Advances in catalysts and reaction systems for electro/photocatalytic ammonia production

Shenshen Zheng, Fengying Zhang, Yuman Jiang, Tao Xu, Han Li, Heng Guo, Ying Zhou

PDF(8587 KB)
PDF(8587 KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (10) : 112. DOI: 10.1007/s11705-024-2463-8
REVIEW ARTICLE

Advances in catalysts and reaction systems for electro/photocatalytic ammonia production

Author information +
History +

Abstract

Ammonia is a vital component in the fertilizer and chemical industries, as well as serving as a significant carrier of renewable hydrogen energy. Compared with the industry’s principal technique, the Haber-Bosch method, for ammonia synthesis, electro/photocatalytic ammonia synthesis is increasingly recognized as a viable and eco-friendly alternative. This method enables distributed small-scale deployment and can be powered by sustainable renewable energy sources. However, the efficiency of electro/photocatalytic nitrogen reduction reaction is hindered by the challenges in activating the N≡N bond and nitrogen’s low solubility, thereby limiting its large-scale industrial applications. In this review, recent advancements in electro/photocatalytic nitrogen reduction are summarized, encompassing the complex reaction mechanisms, as well as the effective strategies for developing electro/photocatalytic catalysts and advanced reaction systems. Furthermore, the energy efficiency and economic analysis of electro/photocatalytic nitrogen fixation are deeply discussed. Finally, some unsolved challenges and potential opportunities are discussed for the future development of electro/photocatalytic ammonia synthesis.

Graphical abstract

Keywords

ammonia synthesis / electro/photocatalysis / nitrogen fixation / reaction system / economic and efficiency analysis

Cite this article

Download citation ▾
Shenshen Zheng, Fengying Zhang, Yuman Jiang, Tao Xu, Han Li, Heng Guo, Ying Zhou. Advances in catalysts and reaction systems for electro/photocatalytic ammonia production. Front. Chem. Sci. Eng., 2024, 18(10): 112 https://doi.org/10.1007/s11705-024-2463-8

