Role of catalyst surface-active sites in the hydrogenation of α,β-unsaturated aldehyde
Haixiang Shi, Tongming Su, Zuzeng Qin, Hongbing Ji
Role of catalyst surface-active sites in the hydrogenation of α,β-unsaturated aldehyde
As an important technology in fine chemical production, the selective hydrogenation of α,β-unsaturated aldehydes has attracted much attention in recent years. In the process of α,β-unsaturated aldehyde hydrogenation, a conjugated system is formed between >C=C< and >C=O, leading to hydrogenation at both ends of the conjugated system, which competes with each other and results in more complex products. Therefore, improving the reaction selectivity is also difficult in industrial fields. Recently, many researchers have reported that surface-active sites on catalysts play a crucial role in α,β-unsaturated aldehyde hydrogenation. This review attempts to summarize recent advances in understanding the effects of surface-active sites (SASs) over metal catalysts for enhancing the process of hydrogenation. The construction strategies and roles of SASs for hydrogenation catalysts are summarized. Particular attention has been given to the adsorption configuration and transformation mechanism of α,β-unsaturated aldehydes on catalysts, which contributes to understanding the relationship between SASs and hydrogenation activity. In addition, recent advances in metal-supported catalysts for the selective hydrogenation of α,β-unsaturated aldehydes to understand the role of SASs in hydrogenation are briefly reviewed. Finally, the opportunities and challenges will be highlighted for the future development of the precise construction of SASs.
α,β-unsaturated aldehydes / hydrogenation / active site / cinnamaldehyde
[1] |
Mäki-Arvela P , Hájek J , Salmi T , Murzin D Y . Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts. Applied Catalysis A: General, 2005, 292: 1–49
CrossRef
Google scholar
|
[2] |
Stolle A , Gallert T , Schmöger C , Ondruschka B . Hydrogenation of citral: a wide-spread model reaction for selective reduction of α,β-unsaturated aldehydes. RSC Advances, 2013, 3(7): 2112–2153
CrossRef
Google scholar
|
[3] |
Gallezot P , Richard D . Selective hydrogenation of α,β-unsaturated aldehydes. Catalysis Reviews. Science and Engineering, 1998, 40(1–2): 81–126
CrossRef
Google scholar
|
[4] |
Laref S , Delbecq F , Loffreda D . Theoretical elucidation of the selectivity changes for the hydrogenation of unsaturated aldehydes on Pt (111). Journal of Catalysis, 2009, 265(1): 35–42
CrossRef
Google scholar
|
[5] |
Bailón-García E , Maldonado-Hódar F , Pérez-Cadenas A , Carrasco-Marín F . Catalysts supported on carbon materials for the selective hydrogenation of citral. Catalysts, 2013, 3(4): 853–877
CrossRef
Google scholar
|
[6] |
Wang X , Liang X , Geng P , Li Q . Recent advances in selective hydrogenation of cinnamaldehyde over supported metal-based catalysts. ACS Catalysis, 2020, 10(4): 2395–2412
CrossRef
Google scholar
|
[7] |
Luneau M , Lim J S , Patel D A , Sykes E C H , Friend C M , Sautet P . Guidelines to achieving high selectivity for the hydrogenation of α,β-unsaturated aldehydes with bimetallic and dilute alloy catalysts: a review. Chemical Reviews, 2020, 120(23): 12834–12872
CrossRef
Google scholar
|
[8] |
Delbecq F . Influence of Sn additives on the selectivity of hydrogenation of α-β-unsaturated aldehydes with Pt catalysts: a density functional study of molecular adsorption. Journal of Catalysis, 2003, 220(1): 115–126
CrossRef
Google scholar
|
[9] |
Li X , Zhang S , Zhu L , Liu J , Zhang H , Zhao N , Chen B H . Ptmx/SBA-15 (m = Co, Cu, Ni and Zn) bimetallic catalysts for crotonaldehyde selective hydrogenation. Materials Chemistry and Physics, 2023, 294: 127003
CrossRef
Google scholar
|
[10] |
Mohire S S , Yadav G D . Selective synthesis of hydrocinnamaldehyde over bimetallic Ni–Cu nanocatalyst supported on graphene oxide. Industrial & Engineering Chemistry Research, 2018, 57(28): 9083–9093
CrossRef
Google scholar
|
[11] |
Han S , Liu Y , Li J , Li R , Yuan F , Zhu Y . Improvement effect of Ni to Pd-Ni/SBA-15 catalyst for selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Catalysts, 2018, 8(5): 200
CrossRef
Google scholar
|
[12] |
Jia A , Yao X , Feng L , Ma Z , Li F , Wang Y . Synthesis of hierarchically porous amorphous alloy hollow sphere with high surface area as effective and selective catalysts for cinnamaldehyde hydrogenation. European Journal of Inorganic Chemistry, 2020, 2020(13): 1184–1191
CrossRef
Google scholar
|
[13] |
Lv Y , Han M , Gong W , Wang D , Chen C , Wang G , Zhang H , Zhao H . Fe–Co alloyed nanoparticles catalyzing efficient hydrogenation of cinnamaldehyde to cinnamyl alcohol in water. Angewandte Chemie International Edition, 2020, 59(52): 23521–23526
CrossRef
Google scholar
|
[14] |
RojasHDíazGMartínezJ JCastañedaCGómez-CortésAArenas-AlatorreJ. Hydrogenation of α,β-unsaturated carbonyl compounds over Au and Ir supported on SiO2. Journal of Molecular Catalysis A Chemical, 2012, 363–364: 122–128
|
[15] |
Jiang F , Cai J , Liu B , Xu Y , Liu X . Particle size effects in the selective hydrogenation of cinnamaldehyde over supported palladium catalysts. RSC Advances, 2016, 6(79): 75541–75551
