angle-spinning NMR. Nature, 1989, 339(6221): 200–203

[85]

Xu T , Haw J F . The development and applications of CAVERN methods for in situ NMR studies of reactions on solid acids. Topics in Catalysis, 1997, 4(1): 109–118

[86]

Haw J F , Richardson B R , Oshiro I S , Lazo N D , Speed J A . Reactions of propene on zeolite HY catalyst studied by in situ variable temperature solid-state nuclear magnetic resonance spectroscopy. Journal of the American Chemical Society, 1989, 111(6): 2052–2058

[87]

Hu J Z , Hu M Y , Zhao Z , Xu S , Vjunov A , Shi H , Camaioni D M , Peden C H F , Lercher J A . Sealed rotors for in situ high temperature high pressure MAS NMR. Chemical Communications, 2015, 51(70): 13458–13461

[88]

Jaegers N R , Mueller K T , Wang Y , Hu J Z . Variable temperature and pressure operando MAS NMR for catalysis science and related materials. Accounts of Chemical Research, 2020, 53(3): 611–619

[89]

Turcu R V F , Hoyt D W , Rosso K M , Sears J A , Loring J S , Felmy A R , Hu J Z . Rotor design for high pressure magic angle spinning nuclear magnetic resonance. Journal of Magnetic Resonance, 2013, 226: 64–69

[90]

Walter E D , Qi L , Chamas A , Mehta H S , Sears J A , Scott S L , Hoyt D W . Operando MAS NMR reaction studies at high temperatures and pressures. Journal of Physical Chemistry C, 2018, 122(15): 8209–8215

[91]

Hoyt D W , Turcu R V F , Sears J A , Rosso K M , Burton S D , Felmy A R , Hu J Z . High-pressure magic angle spinning nuclear magnetic resonance. Journal of Magnetic Resonance, 2011, 212(2): 378–385

[92]

Hunger M , Horvath T . Conversion of propan-2-ol on zeolites LaNaY and HY investigated by gas chromatography and in situ MAS NMR spectroscopy under continuous-flow conditions. Journal of Catalysis, 1997, 167(1): 187–197

[93]

Haw J F , Nicholas J B , Song W , Deng F , Wang Z , Xu T , Heneghan C S . Roles for cyclopentenyl cations in the synthesis of hydrocarbons from methanol on zeolite catalyst HZSM-5. Journal of the American Chemical Society, 2000, 122(19): 4763–4775

[94]

Song W , Nicholas J B , Haw J F . A persistent carbenium ion on the methanol-to-olefin catalyst HSAPO-34: acetone shows the way. Journal of Physical Chemistry B, 2001, 105(19): 4317–4323

[95]

Chamas A , Qi L , Mehta H S , Sears J A , Scott S L , Walter E D , Hoyt D W . High temperature/pressure MAS-NMR for the study of dynamic processes in mixed phase systems. Magnetic Resonance Imaging, 2019, 56: 37–44

[96]

Hu J Z , Zhang X , Jaegers N R , Wan C , Graham T R , Hu M , Pearce C I , Felmy A R , Clark S B , Rosso K M . Transitions in Al coordination during Gibbsite crystallization using high-field 27Al and 23Na MAS NMR spectroscopy. Journal of Physical Chemistry C, 2017, 121(49): 27555–27562

[97]

Prodinger S , Vjunov A , Hu J Z , Fulton J L , Camaioni D M , Derewinski M A , Lercher J A . Elementary steps of faujasite formation followed by in situ spectroscopy. Chemistry of Materials, 2018, 30(3): 888–897

[98]

Zhao Z , Shi H , Wan C , Hu M Y , Liu Y , Mei D , Camaioni D M , Hu J Z , Lercher J A . Mechanism of phenol alkylation in zeolite H-BEA using in situ solid-state NMR spectroscopy. Journal of the American Chemical Society, 2017, 139(27): 9178–9185

[99]

Liu Y , Baráth E , Shi H , Hu J , Camaioni D M , Lercher J A . Solvent-determined mechanistic pathways in zeolite-H-BEA-catalysed phenol alkylation. Nature Catalysis, 2018, 1(2): 141–147

[100]

Hunger M , Wang W . Formation of cyclic compounds and carbenium ions by conversion of methanol on weakly dealuminated zeolite H-ZSM-5 investigated via a novel in situ CF MAS NMR/UV-Vis technique. Chemical Communications, 2004, (5): 584–585

[101]

Hunger M . in situ NMR spectroscopy in heterogeneous catalysis. Catalysis Today, 2004, 97(1): 3–12

[102]

Wang W , De Cola P L , Glaeser R , Ivanova I I , Weitkamp J , Hunger M . Methylation of phenol by methanol on acidic zeolite H-Y investigated by in situ CF MAS NMR spectroscopy. Catalysis Letters, 2004, 94(1): 119–123

[103]

Wang W , Seiler M , Ivanova I I , Sternberg U , Weitkamp J , Hunger M . Formation and decomposition of N,N,N-trimethylanilinium cations on zeolite H-Y investigated by in situ stopped-flow MAS NMR spectroscopy. Journal of the American Chemical Society, 2002, 124(25): 7548–7554

[104]

Wang W , Seiler M , Hunger M . Role of surface methoxy species in the conversion of methanol to dimethyl ether on acidic zeolites investigated by in situ stopped-flow MAS NMR spectroscopy. Journal of Physical Chemistry B, 2001, 105(50): 12553–12558

[105]

Isbester P K , Zalusky A , Lewis D H , Douskey M C , Pomije M J , Mann K R , Munson E J . NMR probe for heterogeneous catalysis with isolated reagent flow and magic-angle spinning. Catalysis Today, 1999, 49(4): 363–375

