Role of catalyst surface-active sites in the hydrogenation of α,β-unsaturated aldehyde

Haixiang Shi, Tongming Su, Zuzeng Qin, Hongbing Ji

PDF(4632 KB)
PDF(4632 KB)
Front. Chem. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (6) : 64. DOI: 10.1007/s11705-024-2423-3
REVIEW ARTICLE

Role of catalyst surface-active sites in the hydrogenation of α,β-unsaturated aldehyde

Author information +
History +

Abstract

As an important technology in fine chemical production, the selective hydrogenation of α,β-unsaturated aldehydes has attracted much attention in recent years. In the process of α,β-unsaturated aldehyde hydrogenation, a conjugated system is formed between >C=C< and >C=O, leading to hydrogenation at both ends of the conjugated system, which competes with each other and results in more complex products. Therefore, improving the reaction selectivity is also difficult in industrial fields. Recently, many researchers have reported that surface-active sites on catalysts play a crucial role in α,β-unsaturated aldehyde hydrogenation. This review attempts to summarize recent advances in understanding the effects of surface-active sites (SASs) over metal catalysts for enhancing the process of hydrogenation. The construction strategies and roles of SASs for hydrogenation catalysts are summarized. Particular attention has been given to the adsorption configuration and transformation mechanism of α,β-unsaturated aldehydes on catalysts, which contributes to understanding the relationship between SASs and hydrogenation activity. In addition, recent advances in metal-supported catalysts for the selective hydrogenation of α,β-unsaturated aldehydes to understand the role of SASs in hydrogenation are briefly reviewed. Finally, the opportunities and challenges will be highlighted for the future development of the precise construction of SASs.

Graphical abstract

Keywords

α,β-unsaturated aldehydes / hydrogenation / active site / cinnamaldehyde

Cite this article

Download citation ▾
Haixiang Shi, Tongming Su, Zuzeng Qin, Hongbing Ji. Role of catalyst surface-active sites in the hydrogenation of α,β-unsaturated aldehyde. Front. Chem. Sci. Eng., 2024, 18(6): 64 https://doi.org/10.1007/s11705-024-2423-3