CrossRef
Google scholar
|
[16] |
Alfilfil L , Ran J , Chen C , Dong X , Wang J , Han Y . Highly dispersed Pd nanoparticles confined in ZSM-5 zeolite crystals for selective hydrogenation of cinnamaldehyde. Microporous and Mesoporous Materials, 2022, 330: 111566
CrossRef
Google scholar
|
[17] |
Das A , Mondal S , Hansda K M , Adak M K , Dhak D . A critical review on the role of carbon supports of metal catalysts for selective catalytic hydrogenation of chloronitrobenzenes. Applied Catalysis A: General, 2023, 649: 118955
CrossRef
Google scholar
|
[18] |
Chen Z , Chen J , Li Y . Metal-organic-framework-based catalysts for hydrogenation reactions. Chinese Journal of Catalysis, 2017, 38(7): 1108–1126
CrossRef
Google scholar
|
[19] |
Zahid M , Ismail A , Sohail M , Zhu Y . Improving selective hydrogenation of carbonyls bond in α,β-unsaturated aldehydes over Pt nanoparticles encaged within the amines-functionalized MIL-101-NH2. Journal of Colloid and Interface Science, 2022, 628: 141–152
CrossRef
Google scholar
|
[20] |
Miao C , Zhang F , Cai L , Hui T , Feng J , Li D . Identification and insight into the role of ultrathin LDH-induced dual-interface sites for selective cinnamaldehyde hydrogenation. ChemCatChem, 2021, 13(23): 4937–4947
CrossRef
Google scholar
|
[21] |
Zhang J , Gao M , Zhu P , Wang Y , Wang R , Zheng Z . Photocatalytic selective hydrogenation of α,β-unsaturated aldehydes over oxygen vacancies enriched layered double hydroxide supported Co3O4 nanoparticles photocatalyst. Fuel, 2022, 330: 125589
CrossRef
Google scholar
|
[22] |
Zhang R , Wang L , Yang X , Tao Z , Ren X , Lv B . The role of surface N-H groups on the selective hydrogenation of cinnamaldehyde over Co/BN catalysts. Applied Surface Science, 2019, 492: 736–745
CrossRef
Google scholar
|
[23] |
Cao Z , Bu J , Zhong Z , Sun C , Zhang Q , Wang J , Chen S , Xie X . Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over BN-supported Pt catalysts at room temperature. Applied Catalysis A: General, 2019, 578: 105–115
CrossRef
Google scholar
|
[24] |
Zhang J , Gao Z , Wang S , Wang G , Gao X , Zhang B , Xing S , Zhao S , Qin Y . Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction. Nature Communications, 2019, 10(1): 4166
CrossRef
Google scholar
|
[25] |
Ning L , Zhang M , Liao S , Zhang Y , Jia D , Yan Y , Gu W , Liu X . Differentiation of Pt–Fe and Pt–Ni3 surface catalytic mechanisms towards contrasting products in chemoselective hydrogenation of α,β-unsaturated aldehydes. ChemCatChem, 2021, 13(2): 704–711
CrossRef
Google scholar
|
[26] |
Yang K , Li Y , Wang R , Li Q , Huang B , Guo X , Zhu Z , Su T , Lü H . Synthesis of dual-active-sites Ni–Ni2In catalysts for selective hydrogenation of furfural to furfuryl alcohol. Fuel, 2022, 325: 124898
CrossRef
Google scholar
|
[27] |
Zhang S , Xia Z , Zhang M , Zou Y , Shen H , Li J , Chen X , Qu Y . Boosting selective hydrogenation through hydrogen spillover on supported-metal catalysts at room temperature. Applied Catalysis B: Environmental, 2021, 297: 120418
CrossRef
Google scholar
|
[28] |
Wang K , He X , Wang J C , Liang X . Highly stable Pt-Co bimetallic catalysts prepared by atomic layer deposition for selective hydrogenation of cinnamaldehyde. Nanotechnology, 2022, 33(21): 215602
CrossRef
Google scholar
|
[29] |
Kardos J , Harmat V , Palló A , Barabás O , Szilágyi K , Gráf L , Náray-Szabó G , Goto Y , Závodszky P , Gál P . Revisiting the mechanism of the autoactivation of the complement protease C1r in the C1 complex: structure of the active catalytic region of C1r. Molecular Immunology, 2008, 45(6): 1752–1760
CrossRef
Google scholar
|
[30] |
Shi Y , Zhou Y , Lou Y , Chen Z , Xiong H , Zhu Y . Homogeneity of supported single-atom active sites boosting the selective catalytic transformations. Advanced Science, 2022, 9(24): 2201520
CrossRef
Google scholar
|
[31] |
Xu E , Feng H , Wang L , Zhang Y , Liu K , Cui S , Meng H , Wang G , Yang Y . Pt single atoms and nanosized clusters as catalytic reaction platforms for selective hydrogenation applications. ACS Applied Nano Materials, 2023, 6(16): 14991–15001
CrossRef
Google scholar
|
[32] |
Guo W , Wang Z , Wang X , Wu Y . General design concept for single-atom catalysts toward heterogeneous catalysis. Advanced Materials, 2021, 33(34): 2004287
CrossRef
Google scholar
|
[33] |
Zhang L , Zhou M , Wang A , Zhang T . Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chemical Reviews, 2020, 120(2): 683–733
CrossRef
Google scholar
|
[34] |
Lan X , Wang T . Highly selective catalysts for the hydrogenation of unsaturated aldehydes: a review. ACS Catalysis, 2020, 10(4): 2764–2790
CrossRef
Google scholar
|
[35] |
Santana C G , Krische M J . From hydrogenation to transfer hydrogenation to hydrogen auto-transfer in enantioselective metal-catalyzed carbonyl reductive coupling: past, present, and future. ACS Catalysis, 2021, 11(9): 5572–5585
CrossRef
Google scholar
|
[36] |
Xin H , Zhang W , Xiao X , Chen L , Wu P , Li X . Selective hydrogenation of cinnamaldehyde with NixFe1–xAl2O4+δ composite oxides supported Pt catalysts: C=O versus C=C selectivity switch by varying the Ni/Fe molar ratios. Journal of Catalysis, 2021, 393: 126–139
