Mechanistic studies of zeolite catalysis via in situ solid-state nuclear magnetic resonance spectroscopy: progress and prospects

Chao Wang, Min Hu, Jun Xu, Feng Deng

PDF(3548 KB)
PDF(3548 KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (1) : 1. DOI: 10.1007/s11705-024-2505-2
REVIEW ARTICLE

Mechanistic studies of zeolite catalysis via in situ solid-state nuclear magnetic resonance spectroscopy: progress and prospects

Author information +
History +

Abstract

Zeolites, with their exquisite microporous frameworks and tailorable acidities, serve as ubiquitous catalysts across a diverse spectrum of industrial applications, ranging from petroleum and coal processing to sustainable chemistry and environmental remediation. Optimizing their performance hinges on a thorough understanding of the structure-performance relationship. In situ solid-state nuclear magnetic resonance spectroscopy has emerged as a critical tool, providing unparalleled atomic-level insights into both structure and dynamic aspects of zeolite-catalyzed reactions. Herein, we review recent progress in the development and application of the in situ solid-state nuclear magnetic resonance technique to zeolite catalysis. We first review the in situ nuclear magnetic resonance techniques used in zeolite-catalyzed reaction, including batch-like and continuous-flow reaction modes. The conditions and limitations for these techniques are thoroughly summarized. Subsequently, we review the applications of in situ nuclear magnetic resonance techniques in zeolite-catalyzed reaction, focusing on some important catalytic reactions like methanol-to-hydrocarbons, ethanol dehydration, alkane activation, and beyond. Emphasis is placed on the strategies of specific in situ nuclear magnetic resonance methodologies to tackle critical challenges encountered in these fields, such as probing intermediates and unraveling reaction mechanisms. Additionally, we discuss the burgeoning opportunities and prospective challenges associated with in situ nuclear magnetic resonance studies of zeolite-catalyzed processes.

Graphical abstract

Keywords

heterogeneous catalysis / solid-state NMR / reaction mechanism / zeolites / characterization

Cite this article

Download citation ▾
Chao Wang, Min Hu, Jun Xu, Feng Deng. Mechanistic studies of zeolite catalysis via in situ solid-state nuclear magnetic resonance spectroscopy: progress and prospects. Front. Chem. Sci. Eng., 2025, 19(1): 1 https://doi.org/10.1007/s11705-024-2505-2