References

[1]
Mäki-Arvela P , Hájek J , Salmi T , Murzin D Y . Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts. Applied Catalysis A: General, 2005, 292: 1–49
CrossRef Google scholar
[2]
Stolle A , Gallert T , Schmöger C , Ondruschka B . Hydrogenation of citral: a wide-spread model reaction for selective reduction of α,β-unsaturated aldehydes. RSC Advances, 2013, 3(7): 2112–2153
CrossRef Google scholar
[3]
Gallezot P , Richard D . Selective hydrogenation of α,β-unsaturated aldehydes. Catalysis Reviews. Science and Engineering, 1998, 40(1–2): 81–126
CrossRef Google scholar
[4]
Laref S , Delbecq F , Loffreda D . Theoretical elucidation of the selectivity changes for the hydrogenation of unsaturated aldehydes on Pt (111). Journal of Catalysis, 2009, 265(1): 35–42
CrossRef Google scholar
[5]
Bailón-García E , Maldonado-Hódar F , Pérez-Cadenas A , Carrasco-Marín F . Catalysts supported on carbon materials for the selective hydrogenation of citral. Catalysts, 2013, 3(4): 853–877
CrossRef Google scholar
[6]
Wang X , Liang X , Geng P , Li Q . Recent advances in selective hydrogenation of cinnamaldehyde over supported metal-based catalysts. ACS Catalysis, 2020, 10(4): 2395–2412
CrossRef Google scholar
[7]
Luneau M , Lim J S , Patel D A , Sykes E C H , Friend C M , Sautet P . Guidelines to achieving high selectivity for the hydrogenation of α,β-unsaturated aldehydes with bimetallic and dilute alloy catalysts: a review. Chemical Reviews, 2020, 120(23): 12834–12872
CrossRef Google scholar
[8]
Delbecq F . Influence of Sn additives on the selectivity of hydrogenation of α-β-unsaturated aldehydes with Pt catalysts: a density functional study of molecular adsorption. Journal of Catalysis, 2003, 220(1): 115–126
CrossRef Google scholar
[9]
Li X , Zhang S , Zhu L , Liu J , Zhang H , Zhao N , Chen B H . Ptmx/SBA-15 (m = Co, Cu, Ni and Zn) bimetallic catalysts for crotonaldehyde selective hydrogenation. Materials Chemistry and Physics, 2023, 294: 127003
CrossRef Google scholar
[10]
Mohire S S , Yadav G D . Selective synthesis of hydrocinnamaldehyde over bimetallic Ni–Cu nanocatalyst supported on graphene oxide. Industrial & Engineering Chemistry Research, 2018, 57(28): 9083–9093
CrossRef Google scholar
[11]
Han S , Liu Y , Li J , Li R , Yuan F , Zhu Y . Improvement effect of Ni to Pd-Ni/SBA-15 catalyst for selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Catalysts, 2018, 8(5): 200
CrossRef Google scholar
[12]
Jia A , Yao X , Feng L , Ma Z , Li F , Wang Y . Synthesis of hierarchically porous amorphous alloy hollow sphere with high surface area as effective and selective catalysts for cinnamaldehyde hydrogenation. European Journal of Inorganic Chemistry, 2020, 2020(13): 1184–1191
CrossRef Google scholar
[13]
Lv Y , Han M , Gong W , Wang D , Chen C , Wang G , Zhang H , Zhao H . Fe–Co alloyed nanoparticles catalyzing efficient hydrogenation of cinnamaldehyde to cinnamyl alcohol in water. Angewandte Chemie International Edition, 2020, 59(52): 23521–23526
CrossRef Google scholar
[14]
RojasHDíazGMartínezJ JCastañedaCGómez-CortésAArenas-AlatorreJ. Hydrogenation of α,β-unsaturated carbonyl compounds over Au and Ir supported on SiO2. Journal of Molecular Catalysis A Chemical, 2012, 363–364: 122–128
[15]
Jiang F , Cai J , Liu B , Xu Y , Liu X . Particle size effects in the selective hydrogenation of cinnamaldehyde over supported palladium catalysts. RSC Advances, 2016, 6(79): 75541–75551
CrossRef Google scholar
[16]
Alfilfil L , Ran J , Chen C , Dong X , Wang J , Han Y . Highly dispersed Pd nanoparticles confined in ZSM-5 zeolite crystals for selective hydrogenation of cinnamaldehyde. Microporous and Mesoporous Materials, 2022, 330: 111566
CrossRef Google scholar
[17]
Das A , Mondal S , Hansda K M , Adak M K , Dhak D . A critical review on the role of carbon supports of metal catalysts for selective catalytic hydrogenation of chloronitrobenzenes. Applied Catalysis A: General, 2023, 649: 118955
CrossRef Google scholar
[18]
Chen Z , Chen J , Li Y . Metal-organic-framework-based catalysts for hydrogenation reactions. Chinese Journal of Catalysis, 2017, 38(7): 1108–1126
CrossRef Google scholar
[19]
Zahid M , Ismail A , Sohail M , Zhu Y . Improving selective hydrogenation of carbonyls bond in α,β-unsaturated aldehydes over Pt nanoparticles encaged within the amines-functionalized MIL-101-NH2. Journal of Colloid and Interface Science, 2022, 628: 141–152
CrossRef Google scholar
[20]
Miao C , Zhang F , Cai L , Hui T , Feng J , Li D . Identification and insight into the role of ultrathin LDH-induced dual-interface sites for selective cinnamaldehyde hydrogenation. ChemCatChem, 2021, 13(23): 4937–4947
CrossRef Google scholar
[21]
Zhang J , Gao M , Zhu P , Wang Y , Wang R , Zheng Z . Photocatalytic selective hydrogenation of α,β-unsaturated aldehydes over oxygen vacancies enriched layered double hydroxide supported Co3O4 nanoparticles photocatalyst. Fuel, 2022, 330: 125589
CrossRef Google scholar
[22]
Zhang R , Wang L , Yang X , Tao Z , Ren X , Lv B . The role of surface N-H groups on the selective hydrogenation of cinnamaldehyde over Co/BN catalysts. Applied Surface Science, 2019, 492: 736–745
CrossRef Google scholar
[23]
Cao Z , Bu J , Zhong Z , Sun C , Zhang Q , Wang J , Chen S , Xie X . Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over BN-supported Pt catalysts at room temperature. Applied Catalysis A: General, 2019, 578: 105–115
CrossRef Google scholar
[24]
Zhang J , Gao Z , Wang S , Wang G , Gao X , Zhang B , Xing S , Zhao S , Qin Y . Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction. Nature Communications, 2019, 10(1): 4166
CrossRef Google scholar
[25]
Ning L , Zhang M , Liao S , Zhang Y , Jia D , Yan Y , Gu W , Liu X . Differentiation of Pt–Fe and Pt–Ni3 surface catalytic mechanisms towards contrasting products in chemoselective hydrogenation of α,β-unsaturated aldehydes. ChemCatChem, 2021, 13(2): 704–711
CrossRef Google scholar
[26]
Yang K , Li Y , Wang R , Li Q , Huang B , Guo X , Zhu Z , Su T , Lü H . Synthesis of dual-active-sites Ni–Ni2In catalysts for selective hydrogenation of furfural to furfuryl alcohol. Fuel, 2022, 325: 124898
CrossRef Google scholar
[27]
Zhang S , Xia Z , Zhang M , Zou Y , Shen H , Li J , Chen X , Qu Y . Boosting selective hydrogenation through hydrogen spillover on supported-metal catalysts at room temperature. Applied Catalysis B: Environmental, 2021, 297: 120418
CrossRef Google scholar
[28]
Wang K , He X , Wang J C , Liang X . Highly stable Pt-Co bimetallic catalysts prepared by atomic layer deposition for selective hydrogenation of cinnamaldehyde. Nanotechnology, 2022, 33(21): 215602
CrossRef Google scholar
[29]