CrossRef
Google scholar
|
[37] |
Wang F F , Guo R , Jian C P , Zhang W , Xue R F , Chen D L , Zhang F M , Zhu W D . Mechanism of catalytic transfer hydrogenation for furfural using single Ni atom catalysts anchored to nitrogen-doped graphene sheets. Inorganic Chemistry, 2022, 61(24): 9138–9146
CrossRef
Google scholar
|
[38] |
Lan X , Xue K , Wang T . Combined synergetic and steric effects for highly selective hydrogenation of unsaturated aldehyde. Journal of Catalysis, 2019, 372: 49–60
CrossRef
Google scholar
|
[39] |
Lin W , Cheng H , Li X , Zhang C , Zhao F , Arai M . Layered double hydroxide-like Mg3Al1–xFex materials as supports for ir catalysts: promotional effects of Fe doping in selective hydrogenation of cinnamaldehyde. Chinese Journal of Catalysis, 2018, 39(5): 988–996
CrossRef
Google scholar
|
[40] |
Dai Y , Chu X , Gu J , Gao X , Xu M , Lu D , Wan X , Qi W , Zhang B , Yang Y . Water-enhanced selective hydrogenation of cinnamaldehyde to cinnamyl alcohol on RuSnB/CeO2 catalysts. Applied Catalysis A: General, 2019, 582: 117098
CrossRef
Google scholar
|
[41] |
de la Peña O’Shea V A , Moreira I P R , Roldán A , Illas F . Electronic and magnetic structure of bulk cobalt: the α, β, and ε-phases from density functional theory calculations. Journal of Chemical Physics, 2010, 133(2): 024701
CrossRef
Google scholar
|
[42] |
Hu H , Xi J . Single-atom catalysis for organic reactions. Chinese Chemical Letters, 2023, 34(6): 107959
CrossRef
Google scholar
|
[43] |
Ren Y , Yang Y , Wei M . Recent advances on heterogeneous non-noble metal catalysts toward selective hydrogenation reactions. ACS Catalysis, 2023, 13(13): 8902–8924
CrossRef
Google scholar
|
[44] |
Zhao X , Chang Y , Chen W , Wu Q , Pan X , Chen K , Weng B . Recent progress in Pd-based nanocatalysts for selective hydrogenation. ACS Omega, 2022, 7(1): 17–31
CrossRef
Google scholar
|
[45] |
Gao R , Pan L , Wang H , Yao Y , Zhang X , Wang L , Zou J J . Breaking trade-off between selectivity and activity of nickel-based hydrogenation catalysts by tuning both steric effect and d-band center. Advanced Science, 2019, 6(10): 1900054
CrossRef
Google scholar
|
[46] |
Song S , Liu X , Li J , Pan J , Wang F , Xing Y , Wang X , Liu X , Zhang H . Confining the nucleation of Pt to in situ form (Pt-enriched cage)@CeO2 core@shell nanostructure as excellent catalysts for hydrogenation reactions. Advanced Materials, 2017, 29(28): 1700495
CrossRef
Google scholar
|
[47] |
Long Y , Song S , Li J , Wu L , Wang Q , Liu Y , Jin R , Zhang H . Pt/CeO2@MOF core@shell nanoreactor for selective hydrogenation of furfural via the channel screening effect. ACS Catalysis, 2018, 8(9): 8506–8512
CrossRef
Google scholar
|
[48] |
Hu Q , Wang S , Gao Z , Li Y , Zhang Q , Xiang Q , Qin Y . The precise decoration of Pt nanoparticles with Fe oxide by atomic layer deposition for the selective hydrogenation of cinnamaldehyde. Applied Catalysis B: Environmental, 2017, 218: 591–599
CrossRef
Google scholar
|
[49] |
Padmanaban S , Lee Y , Yoon S . Chemoselective hydrogenation of α,β-unsaturated carbonyl compounds using a recyclable Ru catalyst embedded on a bisphosphine based POP. Journal of Industrial and Engineering Chemistry, 2021, 94: 361–367
CrossRef
Google scholar
|
[50] |
Liu C , Zhu P , Wang J , Liu H , Zhang X . Geometrically embedding dispersive Pt nanoparticles within silicalite-1 framework for highly selective ɑ,β-unsaturated aldehydes hydrogenation via oriented C=O adsorption configuration. Chemical Engineering Journal, 2022, 446: 137064
CrossRef
Google scholar
|
[51] |
Chen B , Yang X , Xu Y , Hu S , Zeng X , Liu Y , Tan K B , Huang J , Zhan G . Semi-hydrogenation of α,β-unsaturated aldehydes over sandwich-structured nanocatalysts prepared by phase transformation of thin-film Al2O3 to Al-TCPP. Nanoscale, 2022, 14(42): 15749–15759
CrossRef
Google scholar
|
[52] |
Prashar A K , Mayadevi S , Nandini Devi R . Effect of particle size on selective hydrogenation of cinnamaldehyde by Pt encapsulated in mesoporous silica. Catalysis Communications, 2012, 28: 42–46
CrossRef
Google scholar
|
[53] |
Prakash M G , Mahalakshmy R , Krishnamurthy K R , Viswanathan B . Selective hydrogenation of cinnamaldehyde on nickel nanoparticles supported on titania: role of catalyst preparation methods. Catalysis Science & Technology, 2015, 5(6): 3313–3321
CrossRef
Google scholar
|
[54] |
Zhu W , Chen C . Reaction: open up the era of atomically precise catalysis. Chem, 2019, 5(11): 2737–2739
CrossRef
Google scholar
|
[55] |
Wang X , He Y , Liu Y , Park J , Liang X . Atomic layer deposited Pt–Co bimetallic catalysts for selective hydrogenation of α,β-unsaturated aldehydes to unsaturated alcohols. Journal of Catalysis, 2018, 366: 61–69
CrossRef
Google scholar
|
[56] |
Weng Z , Zaera F . Atomic layer deposition (ALD) as a way to prepare new mixed-oxide catalyst supports: the case of alumina addition to silica-supported platinum for the selective hydrogenation of cinnamaldehyde. Topics in Catalysis, 2019, 62(12–16): 838–848
CrossRef
Google scholar
|
[57] |
Li J , Guan Q , Wu H , Liu W , Lin Y , Sun Z , Ye X , Zheng X , Pan H , Zhu J .