[106]

Goguen P , Haw J F . An in situ NMR probe with reagent flow and magic angle spinning. Journal of Catalysis, 1996, 161(2): 870–872

[107]

Hu J Z , Sears J A , Mehta H S , Ford J J , Kwak J H , Zhu K , Wang Y , Liu J , Hoyt D W , Peden C H F . A large sample volume magic angle spinning nuclear magnetic resonance probe for in situ investigations with constant flow of reactants. Physical Chemistry Chemical Physics, 2012, 14(7): 2137–2143

[108]

von Sivers M , Zacchi G . Ethanol from lignocellulosics: a review of the economy. Bioresource Technology, 1996, 56(2): 131–140

[109]

Peplow M . Cellulosic ethanol fights for life. Nature, 2014, 507(7491): 152–153

[110]

Sun J , Wang Y . Recent advances in catalytic conversion of ethanol to chemicals. ACS Catalysis, 2014, 4(4): 1078–1090

[111]

Wang C , Chu Y , Zheng A , Xu J , Wang Q , Gao P , Qi G , Gong Y , Deng F . New insight into the hydrocarbon-pool chemistry of the methanol-to-olefins conversion over zeolite H-ZSM-5 from GC-MS, solid-state NMR spectroscopy, and DFT calculations. Chemistry, 2014, 20(39): 12432–12443

[112]

Park J W , Seo G . IR study on methanol-to-olefin reaction over zeolites with different pore structures and acidities. Applied Catalysis A, General, 2009, 356(2): 180–188

[113]

Chua Y T , Stair P C , Nicholas J B , Song W , Haw J F . UV Raman spectrum of 1,3-dimethylcyclopentenyl cation adsorbed in zeolite H-MFI. Journal of the American Chemical Society, 2003, 125(4): 866–867

[114]

Lezcano-Gonzalez I , Campbell E , Hoffman A E J , Bocus M , Sazanovich I V , Towrie M , Agote-Aran M , Gibson E K , Greenaway A , De Wispelaere K . . Insight into the effects of confined hydrocarbon species on the lifetime of methanol conversion catalysts. Nature Materials, 2020, 19(10): 1081–1087

[115]

Goetze J , Meirer F , Yarulina I , Gascon J , Kapteijn F , Ruiz-Martínez J , Weckhuysen B M . Insights into the activity and deactivation of the methanol-to-olefins process over different small-pore zeolites as studied with operando UV-Vis spectroscopy. ACS Catalysis, 2017, 7(6): 4033–4046

[116]

Fu D , Lucini Paioni A , Lian C , van der Heijden O , Baldus M , Weckhuysen B M . Elucidating zeolite channel geometry-reaction intermediate relationships for the methanol-to-hydrocarbon process. Angewandte Chemie International Edition, 2020, 59(45): 20024–20030

[117]

Wang W , Jiao J , Jiang Y , Ray S S , Hunger M . Formation and decomposition of surface ethoxy species on acidic zeolite Y. ChemPhysChem, 2005, 6(8): 1467–1469

[118]

Xu S , Zheng A , Wei Y , Chen J , Li J , Chu Y , Zhang M , Wang Q , Zhou Y , Wang J . . Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites. Angewandte Chemie International Edition, 2013, 52(44): 11564–11568

[119]

Dai W , Wang C , Dyballa M , Wu G , Guan N , Li L , Xie Z , Hunger M . Understanding the early stages of the methanol-to-olefin conversion on H-SAPO-34. ACS Catalysis, 2015, 5(1): 317–326

[120]

KoempelHLiebnerW. Lurgi’s Methanol to Propylene (MTP®) Report on A Successful Commercialisation. In: Noronha F B, Schmal M, Sousa-Aguiar E F, eds. Studies in Surface Science and Catalysis. Amsterdam: Elsevier, 2007, 261–267

[121]

Chang C D , Kuo J C W , Lang W H , Jacob S M , Wise J J , Silvestri A J . Process studies on the conversion of methanol to gasoline. Industrial & Engineering Chemistry Process Design and Development, 1978, 17(3): 255–260

[122]

Stöcker M . Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous and Mesoporous Materials, 1999, 29(1): 3–48

[123]

Yarulina I , De Wispelaere K , Bailleul S , Goetze J , Radersma M , Abou-Hamad E , Vollmer I , Goesten M , Mezari B , Hensen E J M . . Structure-performance descriptors and the role of Lewis acidity in the methanol-to-propylene process. Nature Chemistry, 2018, 10(8): 804–812

[124]

Ono Y , Mori T . Mechanism of methanol conversion into hydrocarbons over ZSM-5 zeolite. Journal of the Chemical Society, Faraday Transactions 1. Physical Chemistry in Condensed Phases, 1981, 77(9): 2209–2221

[125]

Schulz H . “Coking” of zeolites during methanol conversion: basic reactions of the MTO-, MTP- and MTG processes. Catalysis Today, 2010, 154(3): 183–194

[126]

Olsbye U , Svelle S , Lillerud K P , Wei Z H , Chen Y Y , Li J F , Wang J G , Fan W B . The formation and degradation of active species during methanol conversion over protonated zeotype catalysts. Chemical Society Reviews, 2015, 44(20): 7155–7176

[127]

Yarulina I , Chowdhury A D , Meirer F , Weckhuysen B M , Gascon J . Recent trends and fundamental insights in the methanol-to-hydrocarbons process. Nature Catalysis, 2018, 1(6): 398–411

[128]

Yang M , Fan D , Wei Y , Tian P , Liu Z . Recent progress in methanol-to-olefins (MTO) catalysts. Advanced Materials, 2019, 31(50): 1902181