Kardos J , Harmat V , Palló A , Barabás O , Szilágyi K , Gráf L , Náray-Szabó G , Goto Y , Závodszky P , Gál P . Revisiting the mechanism of the autoactivation of the complement protease C1r in the C1 complex: structure of the active catalytic region of C1r. Molecular Immunology, 2008, 45(6): 1752–1760
CrossRef Google scholar
[30]
Shi Y , Zhou Y , Lou Y , Chen Z , Xiong H , Zhu Y . Homogeneity of supported single-atom active sites boosting the selective catalytic transformations. Advanced Science, 2022, 9(24): 2201520
CrossRef Google scholar
[31]
Xu E , Feng H , Wang L , Zhang Y , Liu K , Cui S , Meng H , Wang G , Yang Y . Pt single atoms and nanosized clusters as catalytic reaction platforms for selective hydrogenation applications. ACS Applied Nano Materials, 2023, 6(16): 14991–15001
CrossRef Google scholar
[32]
Guo W , Wang Z , Wang X , Wu Y . General design concept for single-atom catalysts toward heterogeneous catalysis. Advanced Materials, 2021, 33(34): 2004287
CrossRef Google scholar
[33]
Zhang L , Zhou M , Wang A , Zhang T . Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chemical Reviews, 2020, 120(2): 683–733
CrossRef Google scholar
[34]
Lan X , Wang T . Highly selective catalysts for the hydrogenation of unsaturated aldehydes: a review. ACS Catalysis, 2020, 10(4): 2764–2790
CrossRef Google scholar
[35]
Santana C G , Krische M J . From hydrogenation to transfer hydrogenation to hydrogen auto-transfer in enantioselective metal-catalyzed carbonyl reductive coupling: past, present, and future. ACS Catalysis, 2021, 11(9): 5572–5585
CrossRef Google scholar
[36]
Xin H , Zhang W , Xiao X , Chen L , Wu P , Li X . Selective hydrogenation of cinnamaldehyde with NixFe1–xAl2O4+δ composite oxides supported Pt catalysts: C=O versus C=C selectivity switch by varying the Ni/Fe molar ratios. Journal of Catalysis, 2021, 393: 126–139
CrossRef Google scholar
[37]
Wang F F , Guo R , Jian C P , Zhang W , Xue R F , Chen D L , Zhang F M , Zhu W D . Mechanism of catalytic transfer hydrogenation for furfural using single Ni atom catalysts anchored to nitrogen-doped graphene sheets. Inorganic Chemistry, 2022, 61(24): 9138–9146
CrossRef Google scholar
[38]
Lan X , Xue K , Wang T . Combined synergetic and steric effects for highly selective hydrogenation of unsaturated aldehyde. Journal of Catalysis, 2019, 372: 49–60
CrossRef Google scholar
[39]
Lin W , Cheng H , Li X , Zhang C , Zhao F , Arai M . Layered double hydroxide-like Mg3Al1–xFex materials as supports for ir catalysts: promotional effects of Fe doping in selective hydrogenation of cinnamaldehyde. Chinese Journal of Catalysis, 2018, 39(5): 988–996
CrossRef Google scholar
[40]
Dai Y , Chu X , Gu J , Gao X , Xu M , Lu D , Wan X , Qi W , Zhang B , Yang Y . Water-enhanced selective hydrogenation of cinnamaldehyde to cinnamyl alcohol on RuSnB/CeO2 catalysts. Applied Catalysis A: General, 2019, 582: 117098
CrossRef Google scholar
[41]
de la Peña O’Shea V A , Moreira I P R , Roldán A , Illas F . Electronic and magnetic structure of bulk cobalt: the α, β, and ε-phases from density functional theory calculations. Journal of Chemical Physics, 2010, 133(2): 024701
CrossRef Google scholar
[42]
Hu H , Xi J . Single-atom catalysis for organic reactions. Chinese Chemical Letters, 2023, 34(6): 107959
CrossRef Google scholar
[43]
Ren Y , Yang Y , Wei M . Recent advances on heterogeneous non-noble metal catalysts toward selective hydrogenation reactions. ACS Catalysis, 2023, 13(13): 8902–8924
CrossRef Google scholar
[44]
Zhao X , Chang Y , Chen W , Wu Q , Pan X , Chen K , Weng B . Recent progress in Pd-based nanocatalysts for selective hydrogenation. ACS Omega, 2022, 7(1): 17–31
CrossRef Google scholar
[45]
Gao R , Pan L , Wang H , Yao Y , Zhang X , Wang L , Zou J J . Breaking trade-off between selectivity and activity of nickel-based hydrogenation catalysts by tuning both steric effect and d-band center. Advanced Science, 2019, 6(10): 1900054
CrossRef Google scholar
[46]
Song S , Liu X , Li J , Pan J , Wang F , Xing Y , Wang X , Liu X , Zhang H . Confining the nucleation of Pt to in situ form (Pt-enriched cage)@CeO2 core@shell nanostructure as excellent catalysts for hydrogenation reactions. Advanced Materials, 2017, 29(28): 1700495
CrossRef Google scholar
[47]
Long Y , Song S , Li J , Wu L , Wang Q , Liu Y , Jin R , Zhang H . Pt/CeO2@MOF core@shell nanoreactor for selective hydrogenation of furfural via the channel screening effect. ACS Catalysis, 2018, 8(9): 8506–8512
CrossRef Google scholar
[48]
Hu Q , Wang S , Gao Z , Li Y , Zhang Q , Xiang Q , Qin Y . The precise decoration of Pt nanoparticles with Fe oxide by atomic layer deposition for the selective hydrogenation of cinnamaldehyde. Applied Catalysis B: Environmental, 2017, 218: 591–599
CrossRef Google scholar
[49]
Padmanaban S , Lee Y , Yoon S . Chemoselective hydrogenation of α,β-unsaturated carbonyl compounds using a recyclable Ru catalyst embedded on a bisphosphine based POP. Journal of Industrial and Engineering Chemistry, 2021, 94: 361–367
CrossRef Google scholar
[50]
Liu C , Zhu P , Wang J , Liu H , Zhang X . Geometrically embedding dispersive Pt nanoparticles within silicalite-1 framework for highly selective ɑ,β-unsaturated aldehydes hydrogenation via oriented C=O adsorption configuration. Chemical Engineering Journal, 2022, 446: 137064
CrossRef Google scholar
[51]
Chen B , Yang X , Xu Y , Hu S , Zeng X , Liu Y , Tan K B , Huang J , Zhan G . Semi-hydrogenation of α,β-unsaturated aldehydes over sandwich-structured nanocatalysts prepared by phase transformation of thin-film Al2O3 to Al-TCPP. Nanoscale, 2022, 14(42): 15749–15759
CrossRef Google scholar
[52]
Prashar A K , Mayadevi S , Nandini Devi R . Effect of particle size on selective hydrogenation of cinnamaldehyde by Pt encapsulated in mesoporous silica. Catalysis Communications, 2012, 28: 42–46
CrossRef Google scholar
[53]
Prakash M G , Mahalakshmy R , Krishnamurthy K R , Viswanathan B . Selective hydrogenation of cinnamaldehyde on nickel nanoparticles supported on titania: role of catalyst preparation methods. Catalysis Science & Technology, 2015, 5(6): 3313–3321
CrossRef Google scholar
[54]
Zhu W , Chen C . Reaction: open up the era of atomically precise catalysis. Chem, 2019, 5(11): 2737–2739
CrossRef Google scholar
[55]
Wang X , He Y , Liu Y , Park J , Liang X . Atomic layer deposited Pt–Co bimetallic catalysts for selective hydrogenation of α,β-unsaturated aldehydes to unsaturated alcohols. Journal of Catalysis, 2018, 366: 61–69
CrossRef Google scholar
[56]
Weng Z , Zaera F . Atomic layer deposition (ALD) as a way to prepare new mixed-oxide catalyst supports: the case of alumina addition to silica-supported platinum for the selective hydrogenation of cinnamaldehyde. Topics in Catalysis, 2019, 62(12–16): 838–848
CrossRef Google scholar
[57]