CrossRef
Google scholar
|
[58] |
Qiao B , Liu J , Wang Y , Lin Q , Liu X , Wang A , Li J , Zhang T , Liu J . Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catalysis, 2015, 5(11): 6249–6254
CrossRef
Google scholar
|
[59] |
Wei H , Liu X , Wang A , Zhang L , Qiao B , Yang X , Huang Y , Miao S , Liu J , Zhang T . FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nature Communications, 2014, 5(1): 5634
CrossRef
Google scholar
|
[60] |
Yang H , Shang L , Zhang Q , Shi R , Waterhouse G I N , Gu L , Zhang T . A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nature Communications, 2019, 10(1): 4585
CrossRef
Google scholar
|
[61] |
Zhang Z , Feng C , Liu C , Zuo M , Qin L , Yan X , Xing Y , Li H , Si R , Zhou S .
CrossRef
Google scholar
|
[62] |
Kusumawati E N , Sasaki T , Shirai M . Highly active Pt-Co bimetallic nanoparticles on ionic liquid-modified SBA-15 for solvent-free selective hydrogenation of cinnamaldehyde. ACS Applied Nano Materials, 2023, 6(19): 17913–17923
CrossRef
Google scholar
|
[63] |
Su J , Shi W , Liu X , Zhang L , Cheng S , Zhang Y , Botton G A , Zhang B . Probing the performance of structurally controlled platinum-cobalt bimetallic catalysts for selective hydrogenation of cinnamaldehyde. Journal of Catalysis, 2020, 388: 164–170
CrossRef
Google scholar
|
[64] |
Wang H , Bai S , Pi Y , Shao Q , Tan Y , Huang X . A strongly coupled ultrasmall Pt3Co nanoparticle-ultrathin Co(OH)2 nanosheet architecture enhances selective hydrogenation of α,β-unsaturated aldehydes. ACS Catalysis, 2019, 9(1): 154–159
CrossRef
Google scholar
|
[65] |
Yuan E , Wang C , Wu C , Shi G , Jian P , Hou X . Constructing a Pd–Co interface to tailor a d-band center for highly efficient hydroconversion of furfural over cobalt oxide-supported Pd catalysts. ACS Applied Materials & Interfaces, 2023, 15(37): 43845–43858
CrossRef
Google scholar
|
[66] |
Li H , Cui K , Lei Y , Chen J , Li Y , Liu D , Xiong W . Enhanced chemoselective hydrogenation of cinnamaldehyde via Pt–Fe/Fe-NTA nanocatalysts under low temperature. Catalysis Letters, 2023, 153(9): 2571–2580
CrossRef
Google scholar
|
[67] |
Gao X , Tian S , Jin Y , Wan X , Zhou C , Chen R , Dai Y , Yang Y . Bimetallic PtFe-catalyzed selective hydrogenation of furfural to furfuryl alcohol: solvent effect of isopropanol and hydrogen activation. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12722–12730
CrossRef
Google scholar
|
[68] |
Qu P F , Chen J G , Song Y H , Liu Z T , Liu Z W , Li Y , Lu J , Jiang J Q . Effect of Fe(III) on hydrogenation of citral over Pt supported multiwalled carbon nanotube. Catalysis Communications, 2015, 68: 105–109
CrossRef
Google scholar
|
[69] |
Chen X , Cao H , Chen X , Du Y , Qi J , Luo J , Armbruster M , Liang C . Synthesis of intermetallic Pt-based catalysts by lithium naphthalenide-driven reduction for selective hydrogenation of cinnamaldehyde. ACS Applied Materials & Interfaces, 2020, 12(16): 18551–18561
CrossRef
Google scholar
|
[70] |
Yang Y , Rao D , Chen Y , Dong S , Wang B , Zhang X , Wei M . Selective hydrogenation of cinnamaldehyde over Co-based intermetallic compounds derived from layered double hydroxides. ACS Catalysis, 2018, 8(12): 11749–11760
CrossRef
Google scholar
|
[71] |
Chen M , Yan Y , Gebre M , Ordonez C , Liu F , Qi L , Lamkins A , Jing D , Dolge K , Zhang B .
CrossRef
Google scholar
|
[72] |
Meng Y , Xia S , Zhou X , Pan G . Mechanism of selective hydrogenation of cinnamaldehyde on Ni–Pt (111) with different structures: a comparative study. Chemical Physics Letters, 2020, 740: 137049
CrossRef
Google scholar
|
[73] |
Kumar P , Sharma P K , Nannaware A D , Chanotiya C S , Mohapatra P , Rout P K . Regulating the catalytic activities of Ni and Pd through doping on Fe2O3HT for selective hydrogenation of conjugated aldehyde (citral) in lemongrass essential oil to organoleptically superior monoterpene alcohols (geraniol/nerol). Applied Catalysis A: General, 2023, 661: 119236
CrossRef
Google scholar
|
[74] |
Li C , Chen Y , Zhang S , Xu S , Zhou J , Wang F , Wei M , Evans D G , Duan X . Ni–In intermetallic nanocrystals as efficient catalysts toward unsaturated aldehydes hydrogenation. Chemistry of Materials, 2013, 25(19): 3888–3896
CrossRef
Google scholar
|
[75] |
Rodiansono M D , Astuti D R , Mujiyanti U T , Santoso S . Novel preparation method of bimetallic Ni–In alloy catalysts supported on amorphous alumina for the highly selective hydrogenation of furfural. Molecular Catalysis, 2018, 445: 52–60
CrossRef
Google scholar
|
[76] |
Stassi J P , Zgolicz P D , Rodríguez V I , De Miguel S R , Scelza O A . Ga and In promoters in bimetallic Pt based catalysts to improve the performance in the selective hydrogenation of citral. Applied Catalysis A: General, 2015, 497: 58–71
CrossRef
Google scholar
|
[77] |
Cao Y , Chen B , Guerrero-Sánchez J , Lee I , Zhou X , Takeuchi N , Zaera F . Controlling selectivity in unsaturated aldehyde hydrogenation using single-site alloy catalysts. ACS Catalysis, 2019, 9(10): 9150–9157
CrossRef
Google scholar
|
[78] |
Ciotonea C , Chirieac A , Dragoi B , Dhainaut J , Marinova M , Pronier S , Arii-Clacens S , Dacquin J P , Dumitriu E , Ungureanu A .