References

[1]
KirschhockČEǍFeijenE J PJacobsP AMartensJ A. Hydrothermal zeolite synthesis. ln: G ErtlHKnözingerFSchüthJweit kamp ed. Handbook of Heterogeneous Catalysis. Wiley, 2008
[2]
Choudhary V R , Kinage A K , Choudhary T V . Low-temperature nonoxidative activation of methane over H-galloaluminosilicate (MFI) zeolite. Science, 1997, 275(5304): 1286–1288
CrossRef Google scholar
[3]
Xu Y , Liu S , Guo X , Wang L , Xie M . Methane activation without using oxidants over Mo/HZSM-5 zeolite catalysts. Catalysis Letters, 1994, 30(1): 135–149
[4]
Jin Z , Wang L , Zuidema E , Mondal K , Zhang M , Zhang J , Wang C , Meng X , Yang H , Mesters C . . Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science, 2020, 367(6474): 193–197
CrossRef Google scholar
[5]
Mole T , Anderson J R , Creer G . The reaction of propane over ZSM-5-H and ZSM-5-Zn zeolite catalysts. Applied Catalysis, 1985, 17(1): 141–154
CrossRef Google scholar
[6]
Kitagawa H , Sendoda Y , Ono Y . Transformation of propane into aromatic hydrocarbons over ZSM-5 zeolites. Journal of Catalysis, 1986, 101(1): 12–18
CrossRef Google scholar
[7]
Chang C D , Silvestri A J . The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. Journal of Catalysis, 1977, 47(2): 249–259
CrossRef Google scholar
[8]
Bjørgen M , Svelle S , Joensen F , Nerlov J , Kolboe S , Bonino F , Palumbo L , Bordiga S , Olsbye U . Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species. Journal of Catalysis, 2007, 249(2): 195–207
CrossRef Google scholar
[9]
Olsbye U , Svelle S , Bjørgen M , Beato P , Janssens T V W , Joensen F , Bordiga S , Lillerud K P . Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angewandte Chemie International Edition, 2012, 51(24): 5810–5831
CrossRef Google scholar
[10]
Bjørgen M , Joensen F , Spangsberg Holm M , Olsbye U , Lillerud K P , Svelle S . Methanol to gasoline over zeolite H-ZSM-5: improved catalyst performance by treatment with NaOH. Applied Catalysis A, General, 2008, 345(1): 43–50
CrossRef Google scholar
[11]
Svelle S , Joensen F , Nerlov J , Olsbye U , Lillerud K P , Kolboe S , Bjørgen M . Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes. Journal of the American Chemical Society, 2006, 128(46): 14770–14771
CrossRef Google scholar
[12]
Inaba M , Murata K , Saito M , Takahara I . Ethanol conversion to aromatic hydrocarbons over several zeolite catalysts. Reaction Kinetics and Catalysis Letters, 2006, 88(1): 135–141
CrossRef Google scholar
[13]
Derouane E G , Nagy J B , Dejaifve P , van Hooff J H C , Spekman B P , Védrine J C , Naccache C . Elucidation of the mechanism of conversion of methanol and ethanol to hydrocarbons on a new type of synthetic zeolite. Journal of Catalysis, 1978, 53(1): 40–55
CrossRef Google scholar
[14]
Schulz J , Bandermann F . Conversion of ethanol over zeolite H-ZSM-5. Chemical Engineering & Technology, 1994, 17(3): 179–186
CrossRef Google scholar
[15]
Olah G A . Beyond oil and gas: the methanol economy. Angewandte Chemie International Edition, 2005, 44(18): 2636–2639
CrossRef Google scholar
[16]
Mentzel U V , Shunmugavel S , Hruby S L , Christensen C H , Holm M S . High yield of liquid range olefins obtained by converting i-propanol over zeolite H-ZSM-5. Journal of the American Chemical Society, 2009, 131(46): 17009–17013
CrossRef Google scholar
[17]
Zhang X , Yang M , Tian P , Liu Z . Progress in seed-assisted synthesis of (Silico)aluminophosphate molecular sieves. Chemical Research in Chinese Universities, 2022, 38(1): 1–8
CrossRef Google scholar
[18]
Kaeding W W , Chu C , Young L B , Butter S A . Shape-selective reactions with zeolite catalysts: II. Selective disproportionation of toluene to produce benzene and p-xylene. Journal of Catalysis, 1981, 69(2): 392–398
CrossRef Google scholar
[19]
Young L B , Butter S A , Kaeding W W . Shape selective reactions with zeolite catalysts: III. Selectivity in xylene isomerization, toluene-methanol alkylation, and toluene disproportionation over ZSM-5 zeolite catalysts. Journal of Catalysis, 1982, 76(2): 418–432
CrossRef Google scholar
[20]
van Santen R A , Kramer G J . Reactivity theory of zeolitic broensted acidic sites. Chemical Reviews, 1995, 95(3): 637–660
CrossRef Google scholar
[21]
Kazanskii V B . The nature of adsorbed carbenium ions as active intermediates in catalysis by solid acids. Accounts of Chemical Research, 1991, 24(12): 379–383
CrossRef Google scholar
[22]
Li Y , Yu J . Emerging applications of zeolites in catalysis, separation and host-guest assembly. Nature Reviews. Materials, 2021, 6(12): 1156–1174
CrossRef Google scholar
[23]
Liang J , Fu W , Liu C , Li X , Wang Y , Ma D , Li Y , Wang Z , Yang W . Synthesis of FER zeolite using 4-(aminomethyl)pyridine as structure-directing agent. Chemical Research in Chinese Universities, 2022, 38(1): 243–249
CrossRef Google scholar
[24]
Lewis J D , Van de Vyver S , Román-Leshkov Y . Acid-base pairs in Lewis acidic zeolites promote direct aldol reactions by soft enolization. Angewandte Chemie International Edition, 2015, 54(34): 9835–9838
CrossRef Google scholar
[25]
Perego C , Carati A , Ingallina P , Mantegazza M A , Bellussi G . Production of titanium containing molecular sieves and their application in catalysis. Applied Catalysis A, General, 2001, 221(1): 63–72
CrossRef Google scholar
[26]
Hammond C , Conrad S , Hermans I . Simple and scalable preparation of highly active Lewis acidic Sn-β. Angewandte Chemie International Edition, 2012, 51(47): 11736–11739
CrossRef Google scholar
[27]
Sushkevich V L , Ivanova I I , Taarning E . Ethanol conversion into butadiene over Zr-containing molecular sieves doped with silver. Green Chemistry, 2015, 17(4): 2552–2559
CrossRef Google scholar
[28]
Corma A , Domine M E , Nemeth L , Valencia S . Al-free Sn-Beta zeolite as a catalyst for the selective reduction of carbonyl compounds (Meerwein-Ponndorf-Verley reaction). Journal of the American Chemical Society, 2002, 124(13): 3194–3195
CrossRef Google scholar
[29]
Ravi M , Sushkevich V L , van Bokhoven J A . Towards a better understanding of Lewis acidic aluminium in zeolites. Nature Materials, 2020, 19(10): 1047–1056
CrossRef Google scholar
[30]
Brus J , Kobera L , Schoefberger W , Urbanová M , Klein P , Sazama P , Tabor E , Sklenak S , Fishchuk A V , Dědeček J . Structure of framework aluminum Lewis sites and perturbed aluminum atoms in zeolites as determined by 27Al{1H} REDOR (3Q) MAS NMR spectroscopy and DFT/molecular mechanics. Angewandte Chemie International Edition, 2015, 54(2): 541–545
CrossRef Google scholar
[31]
Yu Z , Zheng A , Wang Q , Chen L , Xu J , Amoureux J P , Deng F . Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced 27Al DQ-MAS NMR spectroscopy at high field. Angewandte Chemie International Edition, 2010, 49(46): 8657–8661
CrossRef Google scholar
[32]
del Campo P , Martínez C , Corma A . Activation and conversion of alkanes in the confined space of zeolite-type materials. Chemical Society Reviews, 2021, 50(15): 8511–8595
CrossRef Google scholar
[33]
Spivey J J , Hutchings G . Catalytic aromatization of methane. Chemical Society Reviews, 2014, 43(3): 792–803
CrossRef Google scholar
[34]
Shan J , Li M , Allard L F , Lee S , Flytzani-Stephanopoulos M . Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature, 2017, 551(7682): 605–608
CrossRef Google scholar
[35]
Snyder B E R , Vanelderen P , Bols M L , Hallaert S D , Böttger L H , Ungur L , Pierloot K , Schoonheydt R A , Sels B F , Solomon E I . The active site of low-temperature methane hydroxylation in iron-containing zeolites. Nature, 2016, 536(7616): 317–321
CrossRef Google scholar
[36]
Jiao F , Li J , Pan X , Xiao J , Li H , Ma H , Wei M , Pan Y , Zhou Z , Li M . . Selective conversion of syngas to light olefins. Science, 2016, 351(6277): 1065–1068
CrossRef Google scholar
[37]
Zhou W , Cheng K , Kang J , Zhou C , Subramanian V , Zhang Q , Wang Y . New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chemical Society Reviews, 2019, 48(12): 3193–3228
CrossRef Google scholar
[38]
Cheng K , Gu B , Liu X , Kang J , Zhang Q , Wang Y . Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling. Angewandte Chemie International Edition, 2016, 55(15): 4725–4728
CrossRef Google scholar
[39]
van Donk S , Janssen A H , Bitter J H , de Jong K P . Generation, characterization, and impact of mesopores in zeolite catalysts. Catalysis Reviews. Science and Engineering, 2003, 45(2): 297–319
CrossRef Google scholar
[40]
Li Y , Li L , Yu J . Applications of zeolites in sustainable chemistry. Chem, 2017, 3(6): 928–949