[129]

Ilias S , Bhan A . Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catalysis, 2013, 3(1): 18–31

[130]

Lin L , Fan M , Sheveleva A M , Han X , Tang Z , Carter J H , da Silva I , Parlett C M A , Tuna F , McInnes E J L . . Control of zeolite microenvironment for propene synthesis from methanol. Nature Communications, 2021, 12(1): 822

[131]

Arora S S , Nieskens D L S , Malek A , Bhan A . Lifetime improvement in methanol-to-olefins catalysis over chabazite materials by high-pressure H2 co-feeds. Nature Catalysis, 2018, 1(9): 666–672

[132]

Wang C , Hu M , Chu Y , Zhou X , Wang Q , Qi G , Li S , Xu J , Deng F . π-Interactions between cyclic carbocations and aromatics cause zeolite deactivation in methanol-to-hydrocarbon conversion. Angewandte Chemie International Edition, 2020, 59(18): 7198–7202

[133]

Wang C , Chu Y , Xu J , Wang Q , Qi G , Gao P , Zhou X , Deng F . Extra-framework aluminum-assisted initial C–C bond formation in methanol-to-olefins conversion on zeolite H-ZSM-5. Angewandte Chemie International Edition, 2018, 57(32): 10197–10201

[134]

Wu X , Xu S , Zhang W , Huang J , Li J , Yu B , Wei Y , Liu Z . Direct mechanism of the first carbon-carbon bond formation in the methanol-to-hydrocarbons process. Angewandte Chemie International Edition, 2017, 56(31): 9039–9043

[135]

Liu Y , Müller S , Berger D , Jelic J , Reuter K , Tonigold M , Sanchez-Sanchez M , Lercher J A . Formation mechanism of the first carbon–carbon bond and the first olefin in the methanol conversion into hydrocarbons. Angewandte Chemie International Edition, 2016, 55(19): 5723–5726

[136]

Chowdhury A D , Paioni A L , Houben K , Whiting G T , Baldus M , Weckhuysen B M . Bridging the gap between the direct and hydrocarbon pool mechanisms of the methanol-to-hydrocarbons process. Angewandte Chemie International Edition, 2018, 57(27): 8095–8099

[137]

Cesarini A , Mitchell S , Zichittella G , Agrachev M , Schmid S P , Jeschke G , Pan Z , Bodi A , Hemberger P , Pérez-Ramírez J . Elucidation of radical- and oxygenate-driven paths in zeolite-catalysed conversion of methanol and methyl chloride to hydrocarbons. Nature Catalysis, 2022, 5(7): 605–614

[138]

Arstad B , Nicholas J B , Haw J F . Theoretical study of the methylbenzene side-chain hydrocarbon pool mechanism in methanol to olefin catalysis. Journal of the American Chemical Society, 2004, 126(9): 2991–3001

[139]

McCann D M , Lesthaeghe D , Kletnieks P W , Guenther D R , Hayman M J , Van Speybroeck V , Waroquier M , Haw J F . A complete catalytic cycle for supramolecular methanol-to-olefins conversion by linking theory with experiment. Angewandte Chemie International Edition, 2008, 47(28): 5179–5182

[140]

Wang C , Xu J , Qi G , Gong Y , Wang W , Gao P , Wang Q , Feng N , Liu X , Deng F . Methylbenzene hydrocarbon pool in methanol-to-olefins conversion over zeolite H-ZSM-5. Journal of Catalysis, 2015, 332: 127–137

[141]

Wang C , Yi X , Xu J , Qi G , Gao P , Wang W , Chu Y , Wang Q , Feng N , Liu X . . Experimental evidence on the formation of ethene through carbocations in methanol conversion over H-ZSM-5 Zeolite. Chemistry—A European Journal, 2015, 21(34): 12061–12068

[142]

Wang C , Wang Q , Xu J , Qi G , Gao P , Wang W , Zou Y , Feng N , Liu X , Deng F . Direct detection of supramolecular reaction centers in the methanol-to-olefins conversion over zeolite H-ZSM-5 by 13C-27Al solid-state NMR spectroscopy. Angewandte Chemie International Edition, 2016, 55(7): 2507–2511

[143]

Wang C , Sun X , Xu J , Qi G , Wang W , Zhao X , Li W , Wang Q , Deng F . Impact of temporal and spatial distribution of hydrocarbon pool on methanol conversion over H-ZSM-5. Journal of Catalysis, 2017, 354: 138–151

[144]

Zhang W , Zhi Y , Huang J , Wu X , Zeng S , Xu S , Zheng A , Wei Y , Liu Z . Methanol to olefins reaction route based on methylcyclopentadienes as critical intermediates. ACS Catalysis, 2019, 9(8): 7373–7379

[145]

Munson E J , Kheir A A , Haw J F . An in situ solid-state NMR study of the formation and reactivity of trialkylonium ions in zeolites. Journal of Physical Chemistry, 1993, 97(28): 7321–7327

[146]

Sun T , Chen W , Xu S , Zheng A , Wu X , Zeng S , Wang N , Meng X , Wei Y , Liu Z . The first carbon-carbon bond formation mechanism in methanol-to-hydrocarbons process over chabazite zeolite. Chem, 2021, 7(9): 2415–2428

[147]

Jiang Y , Wang W , Reddy Marthala V R , Huang J , Sulikowski B , Hunger M . Effect of organic impurities on the hydrocarbon formation via the decomposition of surface methoxy groups on acidic zeolite catalysts. Journal of Catalysis, 2006, 238(1): 21–27

[148]