CrossRef
Google scholar
|
[79] |
Islam M J , Granollers Mesa M , Osatiashtiani A , Taylor M J , Isaacs M A , Kyriakou G . The hydrogenation of crotonaldehyde on PdCu single atom alloy catalysts. Nanomaterials, 2023, 13(8): 1434
CrossRef
Google scholar
|
[80] |
Wu B H , Huang H Q , Yang J , Zheng N F , Fu G . Selective hydrogenation of α,β‐unsaturated aldehydes catalyzed by amine-capped platinum-cobalt nanocrystals. Angewandte Chemie International Edition, 2012, 51(14): 3440–3443
CrossRef
Google scholar
|
[81] |
Wu Q , Zhang C , Arai M , Zhang B , Shi R , Wu P , Wang Z , Liu Q , Liu K , Lin W .
CrossRef
Google scholar
|
[82] |
Liang Y , Douthwaite M , Huang X , Zhao B , Tang Q , Liu L , Dong J . Zero-oxidation state precursor assisted fabrication of highly dispersed and stable Pt catalyst for chemoselective hydrogenation of α,β-unsaturated aldehydes. Nano Research, 2023, 16(5): 6085–6093
CrossRef
Google scholar
|
[83] |
Liang Y , Tang Q , Liu L , Wang D , Dong J . Fabrication of highly oxidized Pt single-atom catalysts to suppress the deep hydrogenation of unsaturated aldehydes. Applied Catalysis B: Environmental, 2023, 333: 122783
CrossRef
Google scholar
|
[84] |
Li L , Jiao Z F , Zhao J X , Yao D , Li X , Guo X Y . Boosting the selectivity of Pt catalysts for cinnamaldehyde hydrogenation to cinnamylalcohol by surface oxidation of SiC support. Journal of Catalysis, 2023, 425: 314–321
CrossRef
Google scholar
|
[85] |
Shen H , Zhao H , Yang J , Zhao J , Yan L , Chou L , Song H . A facile strategy for incorporation of PtCo alloy into UiO-66-NH2 for cinnamaldehyde hydrogenation. Catalysis Communications, 2023, 181: 106714
CrossRef
Google scholar
|
[86] |
Zahid M , Li J , Ismail A , Zaera F , Zhu Y . Platinum and cobalt intermetallic nanoparticles confined within MIL-101(Cr) for enhanced selective hydrogenation of the carbonyl bond in α,β-unsaturated aldehydes: synergistic effects of electronically modified Pt sites and lewis acid sites. Catalysis Science & Technology, 2021, 11(7): 2433–2445
CrossRef
Google scholar
|
[87] |
Xin H , Xue Y , Zhang W , Wu P , Li X . CoxFe1–xAl2O4+δ composite oxides supported Pt nanoparticles as efficient and recyclable catalysts for the liquid-phase selective hydrogenation of cinnamaldehyde. Journal of Catalysis, 2019, 380: 254–266
CrossRef
Google scholar
|
[88] |
Gu Z , Chen L , Li X , Chen L , Zhang Y , Duan C . NH2-MIL-125(Ti)-derived porous cages of titanium oxides to support Pt-Co alloys for chemoselective hydrogenation reactions. Chemical Science, 2019, 10(7): 2111–2117
CrossRef
Google scholar
|
[89] |
Shen H , Zhao H , Yang J , Zhao J , Yan L , Chou L , Song H . The structure and electronic effects of ZIF-8 and ZIF-67 supported Pt catalysts for crotonaldehyde selective hydrogenation. New Journal of Chemistry, 2022, 46(7): 3095–3105
CrossRef
Google scholar
|
[90] |
Lo W S , Chou L Y , Young A P , Ren C , Goh T W , Williams B P , Li Y , Chen S Y , Ismail M N , Huang W .
CrossRef
Google scholar
|
[91] |
Ye H , Zhao H , Jiang Y , Liu H , Hou Z . Catalytic transfer hydrogenation of the C=O bond in unsaturated aldehydes over Pt nanoparticles embedded in porous UiO-66 nanoparticles. ACS Applied Nano Materials, 2020, 3(12): 12260–12268
CrossRef
Google scholar
|
[92] |
Zhang T , Zhao H , Yang J , Zhao J , Yan L , Chou L , Song H . Dual interface synergistic catalysis: the selective hydrogenation of crotonaldehyde over Pt/Co3O4@PDA. Catalysis Letters, 2023, 153(4): 965–977
CrossRef
Google scholar
|
[93] |
Hou F , Zhao H , Song H , Chou L , Zhao J , Yang J , Yan L . Effect of impregnation strategy on catalytic hydrogenation behavior of ptco catalysts supported on La2O2CO3 nanorods. Journal of Rare Earths, 2018, 36(9): 965–973
CrossRef
Google scholar
|
[94] |
Bailón-García E , Carrasco-Marín F , Pérez-Cadenas A F , Maldonado-Hódar F J . Influence of the pretreatment conditions on the development and performance of active sites of Pt/TiO2 catalysts used for the selective citral hydrogenation. Journal of Catalysis, 2015, 327: 86–95
CrossRef
Google scholar
|
[95] |
Zgolicz P D , Stassi J P , Yañez M J , Scelza O A , De Miguel S R . Influence of the support and the preparation methods on the performance in citral hydrogenation of Pt-based catalysts supported on carbon nanotubes. Journal of Catalysis, 2012, 290: 37–54
CrossRef
Google scholar
|
[96] |
Ramos Montero G E , Stassi J P , De Miguel S R , Zgolicz P D . Hydrogenation of citral and carvone on Pt and PtSn supported metallic catalysts. A comparative study on the regioselectivity and chemoselectivity. Reaction Chemistry & Engineering, 2023, 8(12): 3133–3149
CrossRef
Google scholar
|
[97] |
Barrales-Cortés C A , Pérez-Pastenes H , Piña-Victoria J C , Viveros-García T . Hydrogenation of citral on Pt/SiO2 catalysts: effect of Sn addition and type of solvent. Topics in Catalysis, 2020, 63(5–6): 468–480
CrossRef
Google scholar
|
[98] |
Rautio A R , Mäki-Arvela P , Aho A , Eränen K , Kordas K . Chemoselective hydrogenation of citral by Pt and Pt-Sn catalysts supported on TiO2 nanoparticles and nanowires. Catalysis Today, 2015, 241: 170–178
CrossRef
Google scholar
|
[99] |
Yan D , Li J , Zahid M , Li J , Zhu Y . Efficient catalytic selective hydrogenation of furfural to furfuryl alcohol over Pt-supported on surface amino functionalized hexagonal BN nanosheets. Applied Surface Science, 2023, 609: 155308
CrossRef
Google scholar
|
[100] |
Tian X , Dong Y , Zahid M . Synergetic catalysis of Pt/WN-TiO2 nanocomposites for selective hydrogenation of furfural to valuable furfuryl alcohol. Molecular Catalysis, 2023, 545: 113188
