Advances in catalysts and reaction systems for electro/photocatalytic ammonia production
Shenshen Zheng, Fengying Zhang, Yuman Jiang, Tao Xu, Han Li, Heng Guo, Ying Zhou
Advances in catalysts and reaction systems for electro/photocatalytic ammonia production
Ammonia is a vital component in the fertilizer and chemical industries, as well as serving as a significant carrier of renewable hydrogen energy. Compared with the industry’s principal technique, the Haber-Bosch method, for ammonia synthesis, electro/photocatalytic ammonia synthesis is increasingly recognized as a viable and eco-friendly alternative. This method enables distributed small-scale deployment and can be powered by sustainable renewable energy sources. However, the efficiency of electro/photocatalytic nitrogen reduction reaction is hindered by the challenges in activating the N≡N bond and nitrogen’s low solubility, thereby limiting its large-scale industrial applications. In this review, recent advancements in electro/photocatalytic nitrogen reduction are summarized, encompassing the complex reaction mechanisms, as well as the effective strategies for developing electro/photocatalytic catalysts and advanced reaction systems. Furthermore, the energy efficiency and economic analysis of electro/photocatalytic nitrogen fixation are deeply discussed. Finally, some unsolved challenges and potential opportunities are discussed for the future development of electro/photocatalytic ammonia synthesis.
ammonia synthesis / electro/photocatalysis / nitrogen fixation / reaction system / economic and efficiency analysis
[1] |
Medford A J , Hatzell M C . Photon-driven nitrogen fixation: current progress, thermodynamic considerations, and future outlook. ACS Catalysis, 2017, 7(4): 2624–2643
CrossRef
Google scholar
|
[2] |
Van der Ham C J M , Koper M T M , Hetterscheid D G H . Challenges in reduction of dinitrogen by proton and electron transfer. Chemical Society Reviews, 2014, 43(15): 5183–5191
CrossRef
Google scholar
|
[3] |
Gruber N , Galloway J N . An earth-system perspective of the global nitrogen cycle. Nature, 2008, 451(7176): 293–296
CrossRef
Google scholar
|
[4] |
Green ammonia synthesis. Nature Synthesis, 2023, 2(7): 581–582
|
[5] |
Lazouski N , Chung M , Williams K , Gala M L , Manthiram K . Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen. Nature Catalysis, 2020, 3(5): 463–469
CrossRef
Google scholar
|
[6] |
Kitano M , Inoue Y , Yamazaki Y , Hayashi F , Kanbara S , Matsuishi S , Yokoyama T , Kim S W , Hara M , Hosono H . Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nature Chemistry, 2012, 4(11): 934–940
CrossRef
Google scholar
|
[7] |
Oshikiri T , Ueno K , Misawa H . Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation. Angewandte Chemie International Edition, 2016, 55(12): 3942–3946
CrossRef
Google scholar
|
[8] |
Van Tamelen E E , Seeley D A . Catalytic fixation of molecular nitrogen by electrolytic and chemical reduction. Journal of the American Chemical Society, 1969, 91(18): 5194–5194
CrossRef
Google scholar
|
[9] |
Schrauzer G N , Guth T D . Photolysis of water and photoreduction of nitrogen on titanium dioxide. Journal of the American Chemical Society, 1977, 99(22): 7189–7193
CrossRef
Google scholar
|
[10] |
Wan Y , Xu J , Lv R . Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Materials Today, 2019, 27: 69–90
CrossRef
Google scholar
|
[11] |
Wang S , Ichihara F , Pang H , Chen H , Ye J . Nitrogen fixation reaction derived from nanostructured catalytic materials. Advanced Functional Materials, 2018, 28(50): 1803309
CrossRef
Google scholar
|
[12] |
Li J , Guo X , Gan L , Huang Z F , Pan L , Shi C , Zhang X , Yang G , Zou J J . Fundamentals and advances in emerging crystalline porous materials for photocatalytic and electrocatalytic nitrogen fixation. ACS Applied Energy Materials, 2022, 5(8): 9241–9265
CrossRef
Google scholar
|
[13] |
Cui X , Tang C , Zhang Q . A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Advanced Energy Materials, 2018, 8(22): 1800369
CrossRef
Google scholar
|
[14] |
Cheng H , Cui P , Wang F , Ding L X , Wang H . High efficiency electrochemical nitrogen fixation achieved with a lower pressure reaction system by changing the chemical equilibrium. Angewandte Chemie International Edition, 2019, 58(43): 15541–15547
CrossRef