Munson E J , Haw J F . NMR observation of trimethyloxonium formation from dimethyl ether on zeolite HZSM-5. Journal of the American Chemical Society, 1991, 113(16): 6303–6305

[149]

Müller S , Liu Y , Kirchberger F M , Tonigold M , Sanchez-Sanchez M , Lercher J A . Hydrogen transfer pathways during zeolite catalyzed methanol conversion to hydrocarbons. Journal of the American Chemical Society, 2016, 138(49): 15994–16003

[150]

Li J , Wei Z , Chen Y , Jing B , He Y , Dong M , Jiao H , Li X , Qin Z , Wang J . . A route to form initial hydrocarbon pool species in methanol conversion to olefins over zeolites. Journal of Catalysis, 2014, 317: 277–283

[151]

Tajima N , Tsuneda T , Toyama F , Hirao K . A new mechanism for the first carbon–carbon bond formation in the MTG process: a theoretical study. Journal of the American Chemical Society, 1998, 120(32): 8222–8229

[152]

Chowdhury A D , Houben K , Whiting G T , Mokhtar M , Asiri A M , Al-Thabaiti S A , Basahel S N , Baldus M , Weckhuysen B M . Initial carbon-carbon bond formation during the early stages of the methanol-to-olefin process proven by zeolite-trapped acetate and methyl acetate. Angewandte Chemie International Edition, 2016, 55(51): 15840–15845

[153]

Zhou H , Gong X , Abou-Hamad E , Ye Y , Zhang X , Ma P , Gascon J , Chowdhury A D . Tracking the impact of Koch-carbonylated organics during the zeolite ZSM-5 catalyzed methanol-to-hydrocarbons process. Angewandte Chemie International Edition, 2024, 63(10): e202318250

[154]

Comas-Vives A , Valla M , Copéret C , Sautet P . Cooperativity between Al sites promotes hydrogen transfer and carbon–carbon bond formation upon dimethyl ether activation on alumina. ACS Central Science, 2015, 1(6): 313–319

[155]

Goguen P W , Xu T , Barich D H , Skloss T W , Song W G , Wang Z K , Nicholas J B , Haw J F . Pulse-quench catalytic reactor studies reveal a carbon-pool mechanism in methanol-to-gasoline chemistry on zeolite HZSM-5. Journal of the American Chemical Society, 1998, 120(11): 2650–2651

[156]

Xu T , Barich D H , Goguen P W , Song W G , Wang Z K , Nicholas J B , Haw J F . Synthesis of a benzenium ion in a zeolite with use of a catalytic flow reactor. Journal of the American Chemical Society, 1998, 120(16): 4025–4026

[157]

Ilias S , Bhan A . The mechanism of aromatic dealkylation in methanol-to-hydrocarbons conversion on H-ZSM-5: what are the aromatic precursors to light olefins. Journal of Catalysis, 2014, 311: 6–16

[158]

Wang S , Chen Y , Wei Z , Qin Z , Ma H , Dong M , Li J , Fan W , Wang J . Polymethylbenzene or alkene cycle? Theoretical study on their contribution to the process of methanol to olefins over H-ZSM-5 zeolite. Journal of Physical Chemistry C, 2015, 119(51): 28482–28498

[159]

Zhang M , Xu S , Li J , Wei Y , Gong Y , Chu Y , Zheng A , Wang J , Zhang W , Wu X . . Methanol to hydrocarbons reaction over Hβ zeolites studied by high resolution solid-state NMR spectroscopy: carbenium ions formation and reaction mechanism. Journal of Catalysis, 2016, 335: 47–57

[160]

Dai W , Dyballa M , Wu G , Li L , Guan N , Hunger M . Intermediates and dominating reaction mechanism during the early period of the methanol-to-olefin conversion on SAPO-41. Journal of Physical Chemistry C, 2015, 119(5): 2637–2645

[161]

Li J , Wei Y , Chen J , Xu S , Tian P , Yang X , Li B , Wang J , Liu Z . Cavity controls the selectivity: insights of confinement effects on MTO reaction. ACS Catalysis, 2015, 5(2): 661–665

[162]

Li J , Wei Y , Chen J , Tian P , Su X , Xu S , Qi Y , Wang Q , Zhou Y , He Y . . Observation of heptamethylbenzenium cation over SAPO-type molecular sieve DNL-6 under real MTO conversion conditions. Journal of the American Chemical Society, 2012, 134(2): 836–839

[163]

Xiao D , Xu S , Han X , Bao X , Liu Z , Blanc F . Direct structural identification of carbenium ions and investigation of host-guest interaction in the methanol to olefins reaction obtained by multinuclear NMR correlations. Chemical Science, 2017, 8(12): 8309–8314

[164]

ImhofPVan der WaalJ C. Catalytic Process Development for Renewable Materials. New Jersey: John Wiley & Sons, 2013

[165]

Zhang M , Yu Y . Dehydration of ethanol to ethylene. Industrial & Engineering Chemistry Research, 2013, 52(28): 9505–9514

[166]

Zhou X , Wang C , Chu Y , Wang Q , Xu J , Deng F . Mechanistic insight into ethanol dehydration over SAPO-34 zeolite by solid-state NMR spectroscopy. Chemical Research in Chinese Universities, 2022, 38(1): 155–160

[167]

Van der Borght , Batchu R , Galvita V V , Alexopoulos K , Reyniers M F , Thybaut J W , Marin G B . Insights into the reaction mechanism of ethanol conversion into hydrocarbons on H-ZSM-5. Angewandte Chemie International Edition, 2016, 55(41): 12817–12821

[168]