CrossRef
Google scholar
|
[101] |
Gao G , Remón J , Jiang Z , Yao L , Hu C . Selective hydrogenation of furfural to furfuryl alcohol in water under mild conditions over a hydrotalcite-derived Pt-based catalyst. Applied Catalysis B: Environmental, 2022, 309: 121260
CrossRef
Google scholar
|
[102] |
Byun M Y , Lee M S . Pt supported on hierarchical porous carbon for furfural hydrogenation. Journal of Industrial and Engineering Chemistry, 2021, 104: 406–415
CrossRef
Google scholar
|
[103] |
Yang Q , Gao D , Li C , Cao S , Li S , Zhao H , Li C , Zheng G , Chen G . Deposition of Pt clusters onto MOFs-derived CeO2 by ALD for selective hydrogenation of furfural. Fuel, 2022, 311: 122584
CrossRef
Google scholar
|
[104] |
Liu L , Lou H , Chen M . Selective hydrogenation of furfural over Pt based and Pd based bimetallic catalysts supported on modified multiwalled carbon nanotubes (MWNT). Applied Catalysis A: General, 2018, 550: 1–10
CrossRef
Google scholar
|
[105] |
Wang S , Wu C , Yu H , Chu Y , Wang S , Li T , Yin H . Tuning the catalytic performance of Pt/SiO2 catalysts by CoOx modification for selective hydrogenations of unsaturated carbonyl compounds. Applied Surface Science, 2022, 606: 154867
CrossRef
Google scholar
|
[106] |
Wang C , Wang S , Wu Z , Lv Y , Chen G , Zhao H , Gao D . Ga2O3–Pt dual-site functionally separated catalyst for efficient hydrogenation of furfural under hydrogen spillover. Fuel, 2024, 357: 129711
CrossRef
Google scholar
|
[107] |
Yang Q , Gao D , Li C , Wang S , Hu X , Zheng G , Chen G . Highly dispersed Pt on partial deligandation of Ce-MOFs for furfural selective hydrogenation. Applied Catalysis B: Environmental, 2023, 328: 122458
CrossRef
Google scholar
|
[108] |
Yu H , Xu Y , Havener K , Zhang L , Wu W , Liao X , Huang K . Efficient catalysis using honeycomb-like N-doped porous carbon supported Pt nanoparticles for the hydrogenation of cinnamaldehyde in water. Molecular Catalysis, 2022, 525: 112343
CrossRef
Google scholar
|
[109] |
Liang C , Li H , Peng M , Zhang X , Jiang Q , Cui J , Ding Y , Zhang Z C . Co decorated low Pt loading nanoparticles over TiO2 catalyst for selective hydrogenation of furfural. Applied Catalysis A: General, 2022, 643: 118766
CrossRef
Google scholar
|
[110] |
SarıbıyıkO YResascoD E. Selective hydrogenation of croton aldehyde on Pt nanoparticles controlled by tailoring fraction of well-ordered facets under different pretreatment conditions. Catalysis Letters, 2023: 1–13
|
[111] |
Bailón-García E , Carrasco-Marín F , Pérez-Cadenas A F , Maldonado-Hódar F J . Influence of the Pt-particle size on the performance of carbon supported catalysts used in the hydrogenation of citral. Catalysis Communications, 2016, 82: 36–40
CrossRef
Google scholar
|
[112] |
Li L , Larsen A H , Romero N A , Morozov V A , Glinsvad C , Abild-Pedersen F , Greeley J , Jacobsen K W , Nørskov J K . Investigation of catalytic finite-size-effects of platinum metal clusters. Journal of Physical Chemistry Letters, 2013, 4(1): 222–226
CrossRef
Google scholar
|
[113] |
Cao Y , Guerrero-Sańchez J , Lee I , Zhou X , Takeuchi N , Zaera F . Kinetic study of the hydrogenation of unsaturated aldehydes promoted by CuPtx/SBA-15 single-atom alloy (SAA) catalysts. ACS Catalysis, 2020, 10(5): 3431–3443
CrossRef
Google scholar
|
[114] |
Wang H , Lan X , Wang S , Ali B , Wang T . Selective hydrogenation of 2-pentenal using highly dispersed Pt catalysts supported on znsnal mixed metal oxides derived from layered double hydroxides. Catalysis Science & Technology, 2020, 10(4): 1106–1116
CrossRef
Google scholar
|
[115] |
Cheng S , Lu S , Liu X , Li G , Wang F . Enhanced activity of alkali-treated ZSM-5 zeolite-supported Pt–Co catalyst for selective hydrogenation of cinnamaldehyde. Molecules, 2023, 28(4): 1730
CrossRef
Google scholar
|
[116] |
Goh T W , Tsung C K , Huang W . Spectroscopy identification of the bimetallic surface of metal-organic framework-confined Pt-Sn nanoclusters with enhanced chemoselectivity in furfural hydrogenation. ACS Applied Materials & Interfaces, 2019, 11(26): 23254–23260
CrossRef
Google scholar
|
[117] |
Luo W , Fang L , Meng Y , Xue J , Chen T , Xia S , Ni Z . Theoretical study on adsorption of α,β-unsaturated aldehydes on Ni–Pt(111) surfacet. Chemical Journal of Chinese Universities, 2019, 40: 115–122
|
[118] |
Kolodziej M , Lalik E , Colmenares J C , Lisowski P , Gurgul J , Duraczyńska D , Drelinkiewicz A . Physicochemical and catalytic properties of Pd/MoO3 prepared by the sonophotodeposition method. Materials Chemistry and Physics, 2018, 204: 361–372
CrossRef
Google scholar
|
[119] |
Li Y , Cheng H , Lin W , Zhang C , Wu Q , Zhao F , Arai M . Solvent effects on heterogeneous catalysis in the selective hydrogenation of cinnamaldehyde over a conventional Pd/C catalyst. Catalysis Science & Technology, 2018, 8(14): 3580–3589
CrossRef
Google scholar
|
[120] |
Abasabadi R K , Khodadadi A A , Mortazavi Y . Effects of nitrogen-containing functional groups of reduced graphene oxide as a support for Pd in selective hydrogenation of cinnamaldehyde. Research on Chemical Intermediates, 2021, 47(4): 1429–1446
CrossRef
Google scholar
|
[121] |
Yuan H , Hong M , Dong F , Chen Y , Du X , Huang X , Gao J , Yang S . Dilute Pd3Co950 alloy encapsulated in defect- and N-rich carbon nanotubes for universal highly efficient aqueous-phase catalysis. Applied Catalysis B: Environmental, 2023, 334: 122864
CrossRef
Google scholar
|
[122] |
Hu M , Jin L , Zhu Y , Zhang L , Lu X , Kerns P , Su X , Cao S , Gao P , Suib S L .