Li J , Guan Q , Wu H , Liu W , Lin Y , Sun Z , Ye X , Zheng X , Pan H , Zhu J . . Highly active and stable metal single-atom catalysts achieved by strong electronic metal-support interactions. Journal of the American Chemical Society, 2019, 141(37): 14515–14519
CrossRef Google scholar
[58]
Qiao B , Liu J , Wang Y , Lin Q , Liu X , Wang A , Li J , Zhang T , Liu J . Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catalysis, 2015, 5(11): 6249–6254
CrossRef Google scholar
[59]
Wei H , Liu X , Wang A , Zhang L , Qiao B , Yang X , Huang Y , Miao S , Liu J , Zhang T . FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nature Communications, 2014, 5(1): 5634
CrossRef Google scholar
[60]
Yang H , Shang L , Zhang Q , Shi R , Waterhouse G I N , Gu L , Zhang T . A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nature Communications, 2019, 10(1): 4585
CrossRef Google scholar
[61]
Zhang Z , Feng C , Liu C , Zuo M , Qin L , Yan X , Xing Y , Li H , Si R , Zhou S . . Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nature Communications, 2020, 11(1): 1215
CrossRef Google scholar
[62]
Kusumawati E N , Sasaki T , Shirai M . Highly active Pt-Co bimetallic nanoparticles on ionic liquid-modified SBA-15 for solvent-free selective hydrogenation of cinnamaldehyde. ACS Applied Nano Materials, 2023, 6(19): 17913–17923
CrossRef Google scholar
[63]
Su J , Shi W , Liu X , Zhang L , Cheng S , Zhang Y , Botton G A , Zhang B . Probing the performance of structurally controlled platinum-cobalt bimetallic catalysts for selective hydrogenation of cinnamaldehyde. Journal of Catalysis, 2020, 388: 164–170
CrossRef Google scholar
[64]
Wang H , Bai S , Pi Y , Shao Q , Tan Y , Huang X . A strongly coupled ultrasmall Pt3Co nanoparticle-ultrathin Co(OH)2 nanosheet architecture enhances selective hydrogenation of α,β-unsaturated aldehydes. ACS Catalysis, 2019, 9(1): 154–159
CrossRef Google scholar
[65]
Yuan E , Wang C , Wu C , Shi G , Jian P , Hou X . Constructing a Pd–Co interface to tailor a d-band center for highly efficient hydroconversion of furfural over cobalt oxide-supported Pd catalysts. ACS Applied Materials & Interfaces, 2023, 15(37): 43845–43858
CrossRef Google scholar
[66]
Li H , Cui K , Lei Y , Chen J , Li Y , Liu D , Xiong W . Enhanced chemoselective hydrogenation of cinnamaldehyde via Pt–Fe/Fe-NTA nanocatalysts under low temperature. Catalysis Letters, 2023, 153(9): 2571–2580
CrossRef Google scholar
[67]
Gao X , Tian S , Jin Y , Wan X , Zhou C , Chen R , Dai Y , Yang Y . Bimetallic PtFe-catalyzed selective hydrogenation of furfural to furfuryl alcohol: solvent effect of isopropanol and hydrogen activation. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12722–12730
CrossRef Google scholar
[68]
Qu P F , Chen J G , Song Y H , Liu Z T , Liu Z W , Li Y , Lu J , Jiang J Q . Effect of Fe(III) on hydrogenation of citral over Pt supported multiwalled carbon nanotube. Catalysis Communications, 2015, 68: 105–109
CrossRef Google scholar
[69]
Chen X , Cao H , Chen X , Du Y , Qi J , Luo J , Armbruster M , Liang C . Synthesis of intermetallic Pt-based catalysts by lithium naphthalenide-driven reduction for selective hydrogenation of cinnamaldehyde. ACS Applied Materials & Interfaces, 2020, 12(16): 18551–18561
CrossRef Google scholar
[70]
Yang Y , Rao D , Chen Y , Dong S , Wang B , Zhang X , Wei M . Selective hydrogenation of cinnamaldehyde over Co-based intermetallic compounds derived from layered double hydroxides. ACS Catalysis, 2018, 8(12): 11749–11760
CrossRef Google scholar
[71]
Chen M , Yan Y , Gebre M , Ordonez C , Liu F , Qi L , Lamkins A , Jing D , Dolge K , Zhang B . . Thermal unequilibrium of PdSn intermetallic nanocatalysts: from in situ tailored synthesis to unexpected hydrogenation selectivity. Angewandte Chemie International Edition, 2021, 60(33): 18309–18317
CrossRef Google scholar
[72]
Meng Y , Xia S , Zhou X , Pan G . Mechanism of selective hydrogenation of cinnamaldehyde on Ni–Pt (111) with different structures: a comparative study. Chemical Physics Letters, 2020, 740: 137049
CrossRef Google scholar
[73]
Kumar P , Sharma P K , Nannaware A D , Chanotiya C S , Mohapatra P , Rout P K . Regulating the catalytic activities of Ni and Pd through doping on Fe2O3HT for selective hydrogenation of conjugated aldehyde (citral) in lemongrass essential oil to organoleptically superior monoterpene alcohols (geraniol/nerol). Applied Catalysis A: General, 2023, 661: 119236
CrossRef Google scholar
[74]
Li C , Chen Y , Zhang S , Xu S , Zhou J , Wang F , Wei M , Evans D G , Duan X . Ni–In intermetallic nanocrystals as efficient catalysts toward unsaturated aldehydes hydrogenation. Chemistry of Materials, 2013, 25(19): 3888–3896
CrossRef Google scholar
[75]
Rodiansono M D , Astuti D R , Mujiyanti U T , Santoso S . Novel preparation method of bimetallic Ni–In alloy catalysts supported on amorphous alumina for the highly selective hydrogenation of furfural. Molecular Catalysis, 2018, 445: 52–60
CrossRef Google scholar
[76]
Stassi J P , Zgolicz P D , Rodríguez V I , De Miguel S R , Scelza O A . Ga and In promoters in bimetallic Pt based catalysts to improve the performance in the selective hydrogenation of citral. Applied Catalysis A: General, 2015, 497: 58–71
CrossRef Google scholar
[77]
Cao Y , Chen B , Guerrero-Sánchez J , Lee I , Zhou X , Takeuchi N , Zaera F . Controlling selectivity in unsaturated aldehyde hydrogenation using single-site alloy catalysts. ACS Catalysis, 2019, 9(10): 9150–9157
CrossRef Google scholar
[78]
Ciotonea C , Chirieac A , Dragoi B , Dhainaut J , Marinova M , Pronier S , Arii-Clacens S , Dacquin J P , Dumitriu E , Ungureanu A . . Playing on 3d spatial distribution of Cu–Co (oxide) nanoparticles in inorganic mesoporous sieves: impact on catalytic performance toward the cinnamaldehyde hydrogenation. Applied Catalysis A: General, 2021, 623: 118303
CrossRef Google scholar
[79]
Islam M J , Granollers Mesa M , Osatiashtiani A , Taylor M J , Isaacs M A , Kyriakou G . The hydrogenation of crotonaldehyde on PdCu single atom alloy catalysts. Nanomaterials, 2023, 13(8): 1434
CrossRef Google scholar
[80]
Wu B H , Huang H Q , Yang J , Zheng N F , Fu G . Selective hydrogenation of α,β‐unsaturated aldehydes catalyzed by amine-capped platinum-cobalt nanocrystals. Angewandte Chemie International Edition, 2012, 51(14): 3440–3443
CrossRef Google scholar
[81]
Wu Q , Zhang C , Arai M , Zhang B , Shi R , Wu P , Wang Z , Liu Q , Liu K , Lin W . . Pt/TiH2 catalyst for ionic hydrogenation via stored hydrides in the presence of gaseous H2. ACS Catalysis, 2019, 9(7): 6425–6434
CrossRef Google scholar
[82]
Liang Y , Douthwaite M , Huang X , Zhao B , Tang Q , Liu L , Dong J . Zero-oxidation state precursor assisted fabrication of highly dispersed and stable Pt catalyst for chemoselective hydrogenation of α,β-unsaturated aldehydes. Nano Research, 2023, 16(5): 6085–6093