Gołąbek K , Tabor E , Pashkova V , Dedecek J , Tarach K , Góra-Marek K . The proximity of aluminium atoms influences the reaction pathway of ethanol transformation over zeolite ZSM-5. Communications Chemistry, 2020, 3(1): 25

[169]

Zhou X , Wang C , Chu Y , Xu J , Wang Q , Qi G , Zhao X , Feng N , Deng F . Observation of an oxonium ion intermediate in ethanol dehydration to ethene on zeolite. Nature Communications, 2019, 10(1): 1961

[170]

Chowdhury A D , Lucini Paioni A , Whiting G T , Fu D , Baldus M , Weckhuysen B M . Unraveling the homologation reaction sequence of the zeolite-catalyzed ethanol-to-hydrocarbons process. Angewandte Chemie International Edition, 2019, 58(12): 3908–3912

[171]

Zeng S , Li J , Wang N , Zhang W , Wei Y , Liu Z , Xu S . Investigation of ethanol conversion on H-ZSM-5 zeolite by in situ solid-state NMR. Energy & Fuels, 2021, 35(15): 12319–12328

[172]

Zeng S , Zhang W , Li J , Lin S , Xu S , Wei Y , Liu Z . Revealing the roles of hydrocarbon pool mechanism in ethanol-to-hydrocarbons reaction. Journal of Catalysis, 2022, 413: 517–526

[173]

Li X , Pei C , Gong J . Shale gas revolution: catalytic conversion of C1–C3 light alkanes to value-added chemicals. Chem, 2021, 7(7): 1755–1801

[174]

Caeiro G , Carvalho R H , Wang X , Lemos M A N D A , Lemos F , Guisnet M , Ramôa Ribeiro F . Activation of C2–C4 alkanes over acid and bifunctional zeolite catalysts. Journal of Molecular Catalysis A Chemical, 2006, 255(1): 131–158

[175]

Sattler J J H B , Ruiz-Martinez J , Santillan-Jimenez E , Weckhuysen B M . Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chemical Reviews, 2014, 114(20): 10613–10653

[176]

Schreiber M W , Plaisance C P , Baumgärtl M , Reuter K , Jentys A , Bermejo-Deval R , Lercher J A . Lewis-Brønsted acid pairs in Ga/H-ZSM-5 to catalyze dehydrogenation of light alkanes. Journal of the American Chemical Society, 2018, 140(14): 4849–4859

[177]

Qi L , Babucci M , Zhang Y , Lund A , Liu L , Li J , Chen Y , Hoffman A S , Bare S R , Han Y . . Propane dehydrogenation catalyzed by isolated Pt atoms in ≡SiOZn–OH nests in dealuminated zeolite beta. Journal of the American Chemical Society, 2021, 143(50): 21364–21378

[178]

Phadke N M , Mansoor E , Bondil M , Head-Gordon M , Bell A T . Mechanism and kinetics of propane dehydrogenation and cracking over Ga/H-MFI prepared via vapor-phase exchange of H-MFI with GaCl3. Journal of the American Chemical Society, 2019, 141(4): 1614–1627

[179]

Narbeshuber T F , Vinek H , Lercher J A . Monomolecular conversion of light alkanes over H-ZSM-5. Journal of Catalysis, 1995, 157(2): 388–395

[180]

OlahG AKlopmanGSchlosbergR H. Super acids. III. Protonation of alkanes and intermediacy of alkanonium ions, pentacoordinated carbon cations of CH5+ type. Hydrogen exchange, protolytic cleavage, hydrogen abstraction; polycondensation of methane, ethane, 2,2-dimethylpropane and 2,2,3,3-tetramethylbutane in FSO3H-SbF5. Journal of the American Chemical Society, 1969, 91(12): 3261–3268

[181]

Kosinov N , Coumans F J A G , Uslamin E A , Wijpkema A S G , Mezari B , Hensen E J M . Methane dehydroaromatization by Mo/HZSM-5: mono- or bifunctional catalysis. ACS Catalysis, 2017, 7(1): 520–529

[182]

Hagen A , Roessner F . Ethane to aromatic hydrocarbons: past, present, future. Catalysis Reviews. Science and Engineering, 2000, 42(4): 403–437

[183]

Wulfers M J , Teketel S , Ipek B , Lobo R F . Conversion of methane to methanol on copper-containing small-pore zeolites and zeotypes. Chemical Communications, 2015, 51(21): 4447–4450

[184]

Li G , Vassilev P , Sanchez-Sanchez M , Lercher J A , Hensen E J M , Pidko E A . Stability and reactivity of copper oxo-clusters in ZSM-5 zeolite for selective methane oxidation to methanol. Journal of Catalysis, 2016, 338: 305–312

[185]

Luzgin M V , Rogov V A , Arzumanov S S , Toktarev A V , Stepanov A G , Parmon V N . Methane aromatization on Zn-modified zeolite in the presence of a co-reactant higher alkane: how does it occur. Catalysis Today, 2009, 144(3): 265–272

[186]

Corma A , Planelles J , Sánchez-Marín J , Tomás F . The role of different types of acid site in the cracking of alkanes on zeolite catalysts. Journal of Catalysis, 1985, 93(1): 30–37

[187]

Luzgin M V , Gabrienko A A , Rogov V A , Toktarev A V , Parmon V N , Stepanov A G . The “alkyl” and “carbenium” pathways of methane activation on Ga-modified zeolite BEA: 13C solid-state NMR and GC-MS study of methane aromatization in the presence of higher alkane. Journal of Physical Chemistry C, 2010, 114(49): 21555–21561

[188]