References

[1]
Medford A J , Hatzell M C . Photon-driven nitrogen fixation: current progress, thermodynamic considerations, and future outlook. ACS Catalysis, 2017, 7(4): 2624–2643
CrossRef Google scholar
[2]
Van der Ham C J M , Koper M T M , Hetterscheid D G H . Challenges in reduction of dinitrogen by proton and electron transfer. Chemical Society Reviews, 2014, 43(15): 5183–5191
CrossRef Google scholar
[3]
Gruber N , Galloway J N . An earth-system perspective of the global nitrogen cycle. Nature, 2008, 451(7176): 293–296
CrossRef Google scholar
[4]
Green ammonia synthesis. Nature Synthesis, 2023, 2(7): 581–582
[5]
Lazouski N , Chung M , Williams K , Gala M L , Manthiram K . Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen. Nature Catalysis, 2020, 3(5): 463–469
CrossRef Google scholar
[6]
Kitano M , Inoue Y , Yamazaki Y , Hayashi F , Kanbara S , Matsuishi S , Yokoyama T , Kim S W , Hara M , Hosono H . Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nature Chemistry, 2012, 4(11): 934–940
CrossRef Google scholar
[7]
Oshikiri T , Ueno K , Misawa H . Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation. Angewandte Chemie International Edition, 2016, 55(12): 3942–3946
CrossRef Google scholar
[8]
Van Tamelen E E , Seeley D A . Catalytic fixation of molecular nitrogen by electrolytic and chemical reduction. Journal of the American Chemical Society, 1969, 91(18): 5194–5194
CrossRef Google scholar
[9]
Schrauzer G N , Guth T D . Photolysis of water and photoreduction of nitrogen on titanium dioxide. Journal of the American Chemical Society, 1977, 99(22): 7189–7193
CrossRef Google scholar
[10]
Wan Y , Xu J , Lv R . Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Materials Today, 2019, 27: 69–90
CrossRef Google scholar
[11]
Wang S , Ichihara F , Pang H , Chen H , Ye J . Nitrogen fixation reaction derived from nanostructured catalytic materials. Advanced Functional Materials, 2018, 28(50): 1803309
CrossRef Google scholar
[12]
Li J , Guo X , Gan L , Huang Z F , Pan L , Shi C , Zhang X , Yang G , Zou J J . Fundamentals and advances in emerging crystalline porous materials for photocatalytic and electrocatalytic nitrogen fixation. ACS Applied Energy Materials, 2022, 5(8): 9241–9265
CrossRef Google scholar
[13]
Cui X , Tang C , Zhang Q . A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Advanced Energy Materials, 2018, 8(22): 1800369
CrossRef Google scholar
[14]
Cheng H , Cui P , Wang F , Ding L X , Wang H . High efficiency electrochemical nitrogen fixation achieved with a lower pressure reaction system by changing the chemical equilibrium. Angewandte Chemie International Edition, 2019, 58(43): 15541–15547
CrossRef Google scholar
[15]
Liu D , Chen M , Du X , Ai H , Lo K H , Wang S , Chen S , Xing G , Wang X , Pan H . Development of electrocatalysts for efficient nitrogen reduction reaction under ambient condition. Advanced Functional Materials, 2021, 31(11): 2008983
CrossRef Google scholar
[16]
Jia H P , Quadrelli E A . Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chemical Society Reviews, 2014, 43(2): 547–564
CrossRef Google scholar
[17]
Qing G , Ghazfar R , Jackowski S T , Habibzadeh F , Ashtiani M M , Chen C P , Smith M R III , Hamann T W . Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chemical Reviews, 2020, 120(12): 5437–5516
CrossRef Google scholar
[18]
Abghoui Y , Skúlason E . Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts. Catalysis Today, 2017, 286: 69–77
CrossRef Google scholar
[19]
Chebrolu V T , Jang D , Rani G M , Lim C , Yong K , Kim W B . Overview of emerging catalytic materials for electrochemical green ammonia synthesis and process. Carbon Energy, 2023, 5(12): e361
CrossRef Google scholar
[20]
Liu S , Wang M , Ji H , Shen X , Yan C , Qian T . Altering the rate-determining step over cobalt single clusters leading to highly efficient ammonia synthesis. National Science Review, 2021, 8(5): 136
CrossRef Google scholar
[21]
Shipman M A , Symes M D . Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catalysis Today, 2017, 286: 57–68
CrossRef Google scholar
[22]
Abghoui Y , Garden A L , Howalt J G , Vegge T , Skúlason E . Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: a DFT guide for experiments. ACS Catalysis, 2016, 6(2): 635–646
CrossRef Google scholar
[23]
Ling C , Zhang Y , Li Q , Bai X , Shi L , Wang J . New mechanism for N2 reduction: the essential role of surface hydrogenation. Journal of the American Chemical Society, 2019, 141(45): 18264–18270
CrossRef Google scholar
[24]