CrossRef Google scholar
[83]
Liang Y , Tang Q , Liu L , Wang D , Dong J . Fabrication of highly oxidized Pt single-atom catalysts to suppress the deep hydrogenation of unsaturated aldehydes. Applied Catalysis B: Environmental, 2023, 333: 122783
CrossRef Google scholar
[84]
Li L , Jiao Z F , Zhao J X , Yao D , Li X , Guo X Y . Boosting the selectivity of Pt catalysts for cinnamaldehyde hydrogenation to cinnamylalcohol by surface oxidation of SiC support. Journal of Catalysis, 2023, 425: 314–321
CrossRef Google scholar
[85]
Shen H , Zhao H , Yang J , Zhao J , Yan L , Chou L , Song H . A facile strategy for incorporation of PtCo alloy into UiO-66-NH2 for cinnamaldehyde hydrogenation. Catalysis Communications, 2023, 181: 106714
CrossRef Google scholar
[86]
Zahid M , Li J , Ismail A , Zaera F , Zhu Y . Platinum and cobalt intermetallic nanoparticles confined within MIL-101(Cr) for enhanced selective hydrogenation of the carbonyl bond in α,β-unsaturated aldehydes: synergistic effects of electronically modified Pt sites and lewis acid sites. Catalysis Science & Technology, 2021, 11(7): 2433–2445
CrossRef Google scholar
[87]
Xin H , Xue Y , Zhang W , Wu P , Li X . CoxFe1–xAl2O4+δ composite oxides supported Pt nanoparticles as efficient and recyclable catalysts for the liquid-phase selective hydrogenation of cinnamaldehyde. Journal of Catalysis, 2019, 380: 254–266
CrossRef Google scholar
[88]
Gu Z , Chen L , Li X , Chen L , Zhang Y , Duan C . NH2-MIL-125(Ti)-derived porous cages of titanium oxides to support Pt-Co alloys for chemoselective hydrogenation reactions. Chemical Science, 2019, 10(7): 2111–2117
CrossRef Google scholar
[89]
Shen H , Zhao H , Yang J , Zhao J , Yan L , Chou L , Song H . The structure and electronic effects of ZIF-8 and ZIF-67 supported Pt catalysts for crotonaldehyde selective hydrogenation. New Journal of Chemistry, 2022, 46(7): 3095–3105
CrossRef Google scholar
[90]
Lo W S , Chou L Y , Young A P , Ren C , Goh T W , Williams B P , Li Y , Chen S Y , Ismail M N , Huang W . . Probing the interface between encapsulated nanoparticles and metal-organic frameworks for catalytic selectivity control. Chemistry of Materials, 2021, 33(6): 1946–1953
CrossRef Google scholar
[91]
Ye H , Zhao H , Jiang Y , Liu H , Hou Z . Catalytic transfer hydrogenation of the C=O bond in unsaturated aldehydes over Pt nanoparticles embedded in porous UiO-66 nanoparticles. ACS Applied Nano Materials, 2020, 3(12): 12260–12268
CrossRef Google scholar
[92]
Zhang T , Zhao H , Yang J , Zhao J , Yan L , Chou L , Song H . Dual interface synergistic catalysis: the selective hydrogenation of crotonaldehyde over Pt/Co3O4@PDA. Catalysis Letters, 2023, 153(4): 965–977
CrossRef Google scholar
[93]
Hou F , Zhao H , Song H , Chou L , Zhao J , Yang J , Yan L . Effect of impregnation strategy on catalytic hydrogenation behavior of ptco catalysts supported on La2O2CO3 nanorods. Journal of Rare Earths, 2018, 36(9): 965–973
CrossRef Google scholar
[94]
Bailón-García E , Carrasco-Marín F , Pérez-Cadenas A F , Maldonado-Hódar F J . Influence of the pretreatment conditions on the development and performance of active sites of Pt/TiO2 catalysts used for the selective citral hydrogenation. Journal of Catalysis, 2015, 327: 86–95
CrossRef Google scholar
[95]
Zgolicz P D , Stassi J P , Yañez M J , Scelza O A , De Miguel S R . Influence of the support and the preparation methods on the performance in citral hydrogenation of Pt-based catalysts supported on carbon nanotubes. Journal of Catalysis, 2012, 290: 37–54
CrossRef Google scholar
[96]
Ramos Montero G E , Stassi J P , De Miguel S R , Zgolicz P D . Hydrogenation of citral and carvone on Pt and PtSn supported metallic catalysts. A comparative study on the regioselectivity and chemoselectivity. Reaction Chemistry & Engineering, 2023, 8(12): 3133–3149
CrossRef Google scholar
[97]
Barrales-Cortés C A , Pérez-Pastenes H , Piña-Victoria J C , Viveros-García T . Hydrogenation of citral on Pt/SiO2 catalysts: effect of Sn addition and type of solvent. Topics in Catalysis, 2020, 63(5–6): 468–480
CrossRef Google scholar
[98]
Rautio A R , Mäki-Arvela P , Aho A , Eränen K , Kordas K . Chemoselective hydrogenation of citral by Pt and Pt-Sn catalysts supported on TiO2 nanoparticles and nanowires. Catalysis Today, 2015, 241: 170–178
CrossRef Google scholar
[99]
Yan D , Li J , Zahid M , Li J , Zhu Y . Efficient catalytic selective hydrogenation of furfural to furfuryl alcohol over Pt-supported on surface amino functionalized hexagonal BN nanosheets. Applied Surface Science, 2023, 609: 155308
CrossRef Google scholar
[100]
Tian X , Dong Y , Zahid M . Synergetic catalysis of Pt/WN-TiO2 nanocomposites for selective hydrogenation of furfural to valuable furfuryl alcohol. Molecular Catalysis, 2023, 545: 113188
CrossRef Google scholar
[101]
Gao G , Remón J , Jiang Z , Yao L , Hu C . Selective hydrogenation of furfural to furfuryl alcohol in water under mild conditions over a hydrotalcite-derived Pt-based catalyst. Applied Catalysis B: Environmental, 2022, 309: 121260
CrossRef Google scholar
[102]
Byun M Y , Lee M S . Pt supported on hierarchical porous carbon for furfural hydrogenation. Journal of Industrial and Engineering Chemistry, 2021, 104: 406–415
CrossRef Google scholar
[103]
Yang Q , Gao D , Li C , Cao S , Li S , Zhao H , Li C , Zheng G , Chen G . Deposition of Pt clusters onto MOFs-derived CeO2 by ALD for selective hydrogenation of furfural. Fuel, 2022, 311: 122584
CrossRef Google scholar
[104]
Liu L , Lou H , Chen M . Selective hydrogenation of furfural over Pt based and Pd based bimetallic catalysts supported on modified multiwalled carbon nanotubes (MWNT). Applied Catalysis A: General, 2018, 550: 1–10
CrossRef Google scholar
[105]
Wang S , Wu C , Yu H , Chu Y , Wang S , Li T , Yin H . Tuning the catalytic performance of Pt/SiO2 catalysts by CoOx modification for selective hydrogenations of unsaturated carbonyl compounds. Applied Surface Science, 2022, 606: 154867
CrossRef Google scholar
[106]
Wang C , Wang S , Wu Z , Lv Y , Chen G , Zhao H , Gao D . Ga2O3–Pt dual-site functionally separated catalyst for efficient hydrogenation of furfural under hydrogen spillover. Fuel, 2024, 357: 129711
CrossRef Google scholar
[107]
Yang Q , Gao D , Li C , Wang S , Hu X , Zheng G , Chen G . Highly dispersed Pt on partial deligandation of Ce-MOFs for furfural selective hydrogenation. Applied Catalysis B: Environmental, 2023, 328: 122458
CrossRef Google scholar
[108]
Yu H , Xu Y , Havener K , Zhang L , Wu W , Liao X , Huang K . Efficient catalysis using honeycomb-like N-doped porous carbon supported Pt nanoparticles for the hydrogenation of cinnamaldehyde in water. Molecular Catalysis, 2022, 525: 112343