Google scholar
|
[15] |
Liu D , Chen M , Du X , Ai H , Lo K H , Wang S , Chen S , Xing G , Wang X , Pan H . Development of electrocatalysts for efficient nitrogen reduction reaction under ambient condition. Advanced Functional Materials, 2021, 31(11): 2008983
CrossRef
Google scholar
|
[16] |
Jia H P , Quadrelli E A . Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chemical Society Reviews, 2014, 43(2): 547–564
CrossRef
Google scholar
|
[17] |
Qing G , Ghazfar R , Jackowski S T , Habibzadeh F , Ashtiani M M , Chen C P , Smith M R III , Hamann T W . Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chemical Reviews, 2020, 120(12): 5437–5516
CrossRef
Google scholar
|
[18] |
Abghoui Y , Skúlason E . Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts. Catalysis Today, 2017, 286: 69–77
CrossRef
Google scholar
|
[19] |
Chebrolu V T , Jang D , Rani G M , Lim C , Yong K , Kim W B . Overview of emerging catalytic materials for electrochemical green ammonia synthesis and process. Carbon Energy, 2023, 5(12): e361
CrossRef
Google scholar
|
[20] |
Liu S , Wang M , Ji H , Shen X , Yan C , Qian T . Altering the rate-determining step over cobalt single clusters leading to highly efficient ammonia synthesis. National Science Review, 2021, 8(5): 136
CrossRef
Google scholar
|
[21] |
Shipman M A , Symes M D . Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catalysis Today, 2017, 286: 57–68
CrossRef
Google scholar
|
[22] |
Abghoui Y , Garden A L , Howalt J G , Vegge T , Skúlason E . Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: a DFT guide for experiments. ACS Catalysis, 2016, 6(2): 635–646
CrossRef
Google scholar
|
[23] |
Ling C , Zhang Y , Li Q , Bai X , Shi L , Wang J . New mechanism for N2 reduction: the essential role of surface hydrogenation. Journal of the American Chemical Society, 2019, 141(45): 18264–18270
CrossRef
Google scholar
|
[24] |
Yan Z , Ji M , Xia J , Zhu H . Recent advanced materials for electrochemical and photoelectrochemical synthesis of ammonia from dinitrogen: one step closer to a sustainable energy future. Advanced Energy Materials, 2020, 10(11): 1902020
CrossRef
Google scholar
|
[25] |
Medford A J , Vojvodic A , Hummelshøj J S , Voss J , Abild-Pedersen F , Studt F , Bligaard T , Nilsson A , Nørskov J K . From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis, 2015, 328: 36–42
CrossRef
Google scholar
|
[26] |
Skúlason E , Bligaard T , Gudmundsdóttir S , Studt F , Rossmeisl J , Abild Pedersen F , Vegge T , Jónsson H , Nørskov J K . A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Physical Chemistry Chemical Physics, 2012, 14(3): 1235–1245
CrossRef
Google scholar
|
[27] |
Montoya J H , Tsai C , Vojvodic A , Nørskov J K . The challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. ChemSusChem, 2015, 8(13): 2180–2186
CrossRef
Google scholar
|
[28] |
Yao Y , Wang H , Yuan X Z , Li H , Shao M . Electrochemical nitrogen reduction reaction on ruthenium. ACS Energy Letters, 2019, 4(6): 1336–1341
CrossRef
Google scholar
|
[29] |
Zhao Y , Li F , Li W , Li Y , Liu C , Zhao Z , Shan Y , Ji Y , Sun L . Identification of M-NH2-NH2 intermediate and rate determining step for nitrogen reduction with bioinspired sulfur-bonded FeW catalyst. Angewandte Chemie International Edition, 2021, 60(37): 20331–20341
CrossRef
Google scholar
|
[30] |
Liao W , Xie K , Liu L , Wang X , Luo Y , Liang S , Liu F , Jiang L . Triggering in-plane defect cluster on MoS2 for accelerated dinitrogen electroreduction to ammonia. Journal of Energy Chemistry, 2021, 62: 359–366
CrossRef
Google scholar
|
[31] |
Xue X , Chen R , Yan C , Zhao P , Hu Y , Zhang W , Yang S , Jin Z . Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: advances, challenges and perspectives. Nano Research, 2019, 12(6): 1229–1249
CrossRef
Google scholar
|
[32] |
Yu S , Xiang T , Alharbi N S , Alaidaroos B A , Chen C . Recent development of catalytic strategies for sustainable ammonia production. Chinese Journal of Chemical Engineering, 2023, 62: 65–113
CrossRef
Google scholar
|
[33] |
Shi M M , Bao D , Li S J , Wulan B R , Yan J M , Jiang Q . Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Advanced Energy Materials, 2018, 8(21): 1800124
CrossRef
Google scholar
|
[34] |
Tao H , Choi C , Ding L X , Jiang Z , Han Z , Jia M , Fan Q , Gao Y , Wang H , Robertson A W .