CrossRef Google scholar
[41]
Zhang Q , Yu J , Corma A . Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities. Advanced Materials, 2020, 32(44): 2002927
CrossRef Google scholar
[42]
Fisher I A , Bell A T . in situ infrared study of methanol synthesis from H2/CO over Cu/SiO2 and Cu/ZrO2/SiO2. Journal of Catalysis, 1998, 178(1): 153–173
CrossRef Google scholar
[43]
Lercher J A , Veefkind V , Fajerwerg K . in situ IR spectroscopy for developing catalysts and catalytic processes. Vibrational Spectroscopy, 1999, 19(1): 107–121
CrossRef Google scholar
[44]
Knözinger H , Mestl G . Laser Raman spectroscopy—a powerful tool for in situ studies of catalytic materials. Topics in Catalysis, 1999, 8(1): 45–55
CrossRef Google scholar
[45]
Wachs I E . in situ Raman spectroscopy studies of catalysts. Topics in Catalysis, 1999, 8(1): 57–63
CrossRef Google scholar
[46]
An H , Zhang F , Guan Z , Liu X , Fan F , Li C . Investigating the coke formation mechanism of H-ZSM-5 during methanol dehydration using operando UV-Raman spectroscopy. ACS Catalysis, 2018, 8(10): 9207–9215
CrossRef Google scholar
[47]
Borodina E , Sharbini Harun Kamaluddin H , Meirer F , Mokhtar M , Asiri A M , Al-Thabaiti S A , Basahel S N , Ruiz-Martinez J , Weckhuysen B M . Influence of the reaction temperature on the nature of the active and deactivating species during methanol-to-olefins conversion over H-SAPO-34. ACS Catalysis, 2017, 7(8): 5268–5281
CrossRef Google scholar
[48]
Bañares M A , Martínez-Huerta M V , Gao X , Fierro J L G , Wachs I E . Dynamic behavior of supported vanadia catalysts in the selective oxidation of ethane: in situ Raman, UV-Vis DRS and reactivity studies. Catalysis Today, 2000, 61(1): 295–301
CrossRef Google scholar
[49]
Singh J , Lamberti C , van Bokhoven J A . Advanced X-ray absorption and emission spectroscopy: in situ catalytic studies. Chemical Society Reviews, 2010, 39(12): 4754–4766
CrossRef Google scholar
[50]
Sankar G , Thomas J M . in situ combined X-ray absorption spectroscopic and X-ray diffractometric studies of solid catalysts. Topics in Catalysis, 1999, 8(1): 1–21
CrossRef Google scholar
[51]
Brückner A . in situ electron paramagnetic resonance: a unique tool for analyzing structure-reactivity relationships in heterogeneous catalysis. Chemical Society Reviews, 2010, 39(12): 4673–4684
CrossRef Google scholar
[52]
Brückner A , Kubias B , Lücke B . in situ-electron spin resonance: a useful tool for the investigation of vanadium phosphate catalysts (VPO) under working conditions. Catalysis Today, 1996, 32(1): 215–222
CrossRef Google scholar
[53]
Palmer A G III . NMR characterization of the dynamics of biomacromolecules. Chemical Reviews, 2004, 104(8): 3623–3640
CrossRef Google scholar
[54]
KeelerJ. Understanding NMR Spectroscopy. John Wiley & Sons, 2010
[55]
Johnson B A , Blevins R A . NMR view: a computer program for the visualization and analysis of NMR data. Journal of Biomolecular NMR, 1994, 4(5): 603–614
CrossRef Google scholar
[56]
Chien P H , Griffith K J , Liu H , Gan Z , Hu Y Y . Recent advances in solid-state nuclear magnetic resonance techniques for materials research. Annual Review of Materials Research, 2020, 50(1): 493–520
CrossRef Google scholar
[57]
Li S , Lafon O , Wang W , Wang Q , Wang X , Li Y , Xu J , Deng F . Recent advances of solid-state NMR spectroscopy for microporous materials. Advanced Materials, 2020, 32(44): 2002879
CrossRef Google scholar
[58]
Qi G , Wang Q , Xu J , Deng F . Solid-state NMR studies of internuclear correlations for characterizing catalytic materials. Chemical Society Reviews, 2021, 50(15): 8382–8399
CrossRef Google scholar
[59]
Xu J , Wang Q , Deng F . Metal active sites and their catalytic functions in zeolites: insights from solid-state NMR spectroscopy. Accounts of Chemical Research, 2019, 52(8): 2179–2189
CrossRef Google scholar
[60]
Blasco T . Insights into reaction mechanisms in heterogeneous catalysis revealed by in situ NMR spectroscopy. Chemical Society Reviews, 2010, 39(12): 4685–4702
CrossRef Google scholar
[61]
HungerMWangW. Characterization of solid catalysts in the functioning state by nuclear magnetic resonance spectroscopy. In: Gates B C, Knzinger H, eds. Advances in Catalysis. Massachusetts: Academic Press, 2006, 149–225
[62]
ZhengMChuYWangQWangYXuJDengF. Advanced solid-state NMR spectroscopy and its applications in zeolite chemistry. Progress in Nuclear Magnetic Resonance Spectroscopy, 2024, 140–141: 1–41
[63]
Klinowski J . Solid-state NMR studies of molecular sieve catalysts. Chemical Reviews, 1991, 91(7): 1459–1479
CrossRef Google scholar
[64]
XuJWangQLiSDengF. Solid-State NMR in Zeolite Catalysis. Berlin: Springer, 2019
[65]
Yan Z , Ma D , Zhuang J , Liu X , Liu X , Han X , Bao X , Chang F , Xu L , Liu Z . On the acid-dealumination of USY zeolite: a solid state NMR investigation. Journal of Molecular Catalysis A Chemical, 2003, 194(1): 153–167
CrossRef Google scholar
[66]
EngelhardtGMichelD. High-Resolution Solid-State NMR of Silicates and Zeolites. New Jersey: John Wiley & Sons, 1987
[67]
Pugh S M , Wright P A , Law D J , Thompson N , Ashbrook S E . Facile, room-temperature 17O enrichment of zeolite frameworks revealed by solid-state NMR spectroscopy. Journal of the American Chemical Society, 2020, 142(2): 900–906
CrossRef Google scholar
[68]
Zhao X , Xu J , Deng F . Solid-state NMR for metal-containing zeolites: from active sites to reaction mechanism. Frontiers of Chemical Science and Engineering, 2020, 14(2): 159–187
CrossRef Google scholar
[69]
Haw J F , Song W , Marcus D M , Nicholas J B . The mechanism of methanol to hydrocarbon catalysis. Accounts of Chemical Research, 2003, 36(5): 317–326
CrossRef Google scholar
[70]
Wang W , Seiler M , Weitkamp J , Hunger M , Ivanova I I . Stopped-flow (SF) MAS NMR spectroscopy: a novel NMR technique applied for the study of aniline methylation on a solid base catalyst. Chemical Communications, 2001, (15): 1362–1363
CrossRef Google scholar
[71]
Wang W , Buchholz A , Seiler M , Hunger M . Evidence for an initiation of the methanol-to-olefin process by reactive surface methoxy groups on acidic zeolite catalysts. Journal of the American Chemical Society, 2003, 125(49): 15260–15267
CrossRef Google scholar
[72]
Gao W , Wang Q , Qi G , Liang J , Wang C , Xu J , Deng F . Active ensembles in methane dehydroaromatization over molybdenum/ZSM-5 zeolite identified by 2D 1H-95Mo magic angle spinning nuclear magnetic resonance correlation spectroscopy. Angewandte Chemie International Edition, 2023, 62(31): e202306133
CrossRef Google scholar
[73]
Wang W , Xu J , Deng F . Recent advances in solid-state NMR of zeolite catalysts. National Science Review, 2022, 9(9): nwac155
CrossRef Google scholar
[74]
Gao W , Qi G , Wang Q , Wang W , Li S , Hung I , Gan Z , Xu J , Deng F . Dual active sites on molybdenum/ZSM-5 catalyst for methane dehydroaromatization: insights from solid-state NMR spectroscopy. Angewandte Chemie International Edition, 2021, 60(19): 10709–10715
CrossRef Google scholar
[75]
Wang C , Xu J , Deng F . Mechanism of methanol-to-hydrocarbon reaction over zeolites: a solid-state NMR perspective. ChemCatChem, 2020, 12(4): 965–980
CrossRef Google scholar
[76]
Gong X , Çağlayan M , Ye Y , Liu K , Gascon J , Dutta Chowdhury A . First-generation organic reaction intermediates in zeolite chemistry and catalysis. Chemical Reviews, 2022, 122(18): 14275–14345
CrossRef Google scholar
[77]
Ivanova I I , Kolyagin Y G . Impact of in situ MAS NMR techniques to the understanding of the mechanisms of zeolite catalyzed reactions. Chemical Society Reviews, 2010, 39(12): 5018–5050
CrossRef Google scholar
[78]
Zhang W , Xu S , Han X , Bao X . in situ solid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach. Chemical Society Reviews, 2012, 41(1): 192–210
CrossRef Google scholar
[79]
Wang W , Hunger M . Reactivity of surface alkoxy species on acidic zeolite catalysts. Accounts of Chemical Research, 2008, 41(8): 895–904
CrossRef Google scholar
[80]
Derouane E G , Gilson J P , Nagy J B . in situ characterization of carbonaceous residues from zeolite-catalysed reactions using high resolution solid state 13C-NMR spectroscopy. Zeolites, 1982, 2(1): 42–46
CrossRef Google scholar
[81]
Blanc F , Leskes M , Grey C P . in situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells. Accounts of Chemical Research, 2013, 46(9): 1952–1963
CrossRef Google scholar
[82]
Kubicki D J , Stranks S D , Grey C P , Emsley L . NMR spectroscopy probes microstructure, dynamics and doping of metal halide perovskites. Nature Reviews. Chemistry, 2021, 5(9): 624–645