Yan Z , Ji M , Xia J , Zhu H . Recent advanced materials for electrochemical and photoelectrochemical synthesis of ammonia from dinitrogen: one step closer to a sustainable energy future. Advanced Energy Materials, 2020, 10(11): 1902020
CrossRef Google scholar
[25]
Medford A J , Vojvodic A , Hummelshøj J S , Voss J , Abild-Pedersen F , Studt F , Bligaard T , Nilsson A , Nørskov J K . From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis, 2015, 328: 36–42
CrossRef Google scholar
[26]
Skúlason E , Bligaard T , Gudmundsdóttir S , Studt F , Rossmeisl J , Abild Pedersen F , Vegge T , Jónsson H , Nørskov J K . A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Physical Chemistry Chemical Physics, 2012, 14(3): 1235–1245
CrossRef Google scholar
[27]
Montoya J H , Tsai C , Vojvodic A , Nørskov J K . The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. ChemSusChem, 2015, 8(13): 2180–2186
CrossRef Google scholar
[28]
Yao Y , Wang H , Yuan X Z , Li H , Shao M . Electrochemical nitrogen reduction reaction on ruthenium. ACS Energy Letters, 2019, 4(6): 1336–1341
CrossRef Google scholar
[29]
Zhao Y , Li F , Li W , Li Y , Liu C , Zhao Z , Shan Y , Ji Y , Sun L . Identification of M-NH2-NH2 intermediate and rate determining step for nitrogen reduction with bioinspired sulfur-bonded FeW catalyst. Angewandte Chemie International Edition, 2021, 60(37): 20331–20341
CrossRef Google scholar
[30]
Liao W , Xie K , Liu L , Wang X , Luo Y , Liang S , Liu F , Jiang L . Triggering in-plane defect cluster on MoS2 for accelerated dinitrogen electroreduction to ammonia. Journal of Energy Chemistry, 2021, 62: 359–366
CrossRef Google scholar
[31]
Xue X , Chen R , Yan C , Zhao P , Hu Y , Zhang W , Yang S , Jin Z . Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: advances, challenges and perspectives. Nano Research, 2019, 12(6): 1229–1249
CrossRef Google scholar
[32]
Yu S , Xiang T , Alharbi N S , Alaidaroos B A , Chen C . Recent development of catalytic strategies for sustainable ammonia production. Chinese Journal of Chemical Engineering, 2023, 62: 65–113
CrossRef Google scholar
[33]
Shi M M , Bao D , Li S J , Wulan B R , Yan J M , Jiang Q . Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Advanced Energy Materials, 2018, 8(21): 1800124
CrossRef Google scholar
[34]
Tao H , Choi C , Ding L X , Jiang Z , Han Z , Jia M , Fan Q , Gao Y , Wang H , Robertson A W . . Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem, 2019, 5(1): 204–214
CrossRef Google scholar
[35]
Li L , Tang C , Xia B , Jin H , Zheng Y , Qiao S Z . Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catalysis, 2019, 9(4): 2902–2908
CrossRef Google scholar
[36]
Ye T N , Park S W , Lu Y , Li J , Sasase M , Kitano M , Tada T , Hosono H . Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature, 2020, 583(7816): 391–395
CrossRef Google scholar
[37]
Han J , Ji X , Ren X , Cui G , Li L , Xie F , Wang H , Li B , Sun X . MoO3 nanosheets for efficient electrocatalytic N2 fixation to NH3. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(27): 12974–12977
CrossRef Google scholar
[38]
Zhao W , Zhang J , Zhu X , Zhang M , Tang J , Tan M , Wang Y . Enhanced nitrogen photofixation on Fe-doped TiO2 with highly exposed (101) facets in the presence of ethanol as scavenger. Applied Catalysis B: Environmental, 2014, 144: 468–477
CrossRef Google scholar
[39]
Chu K , Liu Y P , Li Y B , Zhang H , Tian Y . Efficient electrocatalytic N2 reduction on CoO quantum dots. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(9): 4389–4394
CrossRef Google scholar
[40]
Wang P , Nong W , Li Y , Cui H , Wang C . Strengthening nitrogen affinity on CuAu@Cu core-shell nanoparticles with ultrathin Cu skin via strain engineering and ligand effect for boosting nitrogen reduction reaction. Applied Catalysis B: Environmental, 2021, 288: 119999
CrossRef Google scholar
[41]
Yang B , Ding W , Zhang H , Zhang S . Recent progress in electrochemical synthesis of ammonia from nitrogen: strategies to improve the catalytic activity and selectivity. Energy & Environmental Science, 2021, 14(2): 672–687
CrossRef Google scholar
[42]
Zhao R , Xie H , Chang L , Zhang X , Zhu X , Tong X , Wang T , Luo Y , Wei P , Wang Z . . Recent progress in the electrochemical ammonia synthesis under ambient conditions. EnergyChem, 2019, 1(2): 100011
CrossRef Google scholar
[43]
Tian Y , Xu D , Chu K , Wei Z , Liu W . Metal-free N, S co-doped graphene for efficient and durable nitrogen reduction reaction. Journal of Materials Science, 2019, 54(12): 9088–9097
CrossRef Google scholar
[44]