CrossRef
Google scholar
|
[35] |
Li L , Tang C , Xia B , Jin H , Zheng Y , Qiao S Z . Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catalysis, 2019, 9(4): 2902–2908
CrossRef
Google scholar
|
[36] |
Ye T N , Park S W , Lu Y , Li J , Sasase M , Kitano M , Tada T , Hosono H . Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature, 2020, 583(7816): 391–395
CrossRef
Google scholar
|
[37] |
Han J , Ji X , Ren X , Cui G , Li L , Xie F , Wang H , Li B , Sun X . MoO3 nanosheets for efficient electrocatalytic N2 fixation to NH3. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(27): 12974–12977
CrossRef
Google scholar
|
[38] |
Zhao W , Zhang J , Zhu X , Zhang M , Tang J , Tan M , Wang Y . Enhanced nitrogen photofixation on Fe-doped TiO2 with highly exposed (101) facets in the presence of ethanol as scavenger. Applied Catalysis B: Environmental, 2014, 144: 468–477
CrossRef
Google scholar
|
[39] |
Chu K , Liu Y P , Li Y B , Zhang H , Tian Y . Efficient electrocatalytic N2 reduction on CoO quantum dots. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(9): 4389–4394
CrossRef
Google scholar
|
[40] |
Wang P , Nong W , Li Y , Cui H , Wang C . Strengthening nitrogen affinity on CuAu@Cu core-shell nanoparticles with ultrathin Cu skin via strain engineering and ligand effect for boosting nitrogen reduction reaction. Applied Catalysis B: Environmental, 2021, 288: 119999
CrossRef
Google scholar
|
[41] |
Yang B , Ding W , Zhang H , Zhang S . Recent progress in electrochemical synthesis of ammonia from nitrogen: strategies to improve the catalytic activity and selectivity. Energy & Environmental Science, 2021, 14(2): 672–687
CrossRef
Google scholar
|
[42] |
Zhao R , Xie H , Chang L , Zhang X , Zhu X , Tong X , Wang T , Luo Y , Wei P , Wang Z .
CrossRef
Google scholar
|
[43] |
Tian Y , Xu D , Chu K , Wei Z , Liu W . Metal-free N, S co-doped graphene for efficient and durable nitrogen reduction reaction. Journal of Materials Science, 2019, 54(12): 9088–9097
CrossRef
Google scholar
|
[44] |
Zhou S , Yang X , Xu X , Dou S X , Du Y , Zhao J . Boron nitride nanotubes for ammonia synthesis: activation by filling transition metals. Journal of the American Chemical Society, 2020, 142(1): 308–317
CrossRef
Google scholar
|
[45] |
Wei Z , Zhang Y , Wang S , Wang C , Ma J . Fe-doped phosphorene for the nitrogen reduction reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(28): 13790–13796
CrossRef
Google scholar
|
[46] |
Zhang L , Ding L X , Chen G F , Yang X , Wang H . Ammonia synthesis under ambient conditions: selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angewandte Chemie International Edition, 2019, 58(9): 2612–2616
CrossRef
Google scholar
|
[47] |
LaiJLiuHDingL XWangJChenG FWangH. Black phosphorene with removable aluminum ion protection for enhanced electrochemical nitrogen fixation. Advanced Energy Materials, Jan 9, 2024. https://doi.org/10.1002/aenm.202303963
|
[48] |
Liu Y G , Tian M , Hou J , Jiang H Y . Research progress and perspectives on active sites of photo- and electrocatalytic nitrogen reduction. Energy & Fuels, 2022, 36(19): 11323–11358
CrossRef
Google scholar
|
[49] |
Li J X , Yu Y , Xu S , Yan W , Mu S , Zhang J N . Function of electron spin effect in electrocatalysts. Wuli Huaxue Xuebao, 2023, 39(12): 2302049
CrossRef
Google scholar
|
[50] |
Li T , Tang C , Guo H , Wu H , Duan C , Wang H , Zhang F , Cao Y , Yang G , Zhou Y . In situ growth of Fe2O3 nanorod arrays on carbon cloth with rapid charge transfer for efficient nitrate electroreduction to ammonia. ACS Applied Materials & Interfaces, 2022, 14(44): 49765–49773
CrossRef
Google scholar
|
[51] |
Nazemi M , Panikkanvalappil S R , El Sayed M A . Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages. Nano Energy, 2018, 49: 316–323
CrossRef
Google scholar
|
[52] |
Zhao J , Wang B , Zhou Q , Wang H , Li X , Chen H , Wei Q , Wu D , Luo Y , You J .