CrossRef Google scholar
[109]
Liang C , Li H , Peng M , Zhang X , Jiang Q , Cui J , Ding Y , Zhang Z C . Co decorated low Pt loading nanoparticles over TiO2 catalyst for selective hydrogenation of furfural. Applied Catalysis A: General, 2022, 643: 118766
CrossRef Google scholar
[110]
SarıbıyıkO YResascoD E. Selective hydrogenation of croton aldehyde on Pt nanoparticles controlled by tailoring fraction of well-ordered facets under different pretreatment conditions. Catalysis Letters, 2023: 1–13
[111]
Bailón-García E , Carrasco-Marín F , Pérez-Cadenas A F , Maldonado-Hódar F J . Influence of the Pt-particle size on the performance of carbon supported catalysts used in the hydrogenation of citral. Catalysis Communications, 2016, 82: 36–40
CrossRef Google scholar
[112]
Li L , Larsen A H , Romero N A , Morozov V A , Glinsvad C , Abild-Pedersen F , Greeley J , Jacobsen K W , Nørskov J K . Investigation of catalytic finite-size-effects of platinum metal clusters. Journal of Physical Chemistry Letters, 2013, 4(1): 222–226
CrossRef Google scholar
[113]
Cao Y , Guerrero-Sańchez J , Lee I , Zhou X , Takeuchi N , Zaera F . Kinetic study of the hydrogenation of unsaturated aldehydes promoted by CuPtx/SBA-15 single-atom alloy (SAA) catalysts. ACS Catalysis, 2020, 10(5): 3431–3443
CrossRef Google scholar
[114]
Wang H , Lan X , Wang S , Ali B , Wang T . Selective hydrogenation of 2-pentenal using highly dispersed Pt catalysts supported on znsnal mixed metal oxides derived from layered double hydroxides. Catalysis Science & Technology, 2020, 10(4): 1106–1116
CrossRef Google scholar
[115]
Cheng S , Lu S , Liu X , Li G , Wang F . Enhanced activity of alkali-treated ZSM-5 zeolite-supported Pt–Co catalyst for selective hydrogenation of cinnamaldehyde. Molecules, 2023, 28(4): 1730
CrossRef Google scholar
[116]
Goh T W , Tsung C K , Huang W . Spectroscopy identification of the bimetallic surface of metal-organic framework-confined Pt-Sn nanoclusters with enhanced chemoselectivity in furfural hydrogenation. ACS Applied Materials & Interfaces, 2019, 11(26): 23254–23260
CrossRef Google scholar
[117]
Luo W , Fang L , Meng Y , Xue J , Chen T , Xia S , Ni Z . Theoretical study on adsorption of α,β-unsaturated aldehydes on Ni–Pt(111) surfacet. Chemical Journal of Chinese Universities, 2019, 40: 115–122
[118]
Kolodziej M , Lalik E , Colmenares J C , Lisowski P , Gurgul J , Duraczyńska D , Drelinkiewicz A . Physicochemical and catalytic properties of Pd/MoO3 prepared by the sonophotodeposition method. Materials Chemistry and Physics, 2018, 204: 361–372
CrossRef Google scholar
[119]
Li Y , Cheng H , Lin W , Zhang C , Wu Q , Zhao F , Arai M . Solvent effects on heterogeneous catalysis in the selective hydrogenation of cinnamaldehyde over a conventional Pd/C catalyst. Catalysis Science & Technology, 2018, 8(14): 3580–3589
CrossRef Google scholar
[120]
Abasabadi R K , Khodadadi A A , Mortazavi Y . Effects of nitrogen-containing functional groups of reduced graphene oxide as a support for Pd in selective hydrogenation of cinnamaldehyde. Research on Chemical Intermediates, 2021, 47(4): 1429–1446
CrossRef Google scholar
[121]
Yuan H , Hong M , Dong F , Chen Y , Du X , Huang X , Gao J , Yang S . Dilute Pd3Co950 alloy encapsulated in defect- and N-rich carbon nanotubes for universal highly efficient aqueous-phase catalysis. Applied Catalysis B: Environmental, 2023, 334: 122864
CrossRef Google scholar
[122]
Hu M , Jin L , Zhu Y , Zhang L , Lu X , Kerns P , Su X , Cao S , Gao P , Suib S L . . Self-limiting growth of ligand-free ultrasmall bimetallic nanoparticles on carbon through under temperature reduction for highly efficient methanol electrooxidation and selective hydrogenation. Applied Catalysis B: Environmental, 2020, 264: 118553
CrossRef Google scholar
[123]
Xu T , Sun K , Gao D , Li C , Hu X , Chen G . Atomic-layer-deposition-formed sacrificial template for the construction of an MIL-53 shell to increase selectivity of hydrogenation reactions. Chemical Communications, 2019, 55(53): 7651–7654
CrossRef Google scholar
[124]
Hu T , Zhang L , Wang Y , Yue Z , Li Y , Ma J , Xiao H , Chen W , Zhao M , Zheng Z . . Defect engineering in Pd/NiCo2O4–x for selective hydrogenation of α,β-unsaturated carbonyl compounds under ambient conditions. ACS Sustainable Chemistry & Engineering, 2020, 8(21): 7851–7859
CrossRef Google scholar
[125]
Pinto J , Weilhard A , Norman L T , Lodge R W , Rogers D M , Gual A , Cano I , Khlobystov A N , Licence P , Alves Fernandes J . Unravelling synergistic effects in bi-metallic catalysts: deceleration of palladium-gold nanoparticle coarsening in the hydrogenation of cinnamaldehyde. Catalysis Science & Technology, 2023, 13(14): 4082–4091
CrossRef Google scholar
[126]
Wei Z , Gong Y , Xiong T , Zhang P , Li H , Wang Y . Highly efficient and chemoselective hydrogenation of α,β-unsaturated carbonyls over Pd/N-doped hierarchically porous carbon. Catalysis Science & Technology, 2015, 5(1): 397–404
CrossRef Google scholar
[127]
Patel A , Patel A . Selective C=C hydrogenation of unsaturated hydrocarbons in neat water over stabilized palladium nanoparticles via supported 12-tungstophosphoric acid. Catalysis Letters, 2019, 149(6): 1476–1485
CrossRef Google scholar
[128]
Harraz F A , El-Hout S E , Killa H M , Ibrahim I A . Catalytic hydrogenation of crotonaldehyde and oxidation of benzene over active and recyclable palladium nanoparticles stabilized by polyethylene glycol. Journal of Molecular Catalysis A: Chemical, 2013, 370: 182–188
CrossRef Google scholar
[129]
Zhu J , Li M , Lu M , Zhu J . Effect of structural properties on catalytic performance in citral selective hydrogenation over carbon-titania composite supported Pd catalyst. Catalysis Science & Technology, 2013, 3(3): 737–744
CrossRef Google scholar
[130]
Liu C , Nan C , Fan G , Yang L , Li F . Facile synthesis and synergistically acting catalytic performance of supported bimetallic pdni nanoparticle catalysts for selective hydrogenation of citral. Molecular Catalysis, 2017, 436: 237–247
CrossRef Google scholar
[131]
Wang Z , Wang X , Zhang C , Arai M , Zhou L , Zhao F . Selective hydrogenation of furfural to furfuryl alcohol over Pd/TiH2 catalyst. Molecular Catalysis, 2021, 508: 111599
CrossRef Google scholar
[132]
Silva W R , Matsubara E Y , Rosolen J M , Donate P M , Gunnella R . Pd catalysts supported on different hydrophilic or hydrophobic carbonaceous substrate for furfural and 5-(hydroxymethyl)-furfural hydrogenation in water. Molecular Catalysis, 2021, 504: 111496
CrossRef Google scholar
[133]
Gao B , Zhang J , Zhang M , Li H , Yang J H . Highly dispersed PdCu supported on MCM-41 for efficiently selective transfer hydrogenation of furfural into furfuryl alcohol. Applied Surface Science, 2023, 619: 156716