Zhou S , Yang X , Xu X , Dou S X , Du Y , Zhao J . Boron nitride nanotubes for ammonia synthesis: activation by filling transition metals. Journal of the American Chemical Society, 2020, 142(1): 308–317
CrossRef Google scholar
[45]
Wei Z , Zhang Y , Wang S , Wang C , Ma J . Fe-doped phosphorene for the nitrogen reduction reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(28): 13790–13796
CrossRef Google scholar
[46]
Zhang L , Ding L X , Chen G F , Yang X , Wang H . Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angewandte Chemie International Edition, 2019, 58(9): 2612–2616
CrossRef Google scholar
[47]
LaiJLiuHDingL XWangJChenG FWangH. Black phosphorene with removable aluminum ion protection for enhanced electrochemical nitrogen fixation. Advanced Energy Materials, Jan 9, 2024. https://doi.org/10.1002/aenm.202303963
[48]
Liu Y G , Tian M , Hou J , Jiang H Y . Research progress and perspectives on active sites of photo- and electrocatalytic nitrogen reduction. Energy & Fuels, 2022, 36(19): 11323–11358
CrossRef Google scholar
[49]
Li J X , Yu Y , Xu S , Yan W , Mu S , Zhang J N . Function of electron spin effect in electrocatalysts. Wuli Huaxue Xuebao, 2023, 39(12): 2302049
CrossRef Google scholar
[50]
Li T , Tang C , Guo H , Wu H , Duan C , Wang H , Zhang F , Cao Y , Yang G , Zhou Y . In situ growth of Fe2O3 nanorod arrays on carbon cloth with rapid charge transfer for efficient nitrate electroreduction to ammonia. ACS Applied Materials & Interfaces, 2022, 14(44): 49765–49773
CrossRef Google scholar
[51]
Nazemi M , Panikkanvalappil S R , El Sayed M A . Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages. Nano Energy, 2018, 49: 316–323
CrossRef Google scholar
[52]
Zhao J , Wang B , Zhou Q , Wang H , Li X , Chen H , Wei Q , Wu D , Luo Y , You J . . Efficient electrohydrogenation of N2 to NH3 by oxidized carbon nanotubes under ambient conditions. Chemical Communications, 2019, 55(34): 4997–5000
CrossRef Google scholar
[53]
Wang Z , Zheng K , Liu S , Dai Z , Xu Y , Li X , Wang H , Wang L . Electrocatalytic nitrogen reduction to ammonia by Fe2O3 nanorod array on carbon cloth. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11754–11759
CrossRef Google scholar
[54]
Luo Y , Chen G F , Ding L , Chen X , Ding L X , Wang H . Efficient electrocatalytic N2 fixation with MXene under ambient conditions. Joule, 2019, 3(1): 279–289
CrossRef Google scholar
[55]
Zhang S , Zhao Y , Shi R , Zhou C , Waterhouse G I N , Wu L Z , Tung C H , Zhang T . Efficient photocatalytic nitrogen fixation over Cuδ+-modified defective ZnAl-layered double hydroxide nanosheets. Advanced Energy Materials, 2020, 10(8): 1901973
CrossRef Google scholar
[56]
Bao D , Zhang Q , Meng F L , Zhong H X , Shi M M , Zhang Y , Yan J M , Jiang Q , Zhang X B . Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Advanced Materials, 2017, 29(3): 1604799
CrossRef Google scholar
[57]
Zhang W , Shen Y , Pang F , Quek D , Niu W , Wang W , Chen P . Facet-dependent catalytic performance of Au nanocrystals for electrochemical nitrogen reduction. ACS Applied Materials & Interfaces, 2020, 12(37): 41613–41619
CrossRef Google scholar
[58]
Yang D , Chen T , Wang Z . Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(36): 18967–18971
CrossRef Google scholar
[59]
Bai Y , Ye L , Chen T , Wang L , Shi X , Zhang X , Chen D . Facet-dependent photocatalytic N2 fixation of bismuth-rich Bi5O7I nanosheets. ACS Applied Materials & Interfaces, 2016, 8(41): 27661–27668
CrossRef Google scholar
[60]
Jin M , Zhang X , Han M , Wang H , Wang G , Zhang H . Efficient electrochemical N2 fixation by doped-oxygen-induced phosphorus vacancy defects on copper phosphide nanosheets. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(12): 5936–5942
CrossRef Google scholar
[61]
Jin H , Li L , Liu X , Tang C , Xu W , Chen S , Song L , Zheng Y , Qiao S Z . Nitrogen vacancies on 2D layered W2N3: a stable and efficient active site for nitrogen reduction reaction. Advanced Materials, 2019, 31(32): 1902709
CrossRef Google scholar
[62]
Yang X , Ling F , Su J , Zi X , Zhang H , Zhang H , Li J , Zhou M , Wang Y . Insights into the role of cation vacancy for significantly enhanced electrochemical nitrogen reduction. Applied Catalysis B: Environmental, 2020, 264: 118477
CrossRef Google scholar
[63]
Mao C , Wang J , Zou Y , Li H , Zhan G , Li J , Zhao J , Zhang L . Anion (O, N, C, and S) vacancies promoted photocatalytic nitrogen fixation. Green Chemistry, 2019, 21(11): 2852–2867
CrossRef Google scholar
[64]
GuoHYangPYangYWuHZhangFHuangZ FYangGZhouY. Vacancy-mediated control of local electronic structure for high-efficiency electrocatalytic conversion of N2 to NH3. Small, Nov 30, 2023. https://doi.org/110.1002/small.202309007