CrossRef
Google scholar
|
[53] |
Wang Z , Zheng K , Liu S , Dai Z , Xu Y , Li X , Wang H , Wang L . Electrocatalytic nitrogen reduction to ammonia by Fe2O3 nanorod array on carbon cloth. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11754–11759
CrossRef
Google scholar
|
[54] |
Luo Y , Chen G F , Ding L , Chen X , Ding L X , Wang H . Efficient electrocatalytic N2 fixation with MXene under ambient conditions. Joule, 2019, 3(1): 279–289
CrossRef
Google scholar
|
[55] |
Zhang S , Zhao Y , Shi R , Zhou C , Waterhouse G I N , Wu L Z , Tung C H , Zhang T . Efficient photocatalytic nitrogen fixation over Cuδ+-modified defective ZnAl-layered double hydroxide nanosheets. Advanced Energy Materials, 2020, 10(8): 1901973
CrossRef
Google scholar
|
[56] |
Bao D , Zhang Q , Meng F L , Zhong H X , Shi M M , Zhang Y , Yan J M , Jiang Q , Zhang X B . Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Advanced Materials, 2017, 29(3): 1604799
CrossRef
Google scholar
|
[57] |
Zhang W , Shen Y , Pang F , Quek D , Niu W , Wang W , Chen P . Facet-dependent catalytic performance of Au nanocrystals for electrochemical nitrogen reduction. ACS Applied Materials & Interfaces, 2020, 12(37): 41613–41619
CrossRef
Google scholar
|
[58] |
Yang D , Chen T , Wang Z . Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(36): 18967–18971
CrossRef
Google scholar
|
[59] |
Bai Y , Ye L , Chen T , Wang L , Shi X , Zhang X , Chen D . Facet-dependent photocatalytic N2 fixation of bismuth-rich Bi5O7I nanosheets. ACS Applied Materials & Interfaces, 2016, 8(41): 27661–27668
CrossRef
Google scholar
|
[60] |
Jin M , Zhang X , Han M , Wang H , Wang G , Zhang H . Efficient electrochemical N2 fixation by doped-oxygen-induced phosphorus vacancy defects on copper phosphide nanosheets. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(12): 5936–5942
CrossRef
Google scholar
|
[61] |
Jin H , Li L , Liu X , Tang C , Xu W , Chen S , Song L , Zheng Y , Qiao S Z . Nitrogen vacancies on 2D layered W2N3: a stable and efficient active site for nitrogen reduction reaction. Advanced Materials, 2019, 31(32): 1902709
CrossRef
Google scholar
|
[62] |
Yang X , Ling F , Su J , Zi X , Zhang H , Zhang H , Li J , Zhou M , Wang Y . Insights into the role of cation vacancy for significantly enhanced electrochemical nitrogen reduction. Applied Catalysis B: Environmental, 2020, 264: 118477
CrossRef
Google scholar
|
[63] |
Mao C , Wang J , Zou Y , Li H , Zhan G , Li J , Zhao J , Zhang L . Anion (O, N, C, and S) vacancies promoted photocatalytic nitrogen fixation. Green Chemistry, 2019, 21(11): 2852–2867
CrossRef
Google scholar
|
[64] |
GuoHYangPYangYWuHZhangFHuangZ FYangGZhouY. Vacancy-mediated control of local electronic structure for high-efficiency electrocatalytic conversion of N2 to NH3. Small, Nov 30, 2023. https://doi.org/110.1002/small.202309007
|
[65] |
Lv C , Yan C , Chen G , Ding Y , Sun J , Zhou Y , Yu G . Back cover: an amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angewandte Chemie International Edition, 2018, 57(21): 6354–6354
CrossRef
Google scholar
|
[66] |
Liu Y , Kong X , Guo X , Li Q , Ke J , Wang R , Li Q , Geng Z , Zeng J . Enhanced N2 electroreduction over LaCoO3 by introducing oxygen vacancies. ACS Catalysis, 2020, 10(2): 1077–1085
CrossRef
Google scholar
|
[67] |
Lv C , Yan C , Chen G , Ding Y , Sun J , Zhou Y , Yu G . An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angewandte Chemie International Edition, 2018, 57(21): 6073–6076
CrossRef
Google scholar
|
[68] |
Yang P , Guo H , Wu H , Zhang F , Liu J , Li M , Yang Y , Cao Y , Yang G , Zhou Y . Boosting charge-transfer in tuned Au nanoparticles on defect-rich TiO2 nanosheets for enhancing nitrogen electroreduction to ammonia production. Journal of Colloid and Interface Science, 2023, 636: 184–193
CrossRef
Google scholar
|
[69] |
Xiong J , Song P , Di J , Li H . Atomic-level active sites steering in ultrathin photocatalysts to trigger high efficiency nitrogen fixation. Chemical Engineering Journal, 2020, 402: 126208
CrossRef
Google scholar
|
[70] |
Ji M , Liu N , Li K , Xu Q , Liu G , Wang B , Di J , Li H , Xia J . Oxygen defect modulating the charge behavior in titanium dioxide for boosting photocatalytic nitrogen fixation performance. Materials Reports: Energy, 2023, 3(4): 100231
CrossRef
Google scholar
|
[71] |
Jia H , Du A , Zhang H , Yang J , Jiang R , Wang J , Zhang C Y . Site-selective growth of crystalline ceria with oxygen vacancies on gold nanocrystals for near-infrared nitrogen photofixation. Journal of the American Chemical Society, 2019, 141(13): 5083–5086
CrossRef
Google scholar
|
[72] |
Li P , Zhou Z , Wang Q , Guo M , Chen S , Low J , Long R , Liu W , Ding P , Wu Y .