CrossRef Google scholar
[134]
Ruan L , Zhang H , Zhou M , Zhu L , Pei A , Wang J , Yang K , Zhang C , Xiao S , Chen B H . A highly selective and efficient Pd/Ni/Ni(OH)2/C catalyst for furfural hydrogenation at low temperatures. Molecular Catalysis, 2020, 480: 110639
CrossRef Google scholar
[135]
Zhao X , Wang Y , Zhai Z , Zhuang C , Tian D , Guo H , Zou X , Liu T X . Ultrafine Pd on a La metal-organic framework for selective hydrogenation of furfural via a metal-support electronic effect. ACS Applied Nano Materials, 2023, 6(10): 8315–8324
CrossRef Google scholar
[136]
Yan H , Ren Y , Zhang R , Chang F , Wei Q , Xu J . A one-pot hydrothermal preparation of high loading Ni/La2O3 catalyst for efficient hydrogenation of cinnamaldehyde. Catalysts, 2023, 13(2): 298
CrossRef Google scholar
[137]
Wei X , Rang X , Zhu W , Xiang M , Deng Y , Jiang F , Mao R , Zhang Z , Kong X , Wang F . Morphology effect of CeO2 on Ni/CeO2 catalysts for selective hydrogenation of cinnamaldehyde. Chemical Physics, 2021, 542: 111079
CrossRef Google scholar
[138]
Ling Y , Ge H , Chen J , Zhang Y , Duan Y , Liang M , Guo Y , Wu T S , Soo Y L , Yin X . . General strategy toward hydrophilic single atom catalysts for efficient selective hydrogenation. Advanced Science, 2022, 9(25): 2202144
CrossRef Google scholar
[139]
Ning L , Liao S , Li H , Tong R , Dong C , Zhang M , Gu W , Liu X . Carbon-based materials with tunable morphology confined Ni (0) and Ni–Nx active sites: highly efficient selective hydrogenation catalysts. Carbon, 2019, 154: 48–57
CrossRef Google scholar
[140]
Ren Y , Xu H , Han B , Xu J . Construction of N-doped carbon-modified Ni/SiO2 catalyst promoting cinnamaldehyde selective hydrogenation. Molecules, 2023, 28(10): 4136
CrossRef Google scholar
[141]
Xin H , Li M , Chen L , Zhao C , Wu P , Li X . Lanthanide oxide supported Ni nanoparticles for the selective hydrogenation of cinnamaldehyde. Catalysis Science & Technology, 2023, 13(5): 1488–1500
CrossRef Google scholar
[142]
Wang N , Liu J , Li X , Wang C , Ma L . One-pot synthesis of nickel encapsulated COF-derived catalyst for highly selective and efficient hydrogenation of cinnamaldehyde. Catalysis Communications, 2023, 177: 106658
CrossRef Google scholar
[143]
Tian F , Zhang M , Zhang X , Chen X , Wang J , Zhang Y , Meng C , Liang C . Porous carbon-encapsulated Ni nanocatalysts for selective catalytic hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Journal of Materials Science, 2022, 57(5): 3168–3182
CrossRef Google scholar
[144]
Patil K N , Manikanta P M , Srinivasappa P , Jadhav A H , Nagaraja B M . Exploring the confined space and active sites of Ni@OCNTs catalyst for chemoselective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Journal of Environmental Chemical Engineering, 2022, 10(5): 108208
CrossRef Google scholar
[145]
Chen Y , Liu W , Yin P , Ju M , Wang J , Yang W , Yang Y , Shen C . Synergistic effect between Ni single atoms and acid-base sites: mechanism investigation into catalytic transfer hydrogenation reaction. Journal of Catalysis, 2021, 393: 1–10
CrossRef Google scholar
[146]
Xu Y , Su T , Luo X , Qin Z , Ji H . Ni–Ti intercalated and supported bentonite for selective hydrogenation of cinnamaldehyde. ChemPhysChem, 2023, 24(10): e202200703
CrossRef Google scholar
[147]
Yu J , Yang Y , Chen L , Li Z , Liu W , Xu E , Zhang Y , Hong S , Zhang X , Wei M . NiBi intermetallic compounds catalyst toward selective hydrogenation of unsaturated aldehydes. Applied Catalysis B: Environmental, 2020, 277: 119273
CrossRef Google scholar
[148]
Zhao H , Song H , Chou L . Nickel nanoparticles supported on MOF-5: synthesis and catalytic hydrogenation properties. Inorganic Chemistry Communications, 2012, 15: 261–265
CrossRef Google scholar
[149]
Mahata N , Cunha A F , Órfão J J M , Figueiredo J L . Highly selective hydrogenation of C=C double bond in unsaturated carbonyl compounds over NiC catalyst. Chemical Engineering Journal, 2012, 188: 155–159
CrossRef Google scholar
[150]
Zhao H , Chou L , Song H . Exploration of Ni@Zn-MOCP via a wet impregnation strategy as a hydrogenation catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2011, 104(2): 451–465
CrossRef Google scholar
[151]
Kumar P , Sharma P K , Chaturvedi S , Chanotiya C S , Rauta P R , Mohapatra P , Rout P K . Synthesis of Ni-doped hydrotalcite catalyst through hydrothermal process for the selective reduction of α,β-unsaturated aldehyde (citral) to enantiospecific (+)-citronellal. Catalysis Letters, 2023, 153(10): 3019–3030
CrossRef Google scholar
[152]
Yang L , Jiang Z S , Fan G L , Li F . The promotional effect of ZnO addition to supported Ni nanocatalysts from layered double hydroxide precursors on selective hydrogenation of citral. Catalysis Science & Technology, 2014, 4(4): 1123–1131
CrossRef Google scholar
[153]
Tang Y , Yang D , Qin F , Hu J , Wang C , Xu H . Decorating multi-walled carbon nanotubes with nickel nanoparticles for selective hydrogenation of citral. Journal of Solid State Chemistry, 2009, 182(8): 2279–2284
CrossRef Google scholar
[154]
Wonglekha K , Tolek W , Mekasuwandumrong O , Chaitree W , Praserthdam P , Moon Lee K , Panpranot J . Effects of TiO2 support and cobalt addition of Ni/TiO2 catalyst in selective hydrogenation of furfural to furfuryl alcohol. Journal of Renewable Materials, 2022, 10(8): 2055–2072
CrossRef Google scholar
[155]
Tang F , Wang L , Dessie Walle M , Mustapha A , Liu Y N . An alloy chemistry strategy to tailoring the d-band center of Ni by Cu for efficient and selective catalytic hydrogenation of furfural. Journal of Catalysis, 2020, 383: 172–180
CrossRef Google scholar
[156]
Putro W S , Kojima T , Hara T , Ichikuni N , Shimazu S . Selective hydrogenation of unsaturated carbonyls by Ni-Fe-based alloy catalysts. Catalysis Science & Technology, 2017, 7(16): 3637–3646
CrossRef Google scholar
[157]
Meng X , Yang Y , Chen L , Xu M , Zhang X , Wei M . A control over hydrogenation selectivity of furfural via tuning exposed facet of Ni catalysts. ACS Catalysis, 2019, 9(5): 4226–4235
CrossRef Google scholar
[158]
Zhang J , Mao D , Wu D . Industrially applicable aqueous-phase selective hydrogenation of furfural on an efficient TiOx-modified Ni nanocatalyst. ACS Sustainable Chemistry & Engineering, 2021, 9(41): 13902–13914
CrossRef Google scholar
[159]
Balla P , Seelam P K , Balaga R , Rajesh R , Perupogu V , Liang T X . Immobilized highly dispersed Ni nanoparticles over porous carbon as an efficient catalyst for selective hydrogenation of furfural and levulinic acid. Journal of Environmental Chemical Engineering, 2021, 9(6): 106530
CrossRef Google scholar
[160]