[65]
Lv C , Yan C , Chen G , Ding Y , Sun J , Zhou Y , Yu G . Back cover: an amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angewandte Chemie International Edition, 2018, 57(21): 6354–6354
CrossRef Google scholar
[66]
Liu Y , Kong X , Guo X , Li Q , Ke J , Wang R , Li Q , Geng Z , Zeng J . Enhanced N2 electroreduction over LaCoO3 by introducing oxygen vacancies. ACS Catalysis, 2020, 10(2): 1077–1085
CrossRef Google scholar
[67]
Lv C , Yan C , Chen G , Ding Y , Sun J , Zhou Y , Yu G . An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angewandte Chemie International Edition, 2018, 57(21): 6073–6076
CrossRef Google scholar
[68]
Yang P , Guo H , Wu H , Zhang F , Liu J , Li M , Yang Y , Cao Y , Yang G , Zhou Y . Boosting charge-transfer in tuned Au nanoparticles on defect-rich TiO2 nanosheets for enhancing nitrogen electroreduction to ammonia production. Journal of Colloid and Interface Science, 2023, 636: 184–193
CrossRef Google scholar
[69]
Xiong J , Song P , Di J , Li H . Atomic-level active sites steering in ultrathin photocatalysts to trigger high efficiency nitrogen fixation. Chemical Engineering Journal, 2020, 402: 126208
CrossRef Google scholar
[70]
Ji M , Liu N , Li K , Xu Q , Liu G , Wang B , Di J , Li H , Xia J . Oxygen defect modulating the charge behavior in titanium dioxide for boosting photocatalytic nitrogen fixation performance. Materials Reports: Energy, 2023, 3(4): 100231
CrossRef Google scholar
[71]
Jia H , Du A , Zhang H , Yang J , Jiang R , Wang J , Zhang C Y . Site-selective growth of crystalline ceria with oxygen vacancies on gold nanocrystals for near-infrared nitrogen photofixation. Journal of the American Chemical Society, 2019, 141(13): 5083–5086
CrossRef Google scholar
[72]
Li P , Zhou Z , Wang Q , Guo M , Chen S , Low J , Long R , Liu W , Ding P , Wu Y . . Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: enhanced performance by oxygen vacancies. Journal of the American Chemical Society, 2020, 142(28): 12430–12439
CrossRef Google scholar
[73]
Dong G , Ho W , Wang C . Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(46): 23435–23441
CrossRef Google scholar
[74]
Ying Z , Chen S , Peng T , Li R , Zhang J . Fabrication of an Fe-doped SrTiO3 photocatalyst with enhanced dinitrogen photofixation performance. European Journal of Inorganic Chemistry, 2019, 2019(16): 2182–2192
CrossRef Google scholar
[75]
Wang H B , Wang J Q , Zhang R , Cheng C Q , Qiu K W , Yang Y , Mao J , Liu H , Du M , Dong C K . . Bionic design of a Mo(IV)-doped FeS2 catalyst for electroreduction of dinitrogen to ammonia. ACS Catalysis, 2020, 10(9): 4914–4921
CrossRef Google scholar
[76]
Wu T , Kong W , Zhang Y , Xing Z , Zhao J , Wang T , Shi X , Luo Y , Sun X . Greatly enhanced electrocatalytic N2 eeduction on TiO2 via V doping. Small Methods, 2019, 3(11): 1900356
CrossRef Google scholar
[77]
Yu X , Han P , Wei Z , Huang L , Gu Z , Peng S , Ma J , Zheng G . Boron-doped graphene for electrocatalytic N2 reduction. Joule, 2018, 2(8): 1610–1622
CrossRef Google scholar
[78]
Chen X , Burda C . The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. Journal of the American Chemical Society, 2008, 130(15): 5018–5019
CrossRef Google scholar
[79]
Li X , Huang X , Xi S , Miao S , Ding J , Cai W , Liu S , Yang X , Yang H , Gao J . . Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis. Journal of the American Chemical Society, 2018, 140(39): 12469–12475
CrossRef Google scholar
[80]
Kang Y , Wu X , Gao Q . Plasmonic-enhanced near-infrared photocatalytic activity of F-doped (NH4)0.33WO3 nanorods. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 4210–4219
CrossRef Google scholar
[81]
Guo W , Zhang K , Liang Z , Zou R , Xu Q . Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design. Chemical Society Reviews, 2019, 48(24): 5658–5716
CrossRef Google scholar
[82]
Chen C , Yan D , Wang Y , Zhou Y , Zou Y , Li Y , Wang S . B-N pairs enriched defective carbon nanosheets for ammonia synthesis with high efficiency. Small, 2019, 15(7): 1805029
CrossRef Google scholar
[83]
Liu Y , Li Q , Guo X , Kong X , Ke J , Chi M , Li Q , Geng Z , Zeng J . A highly efficient metal-free electrocatalyst of F-doped porous carbon toward N2 electroreduction. Advanced Materials, 2020, 32(24): 1907690
CrossRef Google scholar
[84]
Tang M , Jiang X , He M , Jiang N , Zheng Q , Lin D B . (boron), O (oxygen) dual-doped carbon spheres as a high-efficiency electrocatalyst for nitrogen reduction. International Journal of Hydrogen Energy, 2021, 46(1): 439–448