CrossRef
Google scholar
|
[123] |
Xu T , Sun K , Gao D , Li C , Hu X , Chen G . Atomic-layer-deposition-formed sacrificial template for the construction of an MIL-53 shell to increase selectivity of hydrogenation reactions. Chemical Communications, 2019, 55(53): 7651–7654
CrossRef
Google scholar
|
[124] |
Hu T , Zhang L , Wang Y , Yue Z , Li Y , Ma J , Xiao H , Chen W , Zhao M , Zheng Z .
CrossRef
Google scholar
|
[125] |
Pinto J , Weilhard A , Norman L T , Lodge R W , Rogers D M , Gual A , Cano I , Khlobystov A N , Licence P , Alves Fernandes J . Unravelling synergistic effects in bi-metallic catalysts: deceleration of palladium-gold nanoparticle coarsening in the hydrogenation of cinnamaldehyde. Catalysis Science & Technology, 2023, 13(14): 4082–4091
CrossRef
Google scholar
|
[126] |
Wei Z , Gong Y , Xiong T , Zhang P , Li H , Wang Y . Highly efficient and chemoselective hydrogenation of α,β-unsaturated carbonyls over Pd/N-doped hierarchically porous carbon. Catalysis Science & Technology, 2015, 5(1): 397–404
CrossRef
Google scholar
|
[127] |
Patel A , Patel A . Selective C=C hydrogenation of unsaturated hydrocarbons in neat water over stabilized palladium nanoparticles via supported 12-tungstophosphoric acid. Catalysis Letters, 2019, 149(6): 1476–1485
CrossRef
Google scholar
|
[128] |
Harraz F A , El-Hout S E , Killa H M , Ibrahim I A . Catalytic hydrogenation of crotonaldehyde and oxidation of benzene over active and recyclable palladium nanoparticles stabilized by polyethylene glycol. Journal of Molecular Catalysis A: Chemical, 2013, 370: 182–188
CrossRef
Google scholar
|
[129] |
Zhu J , Li M , Lu M , Zhu J . Effect of structural properties on catalytic performance in citral selective hydrogenation over carbon-titania composite supported Pd catalyst. Catalysis Science & Technology, 2013, 3(3): 737–744
CrossRef
Google scholar
|
[130] |
Liu C , Nan C , Fan G , Yang L , Li F . Facile synthesis and synergistically acting catalytic performance of supported bimetallic pdni nanoparticle catalysts for selective hydrogenation of citral. Molecular Catalysis, 2017, 436: 237–247
CrossRef
Google scholar
|
[131] |
Wang Z , Wang X , Zhang C , Arai M , Zhou L , Zhao F . Selective hydrogenation of furfural to furfuryl alcohol over Pd/TiH2 catalyst. Molecular Catalysis, 2021, 508: 111599
CrossRef
Google scholar
|
[132] |
Silva W R , Matsubara E Y , Rosolen J M , Donate P M , Gunnella R . Pd catalysts supported on different hydrophilic or hydrophobic carbonaceous substrate for furfural and 5-(hydroxymethyl)-furfural hydrogenation in water. Molecular Catalysis, 2021, 504: 111496
CrossRef
Google scholar
|
[133] |
Gao B , Zhang J , Zhang M , Li H , Yang J H . Highly dispersed PdCu supported on MCM-41 for efficiently selective transfer hydrogenation of furfural into furfuryl alcohol. Applied Surface Science, 2023, 619: 156716
CrossRef
Google scholar
|
[134] |
Ruan L , Zhang H , Zhou M , Zhu L , Pei A , Wang J , Yang K , Zhang C , Xiao S , Chen B H . A highly selective and efficient Pd/Ni/Ni(OH)2/C catalyst for furfural hydrogenation at low temperatures. Molecular Catalysis, 2020, 480: 110639
CrossRef
Google scholar
|
[135] |
Zhao X , Wang Y , Zhai Z , Zhuang C , Tian D , Guo H , Zou X , Liu T X . Ultrafine Pd on a La metal-organic framework for selective hydrogenation of furfural via a metal-support electronic effect. ACS Applied Nano Materials, 2023, 6(10): 8315–8324
CrossRef
Google scholar
|
[136] |
Yan H , Ren Y , Zhang R , Chang F , Wei Q , Xu J . A one-pot hydrothermal preparation of high loading Ni/La2O3 catalyst for efficient hydrogenation of cinnamaldehyde. Catalysts, 2023, 13(2): 298
CrossRef
Google scholar
|
[137] |
Wei X , Rang X , Zhu W , Xiang M , Deng Y , Jiang F , Mao R , Zhang Z , Kong X , Wang F . Morphology effect of CeO2 on Ni/CeO2 catalysts for selective hydrogenation of cinnamaldehyde. Chemical Physics, 2021, 542: 111079
CrossRef
Google scholar
|
[138] |
Ling Y , Ge H , Chen J , Zhang Y , Duan Y , Liang M , Guo Y , Wu T S , Soo Y L , Yin X .