CrossRef
Google scholar
|
[73] |
Dong G , Ho W , Wang C . Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(46): 23435–23441
CrossRef
Google scholar
|
[74] |
Ying Z , Chen S , Peng T , Li R , Zhang J . Fabrication of an Fe-doped SrTiO3 photocatalyst with enhanced dinitrogen photofixation performance. European Journal of Inorganic Chemistry, 2019, 2019(16): 2182–2192
CrossRef
Google scholar
|
[75] |
Wang H B , Wang J Q , Zhang R , Cheng C Q , Qiu K W , Yang Y , Mao J , Liu H , Du M , Dong C K .
CrossRef
Google scholar
|
[76] |
Wu T , Kong W , Zhang Y , Xing Z , Zhao J , Wang T , Shi X , Luo Y , Sun X . Greatly enhanced electrocatalytic N2 eeduction on TiO2 via V doping. Small Methods, 2019, 3(11): 1900356
CrossRef
Google scholar
|
[77] |
Yu X , Han P , Wei Z , Huang L , Gu Z , Peng S , Ma J , Zheng G . Boron-doped graphene for electrocatalytic N2 reduction. Joule, 2018, 2(8): 1610–1622
CrossRef
Google scholar
|
[78] |
Chen X , Burda C . The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. Journal of the American Chemical Society, 2008, 130(15): 5018–5019
CrossRef
Google scholar
|
[79] |
Li X , Huang X , Xi S , Miao S , Ding J , Cai W , Liu S , Yang X , Yang H , Gao J .
CrossRef
Google scholar
|
[80] |
Kang Y , Wu X , Gao Q . Plasmonic-enhanced near-infrared photocatalytic activity of F-doped (NH4)0.33WO3 nanorods. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 4210–4219
CrossRef
Google scholar
|
[81] |
Guo W , Zhang K , Liang Z , Zou R , Xu Q . Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design. Chemical Society Reviews, 2019, 48(24): 5658–5716
CrossRef
Google scholar
|
[82] |
Chen C , Yan D , Wang Y , Zhou Y , Zou Y , Li Y , Wang S . B-N pairs enriched defective carbon nanosheets for ammonia synthesis with high efficiency. Small, 2019, 15(7): 1805029
CrossRef
Google scholar
|
[83] |
Liu Y , Li Q , Guo X , Kong X , Ke J , Chi M , Li Q , Geng Z , Zeng J . A highly efficient metal-free electrocatalyst of F-doped porous carbon toward N2 electroreduction. Advanced Materials, 2020, 32(24): 1907690
CrossRef
Google scholar
|
[84] |
Tang M , Jiang X , He M , Jiang N , Zheng Q , Lin D B . (boron), O (oxygen) dual-doped carbon spheres as a high-efficiency electrocatalyst for nitrogen reduction. International Journal of Hydrogen Energy, 2021, 46(1): 439–448
CrossRef
Google scholar
|
[85] |
Lee J , Tan L L , Chai S P . Heterojunction photocatalysts for artificial nitrogen fixation: fundamentals, latest advances and future perspectives. Nanoscale, 2021, 13(15): 7011–7033
CrossRef
Google scholar
|
[86] |
Zhang L , Hou S , Wang T , Liu S , Gao X , Wang C , Wang G . Recent advances in application of graphitic carbon nitride-based catalysts for photocatalytic nitrogen fixation. Small, 2022, 18(28): 2202252
CrossRef
Google scholar
|
[87] |
Xu H , Wang Y , Dong X , Zheng N , Ma H , Zhang X . Fabrication of In2O3/In2S3 microsphere heterostructures for efficient and stable photocatalytic nitrogen fixation. Applied Catalysis B: Environmental, 2019, 257: 117932
CrossRef
Google scholar
|
[88] |
Hu J , Al Salihy A , Wang J , Li X , Fu Y , Li Z , Han X , Song B , Xu P . Improved interface charge transfer and redistribution in CuO-CoOOH p-n heterojunction nanoarray electrocatalyst for enhanced oxygen evolution reaction. Advanced Science, 2021, 8(22): 2103314
CrossRef