CrossRef Google scholar
[85]
Lee J , Tan L L , Chai S P . Heterojunction photocatalysts for artificial nitrogen fixation: fundamentals, latest advances and future perspectives. Nanoscale, 2021, 13(15): 7011–7033
CrossRef Google scholar
[86]
Zhang L , Hou S , Wang T , Liu S , Gao X , Wang C , Wang G . Recent advances in application of graphitic carbon nitride-based catalysts for photocatalytic nitrogen fixation. Small, 2022, 18(28): 2202252
CrossRef Google scholar
[87]
Xu H , Wang Y , Dong X , Zheng N , Ma H , Zhang X . Fabrication of In2O3/In2S3 microsphere heterostructures for efficient and stable photocatalytic nitrogen fixation. Applied Catalysis B: Environmental, 2019, 257: 117932
CrossRef Google scholar
[88]
Hu J , Al Salihy A , Wang J , Li X , Fu Y , Li Z , Han X , Song B , Xu P . Improved interface charge transfer and redistribution in CuO-CoOOH p-n heterojunction nanoarray electrocatalyst for enhanced oxygen evolution reaction. Advanced Science, 2021, 8(22): 2103314
CrossRef Google scholar
[89]
Xue X , Chen R , Yan C , Hu Y , Zhang W , Yang S , Ma L , Zhu G , Jin Z . Efficient photocatalytic nitrogen fixation under ambient conditions enabled by the heterojunctions of n-type Bi2MoO6 and oxygen-vacancy-rich p-type BiOBr. Nanoscale, 2019, 11(21): 10439–10445
CrossRef Google scholar
[90]
ZhangWMohamedA ROngW J. Z-scheme photocatalytic systems for carbon dioxide reduction: Where are we now? Angewandte Chemie International Edition, 2020, 59(51): 22894–22915
[91]
Liang H , Zou H , Hu S . Preparation of the W18O49/g-C3N4 heterojunction catalyst with full-spectrum-driven photocatalytic N2 photofixation ability from the UV to near infrared region. New Journal of Chemistry, 2017, 41(17): 8920–8926
CrossRef Google scholar
[92]
Zhang L , Zhang J , Yu H , Yu J . Emerging S-scheme photocatalyst. Advanced Materials, 2022, 34(11): 2107668
CrossRef Google scholar
[93]
Zhang Y , Di J , Zhu X , Ji M , Chen C , Liu Y , Li L , Wei T , Li H , Xia J . Chemical bonding interface in Bi2Sn2O7/BiOBr S-scheme heterojunction triggering efficient N2 photofixation. Applied Catalysis B: Environmental, 2023, 323: 122148
CrossRef Google scholar
[94]
Garagounis I , Kyriakou V , Skodra A , Vasileiou E , Stoukides M . Electrochemical synthesis of ammonia in solid electrolyte cells. Frontiers in Energy Research, 2014, 2: 1–10
CrossRef Google scholar
[95]
Lan R , Tao S . Electrochemical synthesis of ammonia directly from air and water using a Li+/H+/NH4+ mixed conducting electrolyte. RSC Advances, 2013, 3(39): 18016–18021
CrossRef Google scholar
[96]
Köleli F , Röpke T . Electrochemical hydrogenation of dinitrogen to ammonia on a polyaniline electrode. Applied Catalysis B: Environmental, 2006, 62(3): 306–310
CrossRef Google scholar
[97]
Kordali V , Kyriacou G , Lambrou C . Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chemical Communications, 2000, (17): 1673–1674
CrossRef Google scholar
[98]
Liu R , Xu G . Comparison of electrochemical synthesis of ammonia by using sulfonated polysulfone and nafion membrane with Sm1.5Sr0.5NiO4. Chinese Journal of Chemistry, 2010, 28(2): 139–142
CrossRef Google scholar
[99]
Xie H , Wang H , Geng Q , Xing Z , Wang W , Chen J , Ji L , Chang L , Wang Z , Mao J . Oxygen vacancies of Cr-doped CeO2 nanorods that efficiently enhance the performance of electrocatalytic N2 fixation to NH3 under ambient conditions. Inorganic Chemistry, 2019, 58(9): 5423–5427
CrossRef Google scholar
[100]
Zou H , Rong W , Wei S , Ji Y , Duan L . Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(47): 29462–29468
CrossRef Google scholar
[101]
Lazouski N , Schiffer Z J , Williams K , Manthiram K . Understanding continuous lithium-mediated electrochemical nitrogen reduction. Joule, 2019, 3(4): 1127–1139
CrossRef Google scholar
[102]
Steinberg K , Yuan X , Klein C K , Lazouski N , Mecklenburg M , Manthiram K , Li Y . Imaging of nitrogen fixation at lithium solid electrolyte interphases via cryo-electron microscopy. Nature Energy, 2023, 8(2): 138–148
CrossRef Google scholar
[103]
Fu X , Pedersen J B , Zhou Y , Saccoccio M , Li S , Sažinas R , Li K , Andersen S Z , Xu A , Deissler N H . . Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science, 2023, 379(6633): 707–712
CrossRef Google scholar
[104]
Guan Y , Wen H , Cui K , Wang Q , Gao W , Cai Y , Cheng Z , Pei Q , Li Z , Cao H . . Light-driven ammonia synthesis under mild conditions using lithium hydride. Nature Chemistry, 2024, 16(3): 373–379
CrossRef Google scholar
[105]