Kolyagin Y G , Ivanova I I , Ordomsky V V , Gedeon A , Pirogov Y A . Methane activation over Zn-modified MFI zeolite: NMR evidence for Zn-methyl surface species formation. Journal of Physical Chemistry C, 2008, 112(50): 20065–20069

[189]

Kazansky V B , Borovkov V Y , Serikh A I , van Santen R A , Anderson B G . Nature of the sites of dissociative adsorption of dihydrogen and light paraffins in ZnHZSM-5 zeolite prepared by incipient wetness impregnation. Catalysis Letters, 2000, 66(1): 39–47

[190]

Pidko E A , Xu J , Mojet B L , Lefferts L , Subbotina I R , Kazansky V B , van Santen R A . Interplay of bonding and geometry of the adsorption complexes of light alkanes within cationic faujasites. Combined spectroscopic and computational study. Journal of Physical Chemistry B, 2006, 110(45): 22618–22627

[191]

Kazansky V B , Serykh A I , Pidko E A . DRIFT study of molecular and dissociative adsorption of light paraffins by HZSM-5 zeolite modified with zinc ions: methane adsorption. Journal of Catalysis, 2004, 225(2): 369–373

[192]

Biscardi J A , Meitzner G D , Iglesia E . Structure and density of active Zn species in Zn/H-ZSM5 propane aromatization catalysts. Journal of Catalysis, 1998, 179(1): 192–202

[193]

Kazansky V B , Subbotina I R , Rane N , van Santen R A , Hensen E J M . On two alternative mechanisms of ethane activation over ZSM-5 zeolite modified by Zn2+ and Ga1+ cations. Physical Chemistry Chemical Physics, 2005, 7(16): 3088–3092

[194]

Kolyagin Y G , Ordomsky V V , Khimyak Y Z , Rebrov A I , Fajula F , Ivanova I I . Initial stages of propane activation over Zn/MFI catalyst studied by in situ NMR and IR spectroscopic techniques. Journal of Catalysis, 2006, 238(1): 122–133

[195]

Gabrienko A A , Arzumanov S S , Freude D , Stepanov A G . Propane aromatization on Zn-modified zeolite BEA studied by solid-state NMR in situ. Journal of Physical Chemistry C, 2010, 114(29): 12681–12688

[196]

Kolyagin Y G , Ivanova I I , Pirogov Y A . 1H and 13C MAS NMR studies of light alkanes activation over MFI zeolite modified by Zn vapour. Solid State Nuclear Magnetic Resonance, 2009, 35(2): 104–112

[197]

Jentoft F C , Gates B C . Solid-acid-catalyzed alkane cracking mechanisms: evidence from reactions of small probe molecules. Topics in Catalysis, 1997, 4(1): 1–13

[198]

Guisnet M , Gnep N S . Mechanism of short-chain alkane transformation over protonic zeolites. Alkylation, disproportionation and aromatization. Applied Catalysis A, General, 1996, 146(1): 33–64

[199]

CormaAOrchillésA V. Current views on the mechanism of catalytic cracking. Microporous and Mesoporous Materials, 2000, 35–36: 21–30

[200]

Qi G , Wang Q , Xu J , Trébosc J , Lafon O , Wang C , Amoureux J P , Deng F . Synergic effect of active sites in zinc-modified ZSM-5 zeolites as revealed by high-field solid-state NMR spectroscopy. Angewandte Chemie International Edition, 2016, 55(51): 15826–15830

[201]

Tomkins P , Ranocchiari M , van Bokhoven J A . Direct conversion of methane to methanol under mild conditions over Cu-zeolites and beyond. Accounts of Chemical Research, 2017, 50(2): 418–425

[202]

Ravi M , Ranocchiari M , van Bokhoven J A . The direct catalytic oxidation of methane to methanol—a critical assessment. Angewandte Chemie International Edition, 2017, 56(52): 16464–16483

[203]

Ravi M , Sushkevich V L , Knorpp A J , Newton M A , Palagin D , Pinar A B , Ranocchiari M , van Bokhoven J A . Misconceptions and challenges in methane-to-methanol over transition-metal-exchanged zeolites. Nature Catalysis, 2019, 2(6): 485–494

[204]

Sushkevich V L , Palagin D , Ranocchiari M , van Bokhoven J A . Selective anaerobic oxidation of methane enables direct synthesis of methanol. Angewandte Chemie International Edition, 2017, 356(6337): 523–527

[205]

Blankenship A , Artsiusheuski M , Sushkevich V , van Bokhoven J A . Recent trends, current challenges and future prospects for syngas-free methane partial oxidation. Nature Catalysis, 2023, 6(9): 748–762

[206]

Barbosa L A M M , Zhidomirov G M , van Santen R A . Theoretical study of methane adsorption on Zn(II) zeolites. Physical Chemistry Chemical Physics, 2000, 2(17): 3909–3918

[207]

Pidko E A , van Santen R A . Activation of light alkanes over zinc species stabilized in ZSM-5 zeolite: a comprehensive DFT study. Journal of Physical Chemistry C, 2007, 111(6): 2643–2655

[208]

Benco L , Bucko T , Hafner J , Toulhoat H . Periodic DFT calculations of the stability of Al/Si substitutions and extraframework Zn2+ cations in mordenite and reaction pathway for the dissociation of H2 and CH4. Journal of Physical Chemistry B, 2005, 109(43): 20361–20369

[209]

Arzumanov S S , Gabrienko A A , Toktarev A V , Freude D , Haase J , Stepanov A G . Propane activation on Zn-modified zeolite. The effect of the nature of Zn-species on the mechanism of H/D hydrogen exchange of the alkane with Brønsted acid sites. Journal of Catalysis, 2019, 378: 341–352

[210]