Google scholar
|
[89] |
Xue X , Chen R , Yan C , Hu Y , Zhang W , Yang S , Ma L , Zhu G , Jin Z . Efficient photocatalytic nitrogen fixation under ambient conditions enabled by the heterojunctions of n-type Bi2MoO6 and oxygen-vacancy-rich p-type BiOBr. Nanoscale, 2019, 11(21): 10439–10445
CrossRef
Google scholar
|
[90] |
ZhangWMohamedA ROngW J. Z-scheme photocatalytic systems for carbon dioxide reduction: Where are we now? Angewandte Chemie International Edition, 2020, 59(51): 22894–22915
|
[91] |
Liang H , Zou H , Hu S . Preparation of the W18O49/g-C3N4 heterojunction catalyst with full-spectrum-driven photocatalytic N2 photofixation ability from the UV to near infrared region. New Journal of Chemistry, 2017, 41(17): 8920–8926
CrossRef
Google scholar
|
[92] |
Zhang L , Zhang J , Yu H , Yu J . Emerging S-scheme photocatalyst. Advanced Materials, 2022, 34(11): 2107668
CrossRef
Google scholar
|
[93] |
Zhang Y , Di J , Zhu X , Ji M , Chen C , Liu Y , Li L , Wei T , Li H , Xia J . Chemical bonding interface in Bi2Sn2O7/BiOBr S-scheme heterojunction triggering efficient N2 photofixation. Applied Catalysis B: Environmental, 2023, 323: 122148
CrossRef
Google scholar
|
[94] |
Garagounis I , Kyriakou V , Skodra A , Vasileiou E , Stoukides M . Electrochemical synthesis of ammonia in solid electrolyte cells. Frontiers in Energy Research, 2014, 2: 1–10
CrossRef
Google scholar
|
[95] |
Lan R , Tao S . Electrochemical synthesis of ammonia directly from air and water using a Li+/H+/NH4+ mixed conducting electrolyte. RSC Advances, 2013, 3(39): 18016–18021
CrossRef
Google scholar
|
[96] |
Köleli F , Röpke T . Electrochemical hydrogenation of dinitrogen to ammonia on a polyaniline electrode. Applied Catalysis B: Environmental, 2006, 62(3): 306–310
CrossRef
Google scholar
|
[97] |
Kordali V , Kyriacou G , Lambrou C . Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chemical Communications, 2000, (17): 1673–1674
CrossRef
Google scholar
|
[98] |
Liu R , Xu G . Comparison of electrochemical synthesis of ammonia by using sulfonated polysulfone and nafion membrane with Sm1.5Sr0.5NiO4. Chinese Journal of Chemistry, 2010, 28(2): 139–142
CrossRef
Google scholar
|
[99] |
Xie H , Wang H , Geng Q , Xing Z , Wang W , Chen J , Ji L , Chang L , Wang Z , Mao J . Oxygen vacancies of Cr-doped CeO2 nanorods that efficiently enhance the performance of electrocatalytic N2 fixation to NH3 under ambient conditions. Inorganic Chemistry, 2019, 58(9): 5423–5427
CrossRef
Google scholar
|
[100] |
Zou H , Rong W , Wei S , Ji Y , Duan L . Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(47): 29462–29468
CrossRef
Google scholar
|
[101] |
Lazouski N , Schiffer Z J , Williams K , Manthiram K . Understanding continuous lithium-mediated electrochemical nitrogen reduction. Joule, 2019, 3(4): 1127–1139
CrossRef
Google scholar
|
[102] |
Steinberg K , Yuan X , Klein C K , Lazouski N , Mecklenburg M , Manthiram K , Li Y . Imaging of nitrogen fixation at lithium solid electrolyte interphases via cryo-electron microscopy. Nature Energy, 2023, 8(2): 138–148
CrossRef
Google scholar
|
[103] |
Fu X , Pedersen J B , Zhou Y , Saccoccio M , Li S , Sažinas R , Li K , Andersen S Z , Xu A , Deissler N H .
CrossRef
Google scholar
|
[104] |
Guan Y , Wen H , Cui K , Wang Q , Gao W , Cai Y , Cheng Z , Pei Q , Li Z , Cao H .