CrossRef Google scholar
[83]
Hunger M , Horvath T . A new MAS NMR probe for in situ investigations of hydrocarbon conversion on solid catalysts under continuous-flow conditions. Journal of the Chemical Society. Chemical Communications, 1995, (14): 1423–1424
CrossRef Google scholar
[84]
Anderson M W , Klinowski J . Direct observation of shape selectivity in zeolite ZSM-5 by magic-angle-spinning NMR. Nature, 1989, 339(6221): 200–203
CrossRef Google scholar
[85]
Xu T , Haw J F . The development and applications of CAVERN methods for in situ NMR studies of reactions on solid acids. Topics in Catalysis, 1997, 4(1): 109–118
CrossRef Google scholar
[86]
Haw J F , Richardson B R , Oshiro I S , Lazo N D , Speed J A . Reactions of propene on zeolite HY catalyst studied by in situ variable temperature solid-state nuclear magnetic resonance spectroscopy. Journal of the American Chemical Society, 1989, 111(6): 2052–2058
CrossRef Google scholar
[87]
Hu J Z , Hu M Y , Zhao Z , Xu S , Vjunov A , Shi H , Camaioni D M , Peden C H F , Lercher J A . Sealed rotors for in situ high temperature high pressure MAS NMR. Chemical Communications, 2015, 51(70): 13458–13461
CrossRef Google scholar
[88]
Jaegers N R , Mueller K T , Wang Y , Hu J Z . Variable temperature and pressure operando MAS NMR for catalysis science and related materials. Accounts of Chemical Research, 2020, 53(3): 611–619
CrossRef Google scholar
[89]
Turcu R V F , Hoyt D W , Rosso K M , Sears J A , Loring J S , Felmy A R , Hu J Z . Rotor design for high pressure magic angle spinning nuclear magnetic resonance. Journal of Magnetic Resonance, 2013, 226: 64–69
CrossRef Google scholar
[90]
Walter E D , Qi L , Chamas A , Mehta H S , Sears J A , Scott S L , Hoyt D W . Operando MAS NMR reaction studies at high temperatures and pressures. Journal of Physical Chemistry C, 2018, 122(15): 8209–8215
CrossRef Google scholar
[91]
Hoyt D W , Turcu R V F , Sears J A , Rosso K M , Burton S D , Felmy A R , Hu J Z . High-pressure magic angle spinning nuclear magnetic resonance. Journal of Magnetic Resonance, 2011, 212(2): 378–385
CrossRef Google scholar
[92]
Hunger M , Horvath T . Conversion of propan-2-ol on zeolites LaNaY and HY investigated by gas chromatography and in situ MAS NMR spectroscopy under continuous-flow conditions. Journal of Catalysis, 1997, 167(1): 187–197
CrossRef Google scholar
[93]
Haw J F , Nicholas J B , Song W , Deng F , Wang Z , Xu T , Heneghan C S . Roles for cyclopentenyl cations in the synthesis of hydrocarbons from methanol on zeolite catalyst HZSM-5. Journal of the American Chemical Society, 2000, 122(19): 4763–4775
CrossRef Google scholar
[94]
Song W , Nicholas J B , Haw J F . A persistent carbenium ion on the methanol-to-olefin catalyst HSAPO-34: acetone shows the way. Journal of Physical Chemistry B, 2001, 105(19): 4317–4323
CrossRef Google scholar
[95]
Chamas A , Qi L , Mehta H S , Sears J A , Scott S L , Walter E D , Hoyt D W . High temperature/pressure MAS-NMR for the study of dynamic processes in mixed phase systems. Magnetic Resonance Imaging, 2019, 56: 37–44
CrossRef Google scholar
[96]
Hu J Z , Zhang X , Jaegers N R , Wan C , Graham T R , Hu M , Pearce C I , Felmy A R , Clark S B , Rosso K M . Transitions in Al coordination during Gibbsite crystallization using high-field 27Al and 23Na MAS NMR spectroscopy. Journal of Physical Chemistry C, 2017, 121(49): 27555–27562
CrossRef Google scholar
[97]
Prodinger S , Vjunov A , Hu J Z , Fulton J L , Camaioni D M , Derewinski M A , Lercher J A . Elementary steps of faujasite formation followed by in situ spectroscopy. Chemistry of Materials, 2018, 30(3): 888–897
CrossRef Google scholar
[98]
Zhao Z , Shi H , Wan C , Hu M Y , Liu Y , Mei D , Camaioni D M , Hu J Z , Lercher J A . Mechanism of phenol alkylation in zeolite H-BEA using in situ solid-state NMR spectroscopy. Journal of the American Chemical Society, 2017, 139(27): 9178–9185
CrossRef Google scholar
[99]
Liu Y , Baráth E , Shi H , Hu J , Camaioni D M , Lercher J A . Solvent-determined mechanistic pathways in zeolite-H-BEA-catalysed phenol alkylation. Nature Catalysis, 2018, 1(2): 141–147
CrossRef Google scholar
[100]
Hunger M , Wang W . Formation of cyclic compounds and carbenium ions by conversion of methanol on weakly dealuminated zeolite H-ZSM-5 investigated via a novel in situ CF MAS NMR/UV-Vis technique. Chemical Communications, 2004, (5): 584–585
CrossRef Google scholar
[101]
Hunger M . in situ NMR spectroscopy in heterogeneous catalysis. Catalysis Today, 2004, 97(1): 3–12
CrossRef Google scholar
[102]
Wang W , De Cola P L , Glaeser R , Ivanova I I , Weitkamp J , Hunger M . Methylation of phenol by methanol on acidic zeolite H-Y investigated by in situ CF MAS NMR spectroscopy. Catalysis Letters, 2004, 94(1): 119–123
CrossRef Google scholar
[103]
Wang W , Seiler M , Ivanova I I , Sternberg U , Weitkamp J , Hunger M . Formation and decomposition of N,N,N-trimethylanilinium cations on zeolite H-Y investigated by in situ stopped-flow MAS NMR spectroscopy. Journal of the American Chemical Society, 2002, 124(25): 7548–7554
CrossRef Google scholar
[104]
Wang W , Seiler M , Hunger M . Role of surface methoxy species in the conversion of methanol to dimethyl ether on acidic zeolites investigated by in situ stopped-flow MAS NMR spectroscopy. Journal of Physical Chemistry B, 2001, 105(50): 12553–12558
CrossRef Google scholar
[105]
Isbester P K , Zalusky A , Lewis D H , Douskey M C , Pomije M J , Mann K R , Munson E J . NMR probe for heterogeneous catalysis with isolated reagent flow and magic-angle spinning. Catalysis Today, 1999, 49(4): 363–375
CrossRef Google scholar
[106]
Goguen P , Haw J F . An in situ NMR probe with reagent flow and magic angle spinning. Journal of Catalysis, 1996, 161(2): 870–872
CrossRef Google scholar
[107]
Hu J Z , Sears J A , Mehta H S , Ford J J , Kwak J H , Zhu K , Wang Y , Liu J , Hoyt D W , Peden C H F . A large sample volume magic angle spinning nuclear magnetic resonance probe for in situ investigations with constant flow of reactants. Physical Chemistry Chemical Physics, 2012, 14(7): 2137–2143
CrossRef Google scholar
[108]
von Sivers M , Zacchi G . Ethanol from lignocellulosics: a review of the economy. Bioresource Technology, 1996, 56(2): 131–140
CrossRef Google scholar
[109]
Peplow M . Cellulosic ethanol fights for life. Nature, 2014, 507(7491): 152–153
CrossRef Google scholar
[110]
Sun J , Wang Y . Recent advances in catalytic conversion of ethanol to chemicals. ACS Catalysis, 2014, 4(4): 1078–1090
CrossRef Google scholar
[111]
Wang C , Chu Y , Zheng A , Xu J , Wang Q , Gao P , Qi G , Gong Y , Deng F . New insight into the hydrocarbon-pool chemistry of the methanol-to-olefins conversion over zeolite H-ZSM-5 from GC-MS, solid-state NMR spectroscopy, and DFT calculations. Chemistry, 2014, 20(39): 12432–12443
CrossRef Google scholar
[112]
Park J W , Seo G . IR study on methanol-to-olefin reaction over zeolites with different pore structures and acidities. Applied Catalysis A, General, 2009, 356(2): 180–188
CrossRef Google scholar
[113]
Chua Y T , Stair P C , Nicholas J B , Song W , Haw J F . UV Raman spectrum of 1,3-dimethylcyclopentenyl cation adsorbed in zeolite H-MFI. Journal of the American Chemical Society, 2003, 125(4): 866–867
CrossRef Google scholar
[114]
Lezcano-Gonzalez I , Campbell E , Hoffman A E J , Bocus M , Sazanovich I V , Towrie M , Agote-Aran M , Gibson E K , Greenaway A , De Wispelaere K . . Insight into the effects of confined hydrocarbon species on the lifetime of methanol conversion catalysts. Nature Materials, 2020, 19(10): 1081–1087
CrossRef Google scholar
[115]
Goetze J , Meirer F , Yarulina I , Gascon J , Kapteijn F , Ruiz-Martínez J , Weckhuysen B M . Insights into the activity and deactivation of the methanol-to-olefins process over different small-pore zeolites as studied with operando UV-Vis spectroscopy. ACS Catalysis, 2017, 7(6): 4033–4046
CrossRef Google scholar
[116]
Fu D , Lucini Paioni A , Lian C , van der Heijden O , Baldus M , Weckhuysen B M . Elucidating zeolite channel geometry-reaction intermediate relationships for the methanol-to-hydrocarbon process. Angewandte Chemie International Edition, 2020, 59(45): 20024–20030
CrossRef Google scholar
[117]
Wang W , Jiao J , Jiang Y , Ray S S , Hunger M . Formation and decomposition of surface ethoxy species on acidic zeolite Y. ChemPhysChem, 2005, 6(8): 1467–1469
CrossRef Google scholar
[118]