Arzumanov S S , Gabrienko A A , Toktarev A V , Freude D , Haase J , Stepanov A G . Mechanism of H/D hydrogen exchange of n-butane with Brønsted acid sites on Zn-modified zeolite: the effect of different Zn species (Zn2+ and ZnO) on the activation of alkane C–H bonds. Journal of Physical Chemistry C, 2020, 124(37): 20270–20279

[211]

Luzgin M V , Rogov V A , Arzumanov S S , Toktarev A V , Stepanov A G , Parmon V N . Understanding methane aromatization on a Zn-modified high-silica zeolite. Angewandte Chemie International Edition, 2008, 47(24): 4559–4562

[212]

Wu J F , Wang W D , Xu J , Deng F , Wang W . Reactivity of C1 surface species formed in methane activation on Zn-modified H-ZSM-5 zeolite. Chemistry, 2010, 16(47): 14016–14025

[213]

Xu J , Zheng A , Wang X , Qi G , Su J , Du J , Gan Z , Wu J , Wang W , Deng F . Room temperature activation of methane over Zn modified H-ZSM-5 zeolites: insight from solid-state NMR and theoretical calculations. Chemical Science, 2012, 3(10): 2932–2940

[214]

Wang X , Xu J , Qi G , Li B , Wang C , Deng F . Alkylation of benzene with methane over ZnZSM-5 zeolites studied with solid-state NMR spectroscopy. Journal of Physical Chemistry C, 2013, 117(8): 4018–4023

[215]

Zhao X , Xu J , Chu Y , Qi G , Wang Q , Gao W , Li S , Feng N , Deng F . Multiple methane activation pathways on Ga-modified ZSM-5 zeolites revealed by solid-state NMR spectroscopy. ChemCatChem, 2020, 12(15): 3880–3889

[216]

Zhao X , Chu Y , Qi G , Wang Q , Gao W , Wang X , Li S , Xu J , Deng F . Probing the active sites for methane activation on Ga/ZSM-5 zeolites with solid-state NMR spectroscopy. Chemical Communications, 2020, 56(80): 12029–12032

[217]

Wang X , Qi G , Xu J , Li B , Wang C , Deng F . NMR-spectroscopic evidence of intermediate-dependent pathways for acetic acid formation from methane and carbon monoxide over a ZnZSM-5 zeolite catalyst. Angewandte Chemie International Edition, 2012, 51(16): 3850–3853

[218]

Wang L , Tao L , Xie M , Xu G , Huang J , Xu Y . Dehydrogenation and aromatization of methane under non-oxidizing conditions. Catalysis Letters, 1993, 21(1): 35–41

[219]

Ma S , Guo X , Zhao L , Scott S , Bao X . Recent progress in methane dehydroaromatization: from laboratory curiosities to promising technology. Journal of Energy Chemistry, 2013, 22(1): 1–20

[220]

Weckhuysen B M , Wang D , Rosynek M P , Lunsford J H . Conversion of methane to benzene over transition metal ion ZSM-5 zeolites: I. Catalytic characterization. Journal of Catalysis, 1998, 175(2): 338–346

[221]

Shu Y , Xu Y , Wong S T , Wang L , Guo X . Promotional effect of Ru on the dehydrogenation and aromatization of methane in the absence of oxygen over Mo/HZSM-5 catalysts. Journal of Catalysis, 1997, 170(1): 11–19

[222]

Chen L Y , Lin L W , Xu Z S , Li X S , Zhang T . Dehydro-oligomerization of methane to ethylene and aromatics over molybdenum/HZSM-5 catalyst. Journal of Catalysis, 1995, 157(1): 190–200

[223]

Ha V T T , Tiep L V , Meriaudeau P , Naccache C . Aromatization of methane over zeolite supported molybdenum: active sites and reaction mechanism. Journal of Molecular Catalysis A Chemical, 2002, 181(1): 283–290

[224]

Wang D , Lunsford J H , Rosynek M P . Catalytic conversion of methane to benzene over Mo/ZSM-5. Topics in Catalysis, 1996, 3(3): 289–297

[225]

Kosinov N , Wijpkema A S G , Uslamin E , Rohling R , Coumans F J A G , Mezari B , Parastaev A , Poryvaev A S , Fedin M V , Pidko E A . . Confined carbon mediating dehydroaromatization of methane over Mo/ZSM-5. Angewandte Chemie International Edition, 2018, 57(4): 1016–1020

[226]

Çağlayan M , Lucini Paioni A , Abou-Hamad E , Shterk G , Pustovarenko A , Baldus M , Chowdhury A D , Gascon J . Initial carbon–carbon bond formation during the early stages of methane dehydroaromatization. Angewandte Chemie International Edition, 2020, 59(38): 16741–16746

[227]

Ivanova I I , Pomakhina E B , Rebrov A I , Derouane E G . 13C MAS NMR mechanistic study of the initial stages of propane activation over H-ZSM-5 zeolite. Topics in Catalysis, 1998, 6(1): 49–59

[228]

Ivanova I I , Rebrov A I , Pomakhina E , Derouane E G J . J o M C A-c. 13C MAS NMR mechanistic study of propane conversion into butanes over H-MFI catalyst. Journal of Molecular Catalysis A Chemical, 1999, 141(1-3): 107–116

[229]

Arzumanov S S , Gabrienko A A , Freude D , Stepanov A G . in situ high temperature MAS NMR study of the mechanisms of catalysis. Ethane aromatization on Zn-modified zeolite BEA. Solid State Nuclear Magnetic Resonance, 2009, 35(2): 113–119

[230]