CrossRef
Google scholar
|
[105] |
Tsuneto A , Kudo A , Sakata T . Lithium-mediated electrochemical reduction of high pressure N2 to NH3. Journal of Electroanalytical Chemistry, 1994, 367(1): 183–188
CrossRef
Google scholar
|
[106] |
Li K , Andersen S Z , Statt M J , Saccoccio M , Bukas V J , Krempl K , Sažinas R , Pedersen J B , Shadravan V , Zhou Y .
CrossRef
Google scholar
|
[107] |
Du H L , Chatti M , Hodgetts R Y , Cherepanov P V , Nguyen C K , Matuszek K , MacFarlane D R , Simonov A N . Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency. Nature, 2022, 609(7928): 722–727
CrossRef
Google scholar
|
[108] |
Chen G F , Savateev A , Song Z , Wu H , Markushyna Y , Zhang L , Wang H , Antonietti M . Saving the energy loss in lithium-mediated nitrogen fixation by using a highly reactive Li3N intermediate for C–N coupling reactions. Angewandte Chemie International Edition, 2022, 61(27): e202203170
CrossRef
Google scholar
|
[109] |
Hao Y C , Guo Y , Chen L W , Shu M , Wang X Y , Bu T A , Gao W Y , Zhang N , Su X , Feng X .
CrossRef
Google scholar
|
[110] |
Hu L , Xing Z , Feng X . Understanding the electrocatalytic interface for ambient ammonia synthesis. ACS Energy Letters, 2020, 5(2): 430–436
CrossRef
Google scholar
|
[111] |
Mahmood S , Wang H , Chen F , Zhong Y , Hu Y . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2023, 35(4): 108550
CrossRef
Google scholar
|
[112] |
Wang J , Yu L , Hu L , Chen G , Xin H , Feng X . Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nature Communications, 2018, 9(1): 1795
CrossRef
Google scholar
|
[113] |
Kim K , Lee N , Yoo C Y , Kim J N , Yoon H C , Han J I . Communication-electrochemical reduction of nitrogen to ammonia in 2-propanol under ambient temperature and pressure. Journal of the Electrochemical Society, 2016, 163(7): F610–F612
CrossRef
Google scholar
|
[114] |
Singh A R , Rohr B A , Schwalbe J A , Cargnello M , Chan K , Jaramillo T F , Chorkendorff I , Nørskov J K . Electrochemical ammonia synthesis-the selectivity challenge. ACS Catalysis, 2017, 7(1): 706–709
CrossRef
Google scholar
|
[115] |
Zhou F , Azofra L M , Ali M , Kar M , Simonov A N , McDonnell Worth C , Sun C , Zhang X , MacFarlane D R . Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy & Environmental Science, 2017, 10(12): 2516–2520
CrossRef
Google scholar
|
[116] |
Kim K , Yoo C Y , Kim J N , Yoon H C , Han J I . Electrochemical synthesis of ammonia from water and nitrogen catalyzed by nano-Fe2O3 and CoFe2O4 suspended in a molten LiCl-KCl-CsCl electrolyte. Korean Journal of Chemical Engineering, 2016, 33(6): 1777–1780
CrossRef
Google scholar
|
[117] |
Katayama A , Inomata T , Ozawa T , Masuda H . Electrochemical conversion of dinitrogen to ammonia induced by a metal complex-supported ionic liquid. Electrochemistry Communications, 2016, 67: 6–10
CrossRef
Google scholar
|
[118] |
Marnellos G , Stoukides M . Ammonia synthesis at atmospheric pressure. Science, 1998, 282(5386): 98–100
CrossRef
Google scholar
|
[119] |
Wang L , Yan X , Si W , Liu D , Hou X , Li D , Hou F , Dou S X , Liang J . Photoelectrochemical nitrogen reduction: a step toward achieving sustainable ammonia synthesis. Chinese Journal of Catalysis, 2022, 43(7): 1761–1773
CrossRef
Google scholar
|
[120] |
Chen L W , Hao Y C , Guo Y , Zhang Q , Li J , Gao W Y , Ren L , Su X , Hu L , Zhang N .