Xu S , Zheng A , Wei Y , Chen J , Li J , Chu Y , Zhang M , Wang Q , Zhou Y , Wang J . . Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites. Angewandte Chemie International Edition, 2013, 52(44): 11564–11568
CrossRef Google scholar
[119]
Dai W , Wang C , Dyballa M , Wu G , Guan N , Li L , Xie Z , Hunger M . Understanding the early stages of the methanol-to-olefin conversion on H-SAPO-34. ACS Catalysis, 2015, 5(1): 317–326
CrossRef Google scholar
[120]
KoempelHLiebnerW. Lurgi’s Methanol to Propylene (MTP®) Report on A Successful Commercialisation. In: Noronha F B, Schmal M, Sousa-Aguiar E F, eds. Studies in Surface Science and Catalysis. Amsterdam: Elsevier, 2007, 261–267
[121]
Chang C D , Kuo J C W , Lang W H , Jacob S M , Wise J J , Silvestri A J . Process studies on the conversion of methanol to gasoline. Industrial & Engineering Chemistry Process Design and Development, 1978, 17(3): 255–260
CrossRef Google scholar
[122]
Stöcker M . Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous and Mesoporous Materials, 1999, 29(1): 3–48
CrossRef Google scholar
[123]
Yarulina I , De Wispelaere K , Bailleul S , Goetze J , Radersma M , Abou-Hamad E , Vollmer I , Goesten M , Mezari B , Hensen E J M . . Structure-performance descriptors and the role of Lewis acidity in the methanol-to-propylene process. Nature Chemistry, 2018, 10(8): 804–812
CrossRef Google scholar
[124]
Ono Y , Mori T . Mechanism of methanol conversion into hydrocarbons over ZSM-5 zeolite. Journal of the Chemical Society, Faraday Transactions 1. Physical Chemistry in Condensed Phases, 1981, 77(9): 2209–2221
[125]
Schulz H . “Coking” of zeolites during methanol conversion: basic reactions of the MTO-, MTP- and MTG processes. Catalysis Today, 2010, 154(3): 183–194
CrossRef Google scholar
[126]
Olsbye U , Svelle S , Lillerud K P , Wei Z H , Chen Y Y , Li J F , Wang J G , Fan W B . The formation and degradation of active species during methanol conversion over protonated zeotype catalysts. Chemical Society Reviews, 2015, 44(20): 7155–7176
CrossRef Google scholar
[127]
Yarulina I , Chowdhury A D , Meirer F , Weckhuysen B M , Gascon J . Recent trends and fundamental insights in the methanol-to-hydrocarbons process. Nature Catalysis, 2018, 1(6): 398–411
CrossRef Google scholar
[128]
Yang M , Fan D , Wei Y , Tian P , Liu Z . Recent progress in methanol-to-olefins (MTO) catalysts. Advanced Materials, 2019, 31(50): 1902181
CrossRef Google scholar
[129]
Ilias S , Bhan A . Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catalysis, 2013, 3(1): 18–31
CrossRef Google scholar
[130]
Lin L , Fan M , Sheveleva A M , Han X , Tang Z , Carter J H , da Silva I , Parlett C M A , Tuna F , McInnes E J L . . Control of zeolite microenvironment for propene synthesis from methanol. Nature Communications, 2021, 12(1): 822
CrossRef Google scholar
[131]
Arora S S , Nieskens D L S , Malek A , Bhan A . Lifetime improvement in methanol-to-olefins catalysis over chabazite materials by high-pressure H2 co-feeds. Nature Catalysis, 2018, 1(9): 666–672
CrossRef Google scholar
[132]
Wang C , Hu M , Chu Y , Zhou X , Wang Q , Qi G , Li S , Xu J , Deng F . π-Interactions between cyclic carbocations and aromatics cause zeolite deactivation in methanol-to-hydrocarbon conversion. Angewandte Chemie International Edition, 2020, 59(18): 7198–7202
CrossRef Google scholar
[133]
Wang C , Chu Y , Xu J , Wang Q , Qi G , Gao P , Zhou X , Deng F . Extra-framework aluminum-assisted initial C–C bond formation in methanol-to-olefins conversion on zeolite H-ZSM-5. Angewandte Chemie International Edition, 2018, 57(32): 10197–10201
CrossRef Google scholar
[134]
Wu X , Xu S , Zhang W , Huang J , Li J , Yu B , Wei Y , Liu Z . Direct mechanism of the first carbon-carbon bond formation in the methanol-to-hydrocarbons process. Angewandte Chemie International Edition, 2017, 56(31): 9039–9043
CrossRef Google scholar
[135]
Liu Y , Müller S , Berger D , Jelic J , Reuter K , Tonigold M , Sanchez-Sanchez M , Lercher J A . Formation mechanism of the first carbon–carbon bond and the first olefin in the methanol conversion into hydrocarbons. Angewandte Chemie International Edition, 2016, 55(19): 5723–5726
CrossRef Google scholar
[136]
Chowdhury A D , Paioni A L , Houben K , Whiting G T , Baldus M , Weckhuysen B M . Bridging the gap between the direct and hydrocarbon pool mechanisms of the methanol-to-hydrocarbons process. Angewandte Chemie International Edition, 2018, 57(27): 8095–8099
CrossRef Google scholar
[137]
Cesarini A , Mitchell S , Zichittella G , Agrachev M , Schmid S P , Jeschke G , Pan Z , Bodi A , Hemberger P , Pérez-Ramírez J . Elucidation of radical- and oxygenate-driven paths in zeolite-catalysed conversion of methanol and methyl chloride to hydrocarbons. Nature Catalysis, 2022, 5(7): 605–614
CrossRef Google scholar
[138]
Arstad B , Nicholas J B , Haw J F . Theoretical study of the methylbenzene side-chain hydrocarbon pool mechanism in methanol to olefin catalysis. Journal of the American Chemical Society, 2004, 126(9): 2991–3001
CrossRef Google scholar
[139]
McCann D M , Lesthaeghe D , Kletnieks P W , Guenther D R , Hayman M J , Van Speybroeck V , Waroquier M , Haw J F . A complete catalytic cycle for supramolecular methanol-to-olefins conversion by linking theory with experiment. Angewandte Chemie International Edition, 2008, 47(28): 5179–5182
CrossRef Google scholar
[140]
Wang C , Xu J , Qi G , Gong Y , Wang W , Gao P , Wang Q , Feng N , Liu X , Deng F . Methylbenzene hydrocarbon pool in methanol-to-olefins conversion over zeolite H-ZSM-5. Journal of Catalysis, 2015, 332: 127–137
CrossRef Google scholar
[141]
Wang C , Yi X , Xu J , Qi G , Gao P , Wang W , Chu Y , Wang Q , Feng N , Liu X . . Experimental evidence on the formation of ethene through carbocations in methanol conversion over H-ZSM-5 Zeolite. Chemistry—A European Journal, 2015, 21(34): 12061–12068
[142]
Wang C , Wang Q , Xu J , Qi G , Gao P , Wang W , Zou Y , Feng N , Liu X , Deng F . Direct detection of supramolecular reaction centers in the methanol-to-olefins conversion over zeolite H-ZSM-5 by 13C-27Al solid-state NMR spectroscopy. Angewandte Chemie International Edition, 2016, 55(7): 2507–2511
CrossRef Google scholar
[143]
Wang C , Sun X , Xu J , Qi G , Wang W , Zhao X , Li W , Wang Q , Deng F . Impact of temporal and spatial distribution of hydrocarbon pool on methanol conversion over H-ZSM-5. Journal of Catalysis, 2017, 354: 138–151
CrossRef Google scholar
[144]
Zhang W , Zhi Y , Huang J , Wu X , Zeng S , Xu S , Zheng A , Wei Y , Liu Z . Methanol to olefins reaction route based on methylcyclopentadienes as critical intermediates. ACS Catalysis, 2019, 9(8): 7373–7379
CrossRef Google scholar
[145]
Munson E J , Kheir A A , Haw J F . An in situ solid-state NMR study of the formation and reactivity of trialkylonium ions in zeolites. Journal of Physical Chemistry, 1993, 97(28): 7321–7327
CrossRef Google scholar
[146]
Sun T , Chen W , Xu S , Zheng A , Wu X , Zeng S , Wang N , Meng X , Wei Y , Liu Z . The first carbon-carbon bond formation mechanism in methanol-to-hydrocarbons process over chabazite zeolite. Chem, 2021, 7(9): 2415–2428
CrossRef Google scholar
[147]
Jiang Y , Wang W , Reddy Marthala V R , Huang J , Sulikowski B , Hunger M . Effect of organic impurities on the hydrocarbon formation via the decomposition of surface methoxy groups on acidic zeolite catalysts. Journal of Catalysis, 2006, 238(1): 21–27
CrossRef Google scholar
[148]
Munson E J , Haw J F . NMR observation of trimethyloxonium formation from dimethyl ether on zeolite HZSM-5. Journal of the American Chemical Society, 1991, 113(16): 6303–6305
CrossRef Google scholar
[149]
Müller S , Liu Y , Kirchberger F M , Tonigold M , Sanchez-Sanchez M , Lercher J A . Hydrogen transfer pathways during zeolite catalyzed methanol conversion to hydrocarbons. Journal of the American Chemical Society, 2016, 138(49): 15994–16003
CrossRef Google scholar
[150]
Li J , Wei Z , Chen Y , Jing B , He Y , Dong M , Jiao H , Li X , Qin Z , Wang J . . A route to form initial hydrocarbon pool species in methanol conversion to olefins over zeolites. Journal of Catalysis, 2014, 317: 277–283
CrossRef Google scholar
[151]
Tajima N , Tsuneda T , Toyama F , Hirao K . A new mechanism for the first carbon–carbon bond formation in the MTG process: a theoretical study. Journal of the American Chemical Society, 1998, 120(32): 8222–8229
CrossRef Google scholar
[152]