Gabrienko A A , Arzumanov S S , Toktarev A V , Stepanov A G . Metal-alkyl species are formed on interaction of small alkanes with gallium oxide: evidence from solid-state NMR. Chemical Physics Letters, 2010, 496(1): 148–151

[231]

Wang X , Xu J , Qi G , Wang C , Wang W , Gao P , Wang Q , Liu X , Feng N , Deng F . Carbonylation of ethane with carbon monoxide over Zn-modified ZSM-5 zeolites studied by in situ solid-state NMR spectroscopy. Journal of Catalysis, 2017, 345: 228–235

[232]

Buckles G , Hutchings G J , Williams C D . Propane conversion over zeolite catalysts: comments on the role of Ga. Catalysis Letters, 1991, 8(2): 115–123

[233]

Buckles G , Hutchings G J , Williams C D . Aromatization of propane over Ga/H-ZSM-5: an explanation of the synergy observed between Ga3+ and H+. Catalysis Letters, 1991, 11(1): 89–93

[234]

Dooley K M , Price G L , Kanazirev V I , Hart V I . Gallium-loaded zeolites for light paraffin aromatization: evidence for exchanged gallium cation active centers. Catalysis Today, 1996, 31(3): 305–315

[235]

Solymosi F , Cserényi J , Szöke A , Bánsági T , Oszkó A . Aromatization of methane over supported and unsupported Mo-based catalysts. Journal of Catalysis, 1997, 165(2): 150–161

[236]

Bayense C R , van der Pol A J H P , van Hooff J H C . Aromatization of propane over MFI-gallosilicates. Applied Catalysis, 1991, 72(1): 81–98

[237]

Gabrienko A A , Arzumanov S S , Lashchinskaya Z N , Toktarev A V , Freude D , Haase J , Stepanov A G . n-Butane transformation on Zn/H-BEA. The effect of different Zn species (Zn2+ and ZnO) on the reaction performance. Journal of Catalysis, 2020, 391: 69–79

[238]

Wang C , Zhao X , Hu M , Qi G , Wang Q , Li S , Xu J , Deng F . Unraveling hydrocarbon pool boosted propane aromatization on gallium/ZSM-5 zeolite by solid-state nuclear magnetic resonance spectroscopy. Angewandte Chemie International Edition, 2021, 60(44): 23630–23634

[239]

Bermejo-Deval R , Orazov M , Gounder R , Hwang S J , Davis M E . Active sites in Sn-beta for glucose isomerization to fructose and epimerization to mannose. ACS Catalysis, 2014, 4(7): 2288–2297

[240]

Chen F , Shetty M , Wang M , Shi H , Liu Y , Camaioni D M , Gutiérrez O Y , Lercher J A . Differences in mechanism and rate of zeolite-catalyzed cyclohexanol dehydration in apolar and aqueous phase. ACS Catalysis, 2021, 11(5): 2879–2888

[241]

Rossini A J , Zagdoun A , Lelli M , Lesage A , Copéret C , Emsley L . Dynamic nuclear polarization surface enhanced NMR spectroscopy. Accounts of Chemical Research, 2013, 46(9): 1942–1951

[242]

Rankin A G M , Trébosc J , Pourpoint F , Amoureux J P , Lafon O . Recent developments in MAS DNP-NMR of materials. Solid State Nuclear Magnetic Resonance, 2019, 101: 116–143

[243]

Wang W , Wang Q , Xu J , Deng F . Understanding heterogeneous catalytic hydrogenation by parahydrogen-induced polarization NMR spectroscopy. ACS Catalysis, 2023, 13(6): 3501–3519

[244]

Hübler P , Giernoth R , Kümmerle G , Bargon J . Investigating the kinetics of homogeneous hydrogenation reactions using PHIP NMR spectroscopy. Journal of the American Chemical Society, 1999, 121(22): 5311–5318

[245]

Duckett S B , Mewis R E . Application of parahydrogen induced polarization techniques in NMR spectroscopy and imaging. Accounts of Chemical Research, 2012, 45(8): 1247–1257

[246]

Buntkowsky G , Theiss F , Lins J , Miloslavina Y A , Wienands L , Kiryutin A , Yurkovskaya A . Recent advances in the application of parahydrogen in catalysis and biochemistry. RSC Advances, 2022, 12(20): 12477–12506

[247]

Kovtunov K V , Koptyug I V , Fekete M , Duckett S B , Theis T , Joalland B , Chekmenev E Y . Parahydrogen-induced hyperpolarization of gases. Angewandte Chemie International Edition, 2020, 59(41): 17788–17797

[248]

Chakrabarty T , Goldin N , Feintuch A , Houben L , Leskes M . Paramagnetic metal-ion dopants as polarization agents for dynamic nuclear polarization NMR spectroscopy in inorganic solids. ChemPhysChem, 2018, 19(17): 2139–2142

[249]

Henning H , Dyballa M , Scheibe M , Klemm E , Hunger M . in situ CF MAS NMR study of the pairwise incorporation of parahydrogen into olefins on rhodium-containing zeolites Y. Chemical Physics Letters, 2013, 555: 258–262

[250]

Obenaus U , Lang S , Himmelmann R , Hunger M . Parahydrogen-induced hyperpolarization inside meso- and micropores of Pt-, Rh-, Ir-, and Pd-containing solid catalysts. Journal of Physical Chemistry C, 2017, 121(18): 9953–9962

[251]

Wang W , Sun Q , Wang Q , Li S , Xu J , Deng F . Heterogeneous parahydrogen induced polarization on Rh-containing silicalite-1 zeolites: effect of the catalyst structure on signal enhancement. Catalysis Science & Technology, 2022, 12(14): 4442–4449

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3548KB)

6708

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/