Tsuneto A , Kudo A , Sakata T . Lithium-mediated electrochemical reduction of high pressure N2 to NH3. Journal of Electroanalytical Chemistry, 1994, 367(1): 183–188
CrossRef Google scholar
[106]
Li K , Andersen S Z , Statt M J , Saccoccio M , Bukas V J , Krempl K , Sažinas R , Pedersen J B , Shadravan V , Zhou Y . . Enhancement of lithium-mediated ammonia synthesis by addition of oxygen. Science, 2021, 374(6575): 1593–1597
CrossRef Google scholar
[107]
Du H L , Chatti M , Hodgetts R Y , Cherepanov P V , Nguyen C K , Matuszek K , MacFarlane D R , Simonov A N . Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency. Nature, 2022, 609(7928): 722–727
CrossRef Google scholar
[108]
Chen G F , Savateev A , Song Z , Wu H , Markushyna Y , Zhang L , Wang H , Antonietti M . Saving the energy loss in lithium-mediated nitrogen fixation by using a highly reactive Li3N intermediate for C–N coupling reactions. Angewandte Chemie International Edition, 2022, 61(27): e202203170
CrossRef Google scholar
[109]
Hao Y C , Guo Y , Chen L W , Shu M , Wang X Y , Bu T A , Gao W Y , Zhang N , Su X , Feng X . . Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nature Catalysis, 2019, 2(5): 448–456
CrossRef Google scholar
[110]
Hu L , Xing Z , Feng X . Understanding the electrocatalytic interface for ambient ammonia synthesis. ACS Energy Letters, 2020, 5(2): 430–436
CrossRef Google scholar
[111]
Mahmood S , Wang H , Chen F , Zhong Y , Hu Y . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2023, 35(4): 108550
CrossRef Google scholar
[112]
Wang J , Yu L , Hu L , Chen G , Xin H , Feng X . Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nature Communications, 2018, 9(1): 1795
CrossRef Google scholar
[113]
Kim K , Lee N , Yoo C Y , Kim J N , Yoon H C , Han J I . Communication-electrochemical reduction of nitrogen to ammonia in 2-propanol under ambient temperature and pressure. Journal of the Electrochemical Society, 2016, 163(7): F610–F612
CrossRef Google scholar
[114]
Singh A R , Rohr B A , Schwalbe J A , Cargnello M , Chan K , Jaramillo T F , Chorkendorff I , Nørskov J K . Electrochemical ammonia synthesis-the selectivity challenge. ACS Catalysis, 2017, 7(1): 706–709
CrossRef Google scholar
[115]
Zhou F , Azofra L M , Ali M , Kar M , Simonov A N , McDonnell Worth C , Sun C , Zhang X , MacFarlane D R . Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy & Environmental Science, 2017, 10(12): 2516–2520
CrossRef Google scholar
[116]
Kim K , Yoo C Y , Kim J N , Yoon H C , Han J I . Electrochemical synthesis of ammonia from water and nitrogen catalyzed by nano-Fe2O3 and CoFe2O4 suspended in a molten LiCl-KCl-CsCl electrolyte. Korean Journal of Chemical Engineering, 2016, 33(6): 1777–1780
CrossRef Google scholar
[117]
Katayama A , Inomata T , Ozawa T , Masuda H . Electrochemical conversion of dinitrogen to ammonia induced by a metal complex-supported ionic liquid. Electrochemistry Communications, 2016, 67: 6–10
CrossRef Google scholar
[118]
Marnellos G , Stoukides M . Ammonia synthesis at atmospheric pressure. Science, 1998, 282(5386): 98–100
CrossRef Google scholar
[119]
Wang L , Yan X , Si W , Liu D , Hou X , Li D , Hou F , Dou S X , Liang J . Photoelectrochemical nitrogen reduction: a step toward achieving sustainable ammonia synthesis. Chinese Journal of Catalysis, 2022, 43(7): 1761–1773
CrossRef Google scholar
[120]
Chen L W , Hao Y C , Guo Y , Zhang Q , Li J , Gao W Y , Ren L , Su X , Hu L , Zhang N . . Metal-organic framework membranes encapsulating gold nanoparticles for direct plasmonic photocatalytic nitrogen fixation. Journal of the American Chemical Society, 2021, 143(15): 5727–5736
CrossRef Google scholar
[121]
Ye L , Li H , Xie K . Sustainable ammonia production enabled by membrane reactor. Nature Sustainability, 2022, 5(9): 787–794
CrossRef Google scholar
[122]
Liu D , Wang J , Bian S , Liu Q , Gao Y , Wang X , Chu P K , Yu X F . Photoelectrochemical ammonia synthesis: photoelectrochemical synthesis of ammonia with black phosphorus. Advanced Functional Materials, 2020, 30(24): 2070156
CrossRef Google scholar
[123]
Liu J , Zhang F , Wu H , Jiang Y , Yang P , Zhang W , Guo H , Cao Y , Yang G , Zhou Y . Efficient carrier transfer induced by Au nanoparticles for photoelectrochemical nitrogen reduction. Sustainable Energy & Fuels, 2023, 7(3): 883–889
CrossRef Google scholar
[124]
Oshikiri T , Ueno K , Misawa H . Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation. Angewandte Chemie International Edition, 2014, 53(37): 9802–9805
CrossRef Google scholar
[125]
Ali M , Zhou F , Chen K , Kotzur C , Xiao C , Bourgeois L , Zhang X , MacFarlane D R . Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nature Communications, 2016, 7(1): 11335