Chowdhury A D , Houben K , Whiting G T , Mokhtar M , Asiri A M , Al-Thabaiti S A , Basahel S N , Baldus M , Weckhuysen B M . Initial carbon-carbon bond formation during the early stages of the methanol-to-olefin process proven by zeolite-trapped acetate and methyl acetate. Angewandte Chemie International Edition, 2016, 55(51): 15840–15845
CrossRef Google scholar
[153]
Zhou H , Gong X , Abou-Hamad E , Ye Y , Zhang X , Ma P , Gascon J , Chowdhury A D . Tracking the impact of Koch-carbonylated organics during the zeolite ZSM-5 catalyzed methanol-to-hydrocarbons process. Angewandte Chemie International Edition, 2024, 63(10): e202318250
CrossRef Google scholar
[154]
Comas-Vives A , Valla M , Copéret C , Sautet P . Cooperativity between Al sites promotes hydrogen transfer and carbon–carbon bond formation upon dimethyl ether activation on alumina. ACS Central Science, 2015, 1(6): 313–319
CrossRef Google scholar
[155]
Goguen P W , Xu T , Barich D H , Skloss T W , Song W G , Wang Z K , Nicholas J B , Haw J F . Pulse-quench catalytic reactor studies reveal a carbon-pool mechanism in methanol-to-gasoline chemistry on zeolite HZSM-5. Journal of the American Chemical Society, 1998, 120(11): 2650–2651
CrossRef Google scholar
[156]
Xu T , Barich D H , Goguen P W , Song W G , Wang Z K , Nicholas J B , Haw J F . Synthesis of a benzenium ion in a zeolite with use of a catalytic flow reactor. Journal of the American Chemical Society, 1998, 120(16): 4025–4026
CrossRef Google scholar
[157]
Ilias S , Bhan A . The mechanism of aromatic dealkylation in methanol-to-hydrocarbons conversion on H-ZSM-5: what are the aromatic precursors to light olefins. Journal of Catalysis, 2014, 311: 6–16
CrossRef Google scholar
[158]
Wang S , Chen Y , Wei Z , Qin Z , Ma H , Dong M , Li J , Fan W , Wang J . Polymethylbenzene or alkene cycle? Theoretical study on their contribution to the process of methanol to olefins over H-ZSM-5 zeolite. Journal of Physical Chemistry C, 2015, 119(51): 28482–28498
CrossRef Google scholar
[159]
Zhang M , Xu S , Li J , Wei Y , Gong Y , Chu Y , Zheng A , Wang J , Zhang W , Wu X . . Methanol to hydrocarbons reaction over Hβ zeolites studied by high resolution solid-state NMR spectroscopy: carbenium ions formation and reaction mechanism. Journal of Catalysis, 2016, 335: 47–57
CrossRef Google scholar
[160]
Dai W , Dyballa M , Wu G , Li L , Guan N , Hunger M . Intermediates and dominating reaction mechanism during the early period of the methanol-to-olefin conversion on SAPO-41. Journal of Physical Chemistry C, 2015, 119(5): 2637–2645
CrossRef Google scholar
[161]
Li J , Wei Y , Chen J , Xu S , Tian P , Yang X , Li B , Wang J , Liu Z . Cavity controls the selectivity: insights of confinement effects on MTO reaction. ACS Catalysis, 2015, 5(2): 661–665
CrossRef Google scholar
[162]
Li J , Wei Y , Chen J , Tian P , Su X , Xu S , Qi Y , Wang Q , Zhou Y , He Y . . Observation of heptamethylbenzenium cation over SAPO-type molecular sieve DNL-6 under real MTO conversion conditions. Journal of the American Chemical Society, 2012, 134(2): 836–839
CrossRef Google scholar
[163]
Xiao D , Xu S , Han X , Bao X , Liu Z , Blanc F . Direct structural identification of carbenium ions and investigation of host-guest interaction in the methanol to olefins reaction obtained by multinuclear NMR correlations. Chemical Science, 2017, 8(12): 8309–8314
CrossRef Google scholar
[164]
ImhofPVan der WaalJ C. Catalytic Process Development for Renewable Materials. New Jersey: John Wiley & Sons, 2013
[165]
Zhang M , Yu Y . Dehydration of ethanol to ethylene. Industrial & Engineering Chemistry Research, 2013, 52(28): 9505–9514
CrossRef Google scholar
[166]
Zhou X , Wang C , Chu Y , Wang Q , Xu J , Deng F . Mechanistic insight into ethanol dehydration over SAPO-34 zeolite by solid-state NMR spectroscopy. Chemical Research in Chinese Universities, 2022, 38(1): 155–160
CrossRef Google scholar
[167]
Van der Borght , Batchu R , Galvita V V , Alexopoulos K , Reyniers M F , Thybaut J W , Marin G B . Insights into the reaction mechanism of ethanol conversion into hydrocarbons on H-ZSM-5. Angewandte Chemie International Edition, 2016, 55(41): 12817–12821
CrossRef Google scholar
[168]
Gołąbek K , Tabor E , Pashkova V , Dedecek J , Tarach K , Góra-Marek K . The proximity of aluminium atoms influences the reaction pathway of ethanol transformation over zeolite ZSM-5. Communications Chemistry, 2020, 3(1): 25
CrossRef Google scholar
[169]
Zhou X , Wang C , Chu Y , Xu J , Wang Q , Qi G , Zhao X , Feng N , Deng F . Observation of an oxonium ion intermediate in ethanol dehydration to ethene on zeolite. Nature Communications, 2019, 10(1): 1961
CrossRef Google scholar
[170]
Chowdhury A D , Lucini Paioni A , Whiting G T , Fu D , Baldus M , Weckhuysen B M . Unraveling the homologation reaction sequence of the zeolite-catalyzed ethanol-to-hydrocarbons process. Angewandte Chemie International Edition, 2019, 58(12): 3908–3912
CrossRef Google scholar
[171]
Zeng S , Li J , Wang N , Zhang W , Wei Y , Liu Z , Xu S . Investigation of ethanol conversion on H-ZSM-5 zeolite by in situ solid-state NMR. Energy & Fuels, 2021, 35(15): 12319–12328
CrossRef Google scholar
[172]
Zeng S , Zhang W , Li J , Lin S , Xu S , Wei Y , Liu Z . Revealing the roles of hydrocarbon pool mechanism in ethanol-to-hydrocarbons reaction. Journal of Catalysis, 2022, 413: 517–526
CrossRef Google scholar
[173]
Li X , Pei C , Gong J . Shale gas revolution: catalytic conversion of C1–C3 light alkanes to value-added chemicals. Chem, 2021, 7(7): 1755–1801
CrossRef Google scholar
[174]
Caeiro G , Carvalho R H , Wang X , Lemos M A N D A , Lemos F , Guisnet M , Ramôa Ribeiro F . Activation of C2–C4 alkanes over acid and bifunctional zeolite catalysts. Journal of Molecular Catalysis A Chemical, 2006, 255(1): 131–158
CrossRef Google scholar
[175]
Sattler J J H B , Ruiz-Martinez J , Santillan-Jimenez E , Weckhuysen B M . Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chemical Reviews, 2014, 114(20): 10613–10653
CrossRef Google scholar
[176]
Schreiber M W , Plaisance C P , Baumgärtl M , Reuter K , Jentys A , Bermejo-Deval R , Lercher J A . Lewis-Brønsted acid pairs in Ga/H-ZSM-5 to catalyze dehydrogenation of light alkanes. Journal of the American Chemical Society, 2018, 140(14): 4849–4859
CrossRef Google scholar
[177]
Qi L , Babucci M , Zhang Y , Lund A , Liu L , Li J , Chen Y , Hoffman A S , Bare S R , Han Y . . Propane dehydrogenation catalyzed by isolated Pt atoms in ≡SiOZn–OH nests in dealuminated zeolite beta. Journal of the American Chemical Society, 2021, 143(50): 21364–21378
CrossRef Google scholar
[178]
Phadke N M , Mansoor E , Bondil M , Head-Gordon M , Bell A T . Mechanism and kinetics of propane dehydrogenation and cracking over Ga/H-MFI prepared via vapor-phase exchange of H-MFI with GaCl3. Journal of the American Chemical Society, 2019, 141(4): 1614–1627
CrossRef Google scholar
[179]
Narbeshuber T F , Vinek H , Lercher J A . Monomolecular conversion of light alkanes over H-ZSM-5. Journal of Catalysis, 1995, 157(2): 388–395
CrossRef Google scholar
[180]
OlahG AKlopmanGSchlosbergR H. Super acids. III. Protonation of alkanes and intermediacy of alkanonium ions, pentacoordinated carbon cations of CH5+ type. Hydrogen exchange, protolytic cleavage, hydrogen abstraction; polycondensation of methane, ethane, 2,2-dimethylpropane and 2,2,3,3-tetramethylbutane in FSO3H-SbF5. Journal of the American Chemical Society, 1969, 91(12): 3261–3268
[181]
Kosinov N , Coumans F J A G , Uslamin E A , Wijpkema A S G , Mezari B , Hensen E J M . Methane dehydroaromatization by Mo/HZSM-5: mono- or bifunctional catalysis. ACS Catalysis, 2017, 7(1): 520–529
CrossRef Google scholar
[182]
Hagen A , Roessner F . Ethane to aromatic hydrocarbons: past, present, future. Catalysis Reviews. Science and Engineering, 2000, 42(4): 403–437
CrossRef Google scholar
[183]
Wulfers M J , Teketel S , Ipek B , Lobo R F . Conversion of methane to methanol on copper-containing small-pore zeolites and zeotypes. Chemical Communications, 2015, 51(21): 4447–4450
CrossRef Google scholar
[184]
Li G , Vassilev P , Sanchez-Sanchez M , Lercher J A , Hensen E J M , Pidko E A . Stability and reactivity of copper oxo-clusters in ZSM-5 zeolite for selective methane oxidation to methanol. Journal of Catalysis, 2016, 338: 305–312
CrossRef Google scholar
[185]
Luzgin M V , Rogov V A , Arzumanov S S , Toktarev A V , Stepanov A G , Parmon V N . Methane aromatization on Zn-modified zeolite in the presence of a co-reactant higher alkane: how does it occur. Catalysis Today, 2009, 144(3): 265–272
CrossRef Google scholar
[186]