CrossRef
Google scholar
|
[121] |
Ye L , Li H , Xie K . Sustainable ammonia production enabled by membrane reactor. Nature Sustainability, 2022, 5(9): 787–794
CrossRef
Google scholar
|
[122] |
Liu D , Wang J , Bian S , Liu Q , Gao Y , Wang X , Chu P K , Yu X F . Photoelectrochemical ammonia synthesis: photoelectrochemical synthesis of ammonia with black phosphorus. Advanced Functional Materials, 2020, 30(24): 2070156
CrossRef
Google scholar
|
[123] |
Liu J , Zhang F , Wu H , Jiang Y , Yang P , Zhang W , Guo H , Cao Y , Yang G , Zhou Y . Efficient carrier transfer induced by Au nanoparticles for photoelectrochemical nitrogen reduction. Sustainable Energy & Fuels, 2023, 7(3): 883–889
CrossRef
Google scholar
|
[124] |
Oshikiri T , Ueno K , Misawa H . Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation. Angewandte Chemie International Edition, 2014, 53(37): 9802–9805
CrossRef
Google scholar
|
[125] |
Ali M , Zhou F , Chen K , Kotzur C , Xiao C , Bourgeois L , Zhang X , MacFarlane D R . Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nature Communications, 2016, 7(1): 11335
CrossRef
Google scholar
|
[126] |
Zhang J , Chen H , Duan X , Sun H , Wang S . Photothermal catalysis: from fundamentals to practical applications. Materials Today, 2023, 68: 234–253
CrossRef
Google scholar
|
[127] |
Wang S , Yu W , Xu S , Han K , Wang F . Ammonia from photothermal N2 hydrogenation over Ni/TiO2 catalysts under mild conditions. ACS Sustainable Chemistry & Engineering, 2022, 10(1): 115–123
CrossRef
Google scholar
|
[128] |
Mao C , Yu L , Li J , Zhao J , Zhang L . Energy-confined solar thermal ammonia synthesis with K/Ru/TiO2-xHx. Applied Catalysis B: Environmental, 2018, 224: 612–620
CrossRef
Google scholar
|
[129] |
Mao C , Wang J , Zou Y , Shi Y , Viasus C J , Loh J Y Y , Xia M , Ji S , Li M , Shang H .
CrossRef
Google scholar
|
[130] |
Zheng J , Lu L , Lebedev K , Wu S , Zhao P , McPherson I J , Wu T S , Kato R , Li Y , Ho P L .
CrossRef
Google scholar
|
[131] |
Ye D , Tsang S C E . Prospects and challenges of green ammonia synthesis. Nature Synthesis, 2023, 2(7): 612–623
CrossRef
Google scholar
|
[132] |
Wang L , Xia M , Wang H , Huang K , Qian C , Maravelias C T , Ozin G A . Greening ammonia toward the solar ammonia refinery. Joule, 2018, 2(6): 1055–1074
CrossRef
Google scholar
|
[133] |
WangMKhanM AMohsinIWicksJIpA HSumonK ZDinhC TSargentE HGatesI DKibriaM G. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber-Bosch processes? Energy & Environmental Science, 2021, 14(5): 2535–2548
|
[134] |
Smith C , Hill A K , Torrente Murciano L . Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape. Energy & Environmental Science, 2020, 13(2): 331–344
CrossRef
Google scholar
|
[135] |
Hochman G , Goldman A S , Felder F A , Mayer J M , Miller A J M , Holland P L , Goldman L A , Manocha P , Song Z , Aleti S . Potential economic feasibility of direct electrochemical nitrogen reduction as a route to ammonia. ACS Sustainable Chemistry & Engineering, 2020, 8(24): 8938–8948
CrossRef
Google scholar
|
[136] |
Arnaiz del Pozo C , Cloete S . Techno-economic assessment of blue and green ammonia as energy carriers in a low-carbon future. Energy Conversion and Management, 2022, 255: 115312
CrossRef
Google scholar
|
[137] |
Parkinson B , Balcombe P , Speirs J F , Hawkes A D , Hellgardt K . Levelized cost of CO2 mitigation from hydrogen production routes. Energy & Environmental Science, 2019, 12(1): 19–40
CrossRef
Google scholar
|
[138] |
MacFarlane D R , Cherepanov P V , Choi J , Suryanto B H R , Hodgetts R Y , Bakker J M , Ferrero Vallana F M , Simonov A N . A roadmap to the ammonia economy. Joule, 2020, 4(6): 1186–1205
CrossRef
Google scholar
|
[139] |
Zhang S , Zhao Y , Shi R , Waterhouse G I N , Zhang T . Photocatalytic ammonia synthesis: recent progress and future. EnergyChem, 2019, 1(2): 100013
CrossRef
Google scholar
|
[140] |
Lin B , Wiesner T , Malmali M . Performance of a small-scale haber process: a techno-economic analysis. ACS Sustainable Chemistry & Engineering, 2020, 8(41): 15517–15531
CrossRef
Google scholar
|
[141] |
Liu X , Shen Z , Peng X , Tian L , Hao R , Wang L , Xu Y , Liu Y , Maravelias C T , Li W .
CrossRef
Google scholar
|
/
〈 | 〉 |