CrossRef Google scholar
[126]
Zhang J , Chen H , Duan X , Sun H , Wang S . Photothermal catalysis: from fundamentals to practical applications. Materials Today, 2023, 68: 234–253
CrossRef Google scholar
[127]
Wang S , Yu W , Xu S , Han K , Wang F . Ammonia from photothermal N2 hydrogenation over Ni/TiO2 catalysts under mild conditions. ACS Sustainable Chemistry & Engineering, 2022, 10(1): 115–123
CrossRef Google scholar
[128]
Mao C , Yu L , Li J , Zhao J , Zhang L . Energy-confined solar thermal ammonia synthesis with K/Ru/TiO2-xHx. Applied Catalysis B: Environmental, 2018, 224: 612–620
CrossRef Google scholar
[129]
Mao C , Wang J , Zou Y , Shi Y , Viasus C J , Loh J Y Y , Xia M , Ji S , Li M , Shang H . . Photochemical acceleration of ammonia production by Pt1-Ptn-TiN reduction and N2 activation. Journal of the American Chemical Society, 2023, 145(24): 13134–13146
CrossRef Google scholar
[130]
Zheng J , Lu L , Lebedev K , Wu S , Zhao P , McPherson I J , Wu T S , Kato R , Li Y , Ho P L . . Fe on molecular-layer MoS2 as inorganic Fe-S2-Mo motifs for light-driven nitrogen fixation to ammonia at elevated temperatures. Chem Catalysis, 2021, 1(1): 162–182
CrossRef Google scholar
[131]
Ye D , Tsang S C E . Prospects and challenges of green ammonia synthesis. Nature Synthesis, 2023, 2(7): 612–623
CrossRef Google scholar
[132]
Wang L , Xia M , Wang H , Huang K , Qian C , Maravelias C T , Ozin G A . Greening ammonia toward the solar ammonia refinery. Joule, 2018, 2(6): 1055–1074
CrossRef Google scholar
[133]
WangMKhanM AMohsinIWicksJIpA HSumonK ZDinhC TSargentE HGatesI DKibriaM G. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber-Bosch processes? Energy & Environmental Science, 2021, 14(5): 2535–2548
[134]
Smith C , Hill A K , Torrente Murciano L . Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape. Energy & Environmental Science, 2020, 13(2): 331–344
CrossRef Google scholar
[135]
Hochman G , Goldman A S , Felder F A , Mayer J M , Miller A J M , Holland P L , Goldman L A , Manocha P , Song Z , Aleti S . Potential economic feasibility of direct electrochemical nitrogen reduction as a route to ammonia. ACS Sustainable Chemistry & Engineering, 2020, 8(24): 8938–8948
CrossRef Google scholar
[136]
Arnaiz del Pozo C , Cloete S . Techno-economic assessment of blue and green ammonia as energy carriers in a low-carbon future. Energy Conversion and Management, 2022, 255: 115312
CrossRef Google scholar
[137]
Parkinson B , Balcombe P , Speirs J F , Hawkes A D , Hellgardt K . Levelized cost of CO2 mitigation from hydrogen production routes. Energy & Environmental Science, 2019, 12(1): 19–40
CrossRef Google scholar
[138]
MacFarlane D R , Cherepanov P V , Choi J , Suryanto B H R , Hodgetts R Y , Bakker J M , Ferrero Vallana F M , Simonov A N . A roadmap to the ammonia economy. Joule, 2020, 4(6): 1186–1205
CrossRef Google scholar
[139]
Zhang S , Zhao Y , Shi R , Waterhouse G I N , Zhang T . Photocatalytic ammonia synthesis: recent progress and future. EnergyChem, 2019, 1(2): 100013
CrossRef Google scholar
[140]
Lin B , Wiesner T , Malmali M . Performance of a small-scale haber process: a techno-economic analysis. ACS Sustainable Chemistry & Engineering, 2020, 8(41): 15517–15531
CrossRef Google scholar
[141]
Liu X , Shen Z , Peng X , Tian L , Hao R , Wang L , Xu Y , Liu Y , Maravelias C T , Li W . . A photo-assisted electrochemical-based demonstrator for green ammonia synthesis. Journal of Energy Chemistry, 2022, 68: 826–834
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the National Key R&D Project of China (Grant No. 2020YFA0710000), the National Natural Science Foundation of China (Grant Nos. 22309152, 22311530118, and 22109132), the Provincial Key Research and Development Project of Sichuan (Grant No. 24SYSX0175), the International Science and Technology Cooperation Project of Chengdu (Grant No. 2021-GH02-00052-HZ), the Technology Innovation R&D Project of Chengdu (Grant No. 2022-YF05-00978-SN), and the Scientific Research Starting Project of SWPU (Grant No. 2021QHZ028), Production-Education Integration Demonstration Project of Sichuan Province “Photovoltaic Industry Production-Education Integration Comprehensive Demonstration Base of Sichuan Province (Sichuan Financial Education [2022] No. 106)”, Research and Innovation Fund for Graduate Students of Southwest Petroleum University (No. 2022KYCX115).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(8587 KB)

Accesses

Citations

Detail

Sections
Recommended

/