Fan Y , Zhuang C , Li S , Wang Y , Zou X , Liu X , Huang W , Zhu G . Efficient single-atom Ni for catalytic transfer hydrogenation of furfural to furfuryl alcohol. Journal of Materials Chemistry A, 2021, 9(2): 1110–1118
CrossRef Google scholar
[161]
Yi D , Min Y , Muzzi B , Marty A , Romana I , Fazzini P F , Blon T , Viau G , Serp P , Soulantica K . Epsilon cobalt nanoparticles as highly performant catalysts in cinnamaldehyde selective hydrogenation. ACS Applied Nano Materials, 2022, 5(4): 5498–5507
CrossRef Google scholar
[162]
Zhang R , Wang L , Ren J , Hu C , Lv B . Effect of boron nitride overlayers on Co@BNNSs/BN-catalyzed aqueous phase selective hydrogenation of cinnamaldehyde. Journal of Colloid and Interface Science, 2023, 630: 549–558
CrossRef Google scholar
[163]
Shen Y , Chen C , Zou Z , Hu Z , Fu Z , Li W , Pan S , Zhang Y , Zhang H , Yu Z . . Geometric and electronic effects of Co@NPC catalyst in chemoselective hydrogenation: tunable activity and selectivity via N,P co-doping. Journal of Catalysis, 2023, 421: 65–76
CrossRef Google scholar
[164]
Bustamante T M , Fraga M A , Fierro J L G , Campos C H , Pecchi G . Cobalt SiO2 core-shell catalysts for chemoselective hydrogenation of cinnamaldehyde. Catalysis Today, 2020, 356: 330–338
CrossRef Google scholar
[165]
Cui H , Liu S , Lv Y , Wu S , Wang L , Hao F , Liu P , Xiong W , Luo H . Transfer hydrogenation of cinnamaldehyde to cinnamyl alcohol in hydrophobically modified core-shell MOFs nanoreactor: identification of the formed metal-N as the structure of an active site. Journal of Catalysis, 2020, 381: 468–481
CrossRef Google scholar
[166]
Zhao J , Malgras V , Na J , Liang R , Cai Y , Kang Y , Alshehri A A , Alzahrani K A , Alghamdi Y G , Asahi T . . Magnetically induced synthesis of mesoporous amorphous CoB nanochains for efficient selective hydrogenation of cinnamaldehyde to cinnamyl alcohol. Chemical Engineering Journal, 2020, 398: 125564
CrossRef Google scholar
[167]
Li H , Liu J , Xie S , Qiao M , Dai W , Li H . Highly active Co-B amorphous alloy catalyst with uniform nanoparticles prepared in oil-in-water microemulsion. Journal of Catalysis, 2008, 259(1): 104–110
CrossRef Google scholar
[168]
Mo M , Tang J , Zou L , Xun Y , Guan H . Improvement and regeneration of Co–B amorphous alloy nanowires for the selective hydrogenation of cinnamaldehyde. RSC Advances, 2022, 12(51): 33099–33107
CrossRef Google scholar
[169]
Pei Y , Guo P , Qiao M , Li H , Wei S , He H , Fan K . The modification effect of Fe on amorphous CoB alloy catalyst for chemoselective hydrogenation of crotonaldehyde. Journal of Catalysis, 2007, 248(2): 303–310
CrossRef Google scholar
[170]
Kurokawa H , Mori K , Yoshida K , Ohshima M A , Sugiyama K , Miura H . The promoting effect of halogen ions on selective hydrogenation of (E)-2-butenal to (E)-2-buten-1-ol over alumina-supported cobalt catalyst. Catalysis Communications, 2005, 6(12): 766–769
CrossRef Google scholar
[171]
Kouachi K , Lafaye G , Especel C , Cherifi O , Marécot P . Preparation of silica-supported cobalt catalysts from water-in-oil microemulsion for selective hydrogenation of citral. Journal of Molecular Catalysis A: Chemical, 2009, 308(1–2): 142–149
CrossRef Google scholar
[172]
Di X , Lafaye G , Especel C , Epron F , Qi J , Li C , Liang C . Supported Co–Re bimetallic catalysts with different structures as efficient catalysts for hydrogenation of citral. ChemSusChem, 2019, 12(4): 807–823
CrossRef Google scholar
[173]
Zhou J , Yang Y , Li C , Zhang S , Chen Y , Shi S , Wei M . Synthesis of Co–Sn intermetallic nanocatalysts toward selective hydrogenation of citral. Journal of Materials Chemistry A, 2016, 4(33): 12825–12832
CrossRef Google scholar
[174]
Liu Y J , Zhang D H , Li X C , Deng S J , Zhao D , Zhang N , Chen C . Construction of highly-dispersed and composition-adjustable CoxN in stable Co@CoxN@C nanocomposite catalysts via a dual-ligand-MOF strategy for the selective hydrogenation of citral. Applied Surface Science, 2020, 505: 144387
CrossRef Google scholar
[175]
Tian Y , Feng Y , Li Z , Fan Y , Sperry J , Sun Y , Yang S , Tang X , Lin L , Zeng X . Green and efficient selective hydrogenation of furfural to furfuryl alcohol over hybrid CoOx/Nb2O5 nanocatalyst in water. Molecular Catalysis, 2023, 538: 112981
CrossRef Google scholar
[176]
Liu W , Hua J , Su S , Yang X . A highly accessible and robust carbon-coated cobalt nanoparticle catalyst for furfural hydrogenative valorization at mild reaction. Molecular Catalysis, 2023, 551: 113647
CrossRef Google scholar
[177]
Ishikawa H , Sheng M , Nakata A , Nakajima K , Yamazoe S , Yamasaki J , Yamaguchi S , Mizugaki T , Mitsudome T . Air-stable and reusable cobalt phosphide nanoalloy catalyst for selective hydrogenation of furfural derivatives. ACS Catalysis, 2021, 11(2): 750–757
CrossRef Google scholar
[178]
Xu L , Nie R , Lyu X , Wang J , Lu X . Selective hydrogenation of furfural to furfuryl alcohol without external hydrogen over N-doped carbon confined Co catalysts. Fuel Processing Technology, 2020, 197: 106205
CrossRef Google scholar
[179]
Jiang P , Li X , Gao W , Wang X , Tang Y , Lan K , Wang B , Li R . Highly selective hydrogenation of α,β-unsaturated carbonyl compounds over supported Co nanoparticles. Catalysis Communications, 2018, 111: 6–9
CrossRef Google scholar
[180]
Gong W , Chen C , Zhang H , Wang G , Zhao H . Highly dispersed Co and Ni nanoparticles encapsulated in N-doped carbon nanotubes as efficient catalysts for the reduction of unsaturated oxygen compounds in aqueous phase. Catalysis Science & Technology, 2018, 8(21): 5506–5514
CrossRef Google scholar
[181]
Li S , Fan Y , Wu C , Zhuang C , Wang Y , Li X , Zhao J , Zheng Z . Selective hydrogenation of furfural over the Co-based catalyst: a subtle synergy with Ni and Zn dopants. ACS Applied Materials & Interfaces, 2021, 13(7): 8507–8517
CrossRef Google scholar
[182]
Gong W B , Han M M , Chen C , Lin Y , Wang G H , Zhang H M , Zhao H J . CoO@Co nanoparticle-based catalyst for efficient selective transfer hydrogenation of α,β-unsaturated aldehydes. ChemCatChem, 2020, 12(4): 1019–1024
CrossRef Google scholar
[183]
Tian Y , Chen B , Yu Z , Huang R , Yan G , Li Z , Sun Y , Yang S , Tang X , Lin L . . Efficient catalytic hydrogenation of furfural over cobalt-based catalysts with adjustable acidity. Chemical Engineering Science, 2023, 270: 118527
CrossRef Google scholar

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21968007), the Guangxi Natural Science Foundation (Grant No. 2020GXNSFDA297007), the Opening Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (Grant No. 2023K002), and Special funding for ‘Guangxi Bagui Scholars’.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(4632 KB)

Accesses

Citations

Detail

Sections
Recommended

/