Corma A , Planelles J , Sánchez-Marín J , Tomás F . The role of different types of acid site in the cracking of alkanes on zeolite catalysts. Journal of Catalysis, 1985, 93(1): 30–37
CrossRef Google scholar
[187]
Luzgin M V , Gabrienko A A , Rogov V A , Toktarev A V , Parmon V N , Stepanov A G . The “alkyl” and “carbenium” pathways of methane activation on Ga-modified zeolite BEA: 13C solid-state NMR and GC-MS study of methane aromatization in the presence of higher alkane. Journal of Physical Chemistry C, 2010, 114(49): 21555–21561
CrossRef Google scholar
[188]
Kolyagin Y G , Ivanova I I , Ordomsky V V , Gedeon A , Pirogov Y A . Methane activation over Zn-modified MFI zeolite: NMR evidence for Zn-methyl surface species formation. Journal of Physical Chemistry C, 2008, 112(50): 20065–20069
CrossRef Google scholar
[189]
Kazansky V B , Borovkov V Y , Serikh A I , van Santen R A , Anderson B G . Nature of the sites of dissociative adsorption of dihydrogen and light paraffins in ZnHZSM-5 zeolite prepared by incipient wetness impregnation. Catalysis Letters, 2000, 66(1): 39–47
CrossRef Google scholar
[190]
Pidko E A , Xu J , Mojet B L , Lefferts L , Subbotina I R , Kazansky V B , van Santen R A . Interplay of bonding and geometry of the adsorption complexes of light alkanes within cationic faujasites. Combined spectroscopic and computational study. Journal of Physical Chemistry B, 2006, 110(45): 22618–22627
CrossRef Google scholar
[191]
Kazansky V B , Serykh A I , Pidko E A . DRIFT study of molecular and dissociative adsorption of light paraffins by HZSM-5 zeolite modified with zinc ions: methane adsorption. Journal of Catalysis, 2004, 225(2): 369–373
CrossRef Google scholar
[192]
Biscardi J A , Meitzner G D , Iglesia E . Structure and density of active Zn species in Zn/H-ZSM5 propane aromatization catalysts. Journal of Catalysis, 1998, 179(1): 192–202
CrossRef Google scholar
[193]
Kazansky V B , Subbotina I R , Rane N , van Santen R A , Hensen E J M . On two alternative mechanisms of ethane activation over ZSM-5 zeolite modified by Zn2+ and Ga1+ cations. Physical Chemistry Chemical Physics, 2005, 7(16): 3088–3092
CrossRef Google scholar
[194]
Kolyagin Y G , Ordomsky V V , Khimyak Y Z , Rebrov A I , Fajula F , Ivanova I I . Initial stages of propane activation over Zn/MFI catalyst studied by in situ NMR and IR spectroscopic techniques. Journal of Catalysis, 2006, 238(1): 122–133
CrossRef Google scholar
[195]
Gabrienko A A , Arzumanov S S , Freude D , Stepanov A G . Propane aromatization on Zn-modified zeolite BEA studied by solid-state NMR in situ. Journal of Physical Chemistry C, 2010, 114(29): 12681–12688
CrossRef Google scholar
[196]
Kolyagin Y G , Ivanova I I , Pirogov Y A . 1H and 13C MAS NMR studies of light alkanes activation over MFI zeolite modified by Zn vapour. Solid State Nuclear Magnetic Resonance, 2009, 35(2): 104–112
CrossRef Google scholar
[197]
Jentoft F C , Gates B C . Solid-acid-catalyzed alkane cracking mechanisms: evidence from reactions of small probe molecules. Topics in Catalysis, 1997, 4(1): 1–13
CrossRef Google scholar
[198]
Guisnet M , Gnep N S . Mechanism of short-chain alkane transformation over protonic zeolites. Alkylation, disproportionation and aromatization. Applied Catalysis A, General, 1996, 146(1): 33–64
CrossRef Google scholar
[199]
CormaAOrchillésA V. Current views on the mechanism of catalytic cracking. Microporous and Mesoporous Materials, 2000, 35–36: 21–30
[200]
Qi G , Wang Q , Xu J , Trébosc J , Lafon O , Wang C , Amoureux J P , Deng F . Synergic effect of active sites in zinc-modified ZSM-5 zeolites as revealed by high-field solid-state NMR spectroscopy. Angewandte Chemie International Edition, 2016, 55(51): 15826–15830
CrossRef Google scholar
[201]
Tomkins P , Ranocchiari M , van Bokhoven J A . Direct conversion of methane to methanol under mild conditions over Cu-zeolites and beyond. Accounts of Chemical Research, 2017, 50(2): 418–425
CrossRef Google scholar
[202]
Ravi M , Ranocchiari M , van Bokhoven J A . The direct catalytic oxidation of methane to methanol—a critical assessment. Angewandte Chemie International Edition, 2017, 56(52): 16464–16483
CrossRef Google scholar
[203]
Ravi M , Sushkevich V L , Knorpp A J , Newton M A , Palagin D , Pinar A B , Ranocchiari M , van Bokhoven J A . Misconceptions and challenges in methane-to-methanol over transition-metal-exchanged zeolites. Nature Catalysis, 2019, 2(6): 485–494
CrossRef Google scholar
[204]
Sushkevich V L , Palagin D , Ranocchiari M , van Bokhoven J A . Selective anaerobic oxidation of methane enables direct synthesis of methanol. Angewandte Chemie International Edition, 2017, 356(6337): 523–527
[205]
Blankenship A , Artsiusheuski M , Sushkevich V , van Bokhoven J A . Recent trends, current challenges and future prospects for syngas-free methane partial oxidation. Nature Catalysis, 2023, 6(9): 748–762
CrossRef Google scholar
[206]
Barbosa L A M M , Zhidomirov G M , van Santen R A . Theoretical study of methane adsorption on Zn(II) zeolites. Physical Chemistry Chemical Physics, 2000, 2(17): 3909–3918
CrossRef Google scholar
[207]
Pidko E A , van Santen R A . Activation of light alkanes over zinc species stabilized in ZSM-5 zeolite: a comprehensive DFT study. Journal of Physical Chemistry C, 2007, 111(6): 2643–2655
CrossRef Google scholar
[208]
Benco L , Bucko T , Hafner J , Toulhoat H . Periodic DFT calculations of the stability of Al/Si substitutions and extraframework Zn2+ cations in mordenite and reaction pathway for the dissociation of H2 and CH4. Journal of Physical Chemistry B, 2005, 109(43): 20361–20369
CrossRef Google scholar
[209]
Arzumanov S S , Gabrienko A A , Toktarev A V , Freude D , Haase J , Stepanov A G . Propane activation on Zn-modified zeolite. The effect of the nature of Zn-species on the mechanism of H/D hydrogen exchange of the alkane with Brønsted acid sites. Journal of Catalysis, 2019, 378: 341–352
CrossRef Google scholar
[210]
Arzumanov S S , Gabrienko A A , Toktarev A V , Freude D , Haase J , Stepanov A G . Mechanism of H/D hydrogen exchange of n-butane with Brønsted acid sites on Zn-modified zeolite: the effect of different Zn species (Zn2+ and ZnO) on the activation of alkane C–H bonds. Journal of Physical Chemistry C, 2020, 124(37): 20270–20279
CrossRef Google scholar
[211]
Luzgin M V , Rogov V A , Arzumanov S S , Toktarev A V , Stepanov A G , Parmon V N . Understanding methane aromatization on a Zn-modified high-silica zeolite. Angewandte Chemie International Edition, 2008, 47(24): 4559–4562
CrossRef Google scholar
[212]
Wu J F , Wang W D , Xu J , Deng F , Wang W . Reactivity of C1 surface species formed in methane activation on Zn-modified H-ZSM-5 zeolite. Chemistry, 2010, 16(47): 14016–14025
CrossRef Google scholar
[213]
Xu J , Zheng A , Wang X , Qi G , Su J , Du J , Gan Z , Wu J , Wang W , Deng F . Room temperature activation of methane over Zn modified H-ZSM-5 zeolites: insight from solid-state NMR and theoretical calculations. Chemical Science, 2012, 3(10): 2932–2940
CrossRef Google scholar
[214]
Wang X , Xu J , Qi G , Li B , Wang C , Deng F . Alkylation of benzene with methane over ZnZSM-5 zeolites studied with solid-state NMR spectroscopy. Journal of Physical Chemistry C, 2013, 117(8): 4018–4023
CrossRef Google scholar
[215]
Zhao X , Xu J , Chu Y , Qi G , Wang Q , Gao W , Li S , Feng N , Deng F . Multiple methane activation pathways on Ga-modified ZSM-5 zeolites revealed by solid-state NMR spectroscopy. ChemCatChem, 2020, 12(15): 3880–3889
CrossRef Google scholar
[216]
Zhao X , Chu Y , Qi G , Wang Q , Gao W , Wang X , Li S , Xu J , Deng F . Probing the active sites for methane activation on Ga/ZSM-5 zeolites with solid-state NMR spectroscopy. Chemical Communications, 2020, 56(80): 12029–12032
CrossRef Google scholar
[217]
Wang X , Qi G , Xu J , Li B , Wang C , Deng F . NMR-spectroscopic evidence of intermediate-dependent pathways for acetic acid formation from methane and carbon monoxide over a ZnZSM-5 zeolite catalyst. Angewandte Chemie International Edition, 2012, 51(16): 3850–3853
CrossRef Google scholar
[218]
Wang L , Tao L , Xie M , Xu G , Huang J , Xu Y . Dehydrogenation and aromatization of methane under non-oxidizing conditions. Catalysis Letters, 1993, 21(1): 35–41
CrossRef Google scholar
[219]
Ma S , Guo X , Zhao L , Scott S , Bao X . Recent progress in methane dehydroaromatization: from laboratory curiosities to promising technology. Journal of Energy Chemistry, 2013, 22(1): 1–20
CrossRef Google scholar
[220]
Weckhuysen B M , Wang D , Rosynek M P , Lunsford J H . Conversion of methane to benzene over transition metal ion ZSM-5 zeolites: I. Catalytic characterization. Journal of Catalysis, 1998, 175(2): 338–346
CrossRef Google scholar
[221]
Shu Y , Xu Y , Wong S T , Wang L , Guo X . Promotional effect of Ru on the dehydrogenation and aromatization of methane in the absence of oxygen over Mo/HZSM-5 catalysts. Journal of Catalysis, 1997, 170(1): 11–19
CrossRef Google scholar
[222]
Chen L Y , Lin L W , Xu Z S , Li X S , Zhang T . Dehydro-oligomerization of methane to ethylene and aromatics over molybdenum/HZSM-5 catalyst. Journal of Catalysis, 1995, 157(1): 190–200
CrossRef Google scholar
[223]
Ha V T T , Tiep L V , Meriaudeau P , Naccache C . Aromatization of methane over zeolite supported molybdenum: active sites and reaction mechanism. Journal of Molecular Catalysis A Chemical, 2002, 181(1): 283–290
CrossRef Google scholar
[224]
Wang D , Lunsford J H , Rosynek M P . Catalytic conversion of methane to benzene over Mo/ZSM-5. Topics in Catalysis, 1996, 3(3): 289–297
CrossRef Google scholar
[225]
Kosinov N , Wijpkema A S G , Uslamin E , Rohling R , Coumans F J A G , Mezari B , Parastaev A , Poryvaev A S , Fedin M V , Pidko E A . . Confined carbon mediating dehydroaromatization of methane over Mo/ZSM-5. Angewandte Chemie International Edition, 2018, 57(4): 1016–1020
CrossRef Google scholar
[226]
Çağlayan M , Lucini Paioni A , Abou-Hamad E , Shterk G , Pustovarenko A , Baldus M , Chowdhury A D , Gascon J . Initial carbon–carbon bond formation during the early stages of methane dehydroaromatization. Angewandte Chemie International Edition, 2020, 59(38): 16741–16746
CrossRef Google scholar
[227]
Ivanova I I , Pomakhina E B , Rebrov A I , Derouane E G . 13C MAS NMR mechanistic study of the initial stages of propane activation over H-ZSM-5 zeolite. Topics in Catalysis, 1998, 6(1): 49–59
CrossRef Google scholar
[228]
Ivanova I I , Rebrov A I , Pomakhina E , Derouane E G J . J o M C A-c. 13C MAS NMR mechanistic study of propane conversion into butanes over H-MFI catalyst. Journal of Molecular Catalysis A Chemical, 1999, 141(1-3): 107–116
CrossRef Google scholar
[229]
Arzumanov S S , Gabrienko A A , Freude D , Stepanov A G . in situ high temperature MAS NMR study of the mechanisms of catalysis. Ethane aromatization on Zn-modified zeolite BEA. Solid State Nuclear Magnetic Resonance, 2009, 35(2): 113–119
CrossRef Google scholar
[230]
Gabrienko A A , Arzumanov S S , Toktarev A V , Stepanov A G . Metal-alkyl species are formed on interaction of small alkanes with gallium oxide: evidence from solid-state NMR. Chemical Physics Letters, 2010, 496(1): 148–151
CrossRef Google scholar
[231]
Wang X , Xu J , Qi G , Wang C , Wang W , Gao P , Wang Q , Liu X , Feng N , Deng F . Carbonylation of ethane with carbon monoxide over Zn-modified ZSM-5 zeolites studied by in situ solid-state NMR spectroscopy. Journal of Catalysis, 2017, 345: 228–235
CrossRef Google scholar
[232]
Buckles G , Hutchings G J , Williams C D . Propane conversion over zeolite catalysts: comments on the role of Ga. Catalysis Letters, 1991, 8(2): 115–123
CrossRef Google scholar
[233]
Buckles G , Hutchings G J , Williams C D . Aromatization of propane over Ga/H-ZSM-5: an explanation of the synergy observed between Ga3+ and H+. Catalysis Letters, 1991, 11(1): 89–93
CrossRef Google scholar
[234]
Dooley K M , Price G L , Kanazirev V I , Hart V I . Gallium-loaded zeolites for light paraffin aromatization: evidence for exchanged gallium cation active centers. Catalysis Today, 1996, 31(3): 305–315
CrossRef Google scholar
[235]
Solymosi F , Cserényi J , Szöke A , Bánsági T , Oszkó A . Aromatization of methane over supported and unsupported Mo-based catalysts. Journal of Catalysis, 1997, 165(2): 150–161
CrossRef Google scholar
[236]
Bayense C R , van der Pol A J H P , van Hooff J H C . Aromatization of propane over MFI-gallosilicates. Applied Catalysis, 1991, 72(1): 81–98
CrossRef Google scholar
[237]
Gabrienko A A , Arzumanov S S , Lashchinskaya Z N , Toktarev A V , Freude D , Haase J , Stepanov A G . n-Butane transformation on Zn/H-BEA. The effect of different Zn species (Zn2+ and ZnO) on the reaction performance. Journal of Catalysis, 2020, 391: 69–79
CrossRef Google scholar
[238]
Wang C , Zhao X , Hu M , Qi G , Wang Q , Li S , Xu J , Deng F . Unraveling hydrocarbon pool boosted propane aromatization on gallium/ZSM-5 zeolite by solid-state nuclear magnetic resonance spectroscopy. Angewandte Chemie International Edition, 2021, 60(44): 23630–23634
CrossRef Google scholar
[239]
Bermejo-Deval R , Orazov M , Gounder R , Hwang S J , Davis M E . Active sites in Sn-beta for glucose isomerization to fructose and epimerization to mannose. ACS Catalysis, 2014, 4(7): 2288–2297
CrossRef Google scholar
[240]
Chen F , Shetty M , Wang M , Shi H , Liu Y , Camaioni D M , Gutiérrez O Y , Lercher J A . Differences in mechanism and rate of zeolite-catalyzed cyclohexanol dehydration in apolar and aqueous phase. ACS Catalysis, 2021, 11(5): 2879–2888
CrossRef Google scholar
[241]
Rossini A J , Zagdoun A , Lelli M , Lesage A , Copéret C , Emsley L . Dynamic nuclear polarization surface enhanced NMR spectroscopy. Accounts of Chemical Research, 2013, 46(9): 1942–1951
CrossRef Google scholar
[242]
Rankin A G M , Trébosc J , Pourpoint F , Amoureux J P , Lafon O . Recent developments in MAS DNP-NMR of materials. Solid State Nuclear Magnetic Resonance, 2019, 101: 116–143
CrossRef Google scholar
[243]
Wang W , Wang Q , Xu J , Deng F . Understanding heterogeneous catalytic hydrogenation by parahydrogen-induced polarization NMR spectroscopy. ACS Catalysis, 2023, 13(6): 3501–3519
CrossRef Google scholar
[244]
Hübler P , Giernoth R , Kümmerle G , Bargon J . Investigating the kinetics of homogeneous hydrogenation reactions using PHIP NMR spectroscopy. Journal of the American Chemical Society, 1999, 121(22): 5311–5318
CrossRef Google scholar
[245]
Duckett S B , Mewis R E . Application of parahydrogen induced polarization techniques in NMR spectroscopy and imaging. Accounts of Chemical Research, 2012, 45(8): 1247–1257
CrossRef Google scholar
[246]
Buntkowsky G , Theiss F , Lins J , Miloslavina Y A , Wienands L , Kiryutin A , Yurkovskaya A . Recent advances in the application of parahydrogen in catalysis and biochemistry. RSC Advances, 2022, 12(20): 12477–12506
CrossRef Google scholar
[247]
Kovtunov K V , Koptyug I V , Fekete M , Duckett S B , Theis T , Joalland B , Chekmenev E Y . Parahydrogen-induced hyperpolarization of gases. Angewandte Chemie International Edition, 2020, 59(41): 17788–17797
CrossRef Google scholar
[248]
Chakrabarty T , Goldin N , Feintuch A , Houben L , Leskes M . Paramagnetic metal-ion dopants as polarization agents for dynamic nuclear polarization NMR spectroscopy in inorganic solids. ChemPhysChem, 2018, 19(17): 2139–2142
CrossRef Google scholar
[249]
Henning H , Dyballa M , Scheibe M , Klemm E , Hunger M . in situ CF MAS NMR study of the pairwise incorporation of parahydrogen into olefins on rhodium-containing zeolites Y. Chemical Physics Letters, 2013, 555: 258–262
CrossRef Google scholar
[250]
Obenaus U , Lang S , Himmelmann R , Hunger M . Parahydrogen-induced hyperpolarization inside meso- and micropores of Pt-, Rh-, Ir-, and Pd-containing solid catalysts. Journal of Physical Chemistry C, 2017, 121(18): 9953–9962
CrossRef Google scholar
[251]
Wang W , Sun Q , Wang Q , Li S , Xu J , Deng F . Heterogeneous parahydrogen induced polarization on Rh-containing silicalite-1 zeolites: effect of the catalyst structure on signal enhancement. Catalysis Science & Technology, 2022, 12(14): 4442–4449
CrossRef Google scholar

Competing interests

The authours declare that they have no competing interests.

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant Nos. 2023YFB4103600 and 2023YFB4103700), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB0540000), the National Natural Science Foundation of China (Grant Nos. 22072165, 22127801, 22225205, 22320102002, and 22161132028), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2021329), the Natural Science Foundation of Hubei Province (Grant No. 2021CFA021), the Hubei International Scientific and Technological Cooperation Program (Grant No. 2022EHB021), and the International Science & Technology Cooperation Base for Sustainable the Catalysis and Magnetic Resonance (Grant No. SH2303), and the Young Top-notch Talent Cultivation Program of Hubei Province.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(3548 KB)

Accesses

Citations

Detail

Sections
Recommended

/