CrossRef
Google scholar
|
[139] |
Ning L , Liao S , Li H , Tong R , Dong C , Zhang M , Gu W , Liu X . Carbon-based materials with tunable morphology confined Ni (0) and Ni–Nx active sites: highly efficient selective hydrogenation catalysts. Carbon, 2019, 154: 48–57
CrossRef
Google scholar
|
[140] |
Ren Y , Xu H , Han B , Xu J . Construction of N-doped carbon-modified Ni/SiO2 catalyst promoting cinnamaldehyde selective hydrogenation. Molecules, 2023, 28(10): 4136
CrossRef
Google scholar
|
[141] |
Xin H , Li M , Chen L , Zhao C , Wu P , Li X . Lanthanide oxide supported Ni nanoparticles for the selective hydrogenation of cinnamaldehyde. Catalysis Science & Technology, 2023, 13(5): 1488–1500
CrossRef
Google scholar
|
[142] |
Wang N , Liu J , Li X , Wang C , Ma L . One-pot synthesis of nickel encapsulated COF-derived catalyst for highly selective and efficient hydrogenation of cinnamaldehyde. Catalysis Communications, 2023, 177: 106658
CrossRef
Google scholar
|
[143] |
Tian F , Zhang M , Zhang X , Chen X , Wang J , Zhang Y , Meng C , Liang C . Porous carbon-encapsulated Ni nanocatalysts for selective catalytic hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Journal of Materials Science, 2022, 57(5): 3168–3182
CrossRef
Google scholar
|
[144] |
Patil K N , Manikanta P M , Srinivasappa P , Jadhav A H , Nagaraja B M . Exploring the confined space and active sites of Ni@OCNTs catalyst for chemoselective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Journal of Environmental Chemical Engineering, 2022, 10(5): 108208
CrossRef
Google scholar
|
[145] |
Chen Y , Liu W , Yin P , Ju M , Wang J , Yang W , Yang Y , Shen C . Synergistic effect between Ni single atoms and acid-base sites: mechanism investigation into catalytic transfer hydrogenation reaction. Journal of Catalysis, 2021, 393: 1–10
CrossRef
Google scholar
|
[146] |
Xu Y , Su T , Luo X , Qin Z , Ji H . Ni–Ti intercalated and supported bentonite for selective hydrogenation of cinnamaldehyde. ChemPhysChem, 2023, 24(10): e202200703
CrossRef
Google scholar
|
[147] |
Yu J , Yang Y , Chen L , Li Z , Liu W , Xu E , Zhang Y , Hong S , Zhang X , Wei M . NiBi intermetallic compounds catalyst toward selective hydrogenation of unsaturated aldehydes. Applied Catalysis B: Environmental, 2020, 277: 119273
CrossRef
Google scholar
|
[148] |
Zhao H , Song H , Chou L . Nickel nanoparticles supported on MOF-5: synthesis and catalytic hydrogenation properties. Inorganic Chemistry Communications, 2012, 15: 261–265
CrossRef
Google scholar
|
[149] |
Mahata N , Cunha A F , Órfão J J M , Figueiredo J L . Highly selective hydrogenation of C=C double bond in unsaturated carbonyl compounds over NiC catalyst. Chemical Engineering Journal, 2012, 188: 155–159
CrossRef
Google scholar
|
[150] |
Zhao H , Chou L , Song H . Exploration of Ni@Zn-MOCP via a wet impregnation strategy as a hydrogenation catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2011, 104(2): 451–465
CrossRef
Google scholar
|
[151] |
Kumar P , Sharma P K , Chaturvedi S , Chanotiya C S , Rauta P R , Mohapatra P , Rout P K . Synthesis of Ni-doped hydrotalcite catalyst through hydrothermal process for the selective reduction of α,β-unsaturated aldehyde (citral) to enantiospecific (+)-citronellal. Catalysis Letters, 2023, 153(10): 3019–3030
CrossRef
Google scholar
|
[152] |
Yang L , Jiang Z S , Fan G L , Li F . The promotional effect of ZnO addition to supported Ni nanocatalysts from layered double hydroxide precursors on selective hydrogenation of citral. Catalysis Science & Technology, 2014, 4(4): 1123–1131
CrossRef
Google scholar
|
[153] |
Tang Y , Yang D , Qin F , Hu J , Wang C , Xu H . Decorating multi-walled carbon nanotubes with nickel nanoparticles for selective hydrogenation of citral. Journal of Solid State Chemistry, 2009, 182(8): 2279–2284
CrossRef
Google scholar
|
[154] |
Wonglekha K , Tolek W , Mekasuwandumrong O , Chaitree W , Praserthdam P , Moon Lee K , Panpranot J . Effects of TiO2 support and cobalt addition of Ni/TiO2 catalyst in selective hydrogenation of furfural to furfuryl alcohol. Journal of Renewable Materials, 2022, 10(8): 2055–2072
CrossRef
Google scholar
|
[155] |
Tang F , Wang L , Dessie Walle M , Mustapha A , Liu Y N . An alloy chemistry strategy to tailoring the d-band center of Ni by Cu for efficient and selective catalytic hydrogenation of furfural. Journal of Catalysis, 2020, 383: 172–180
CrossRef
Google scholar
|
[156] |
Putro W S , Kojima T , Hara T , Ichikuni N , Shimazu S . Selective hydrogenation of unsaturated carbonyls by Ni-Fe-based alloy catalysts. Catalysis Science & Technology, 2017, 7(16): 3637–3646
CrossRef
Google scholar
|
[157] |
Meng X , Yang Y , Chen L , Xu M , Zhang X , Wei M . A control over hydrogenation selectivity of furfural via tuning exposed facet of Ni catalysts. ACS Catalysis, 2019, 9(5): 4226–4235
CrossRef
Google scholar
|
[158] |
Zhang J , Mao D , Wu D . Industrially applicable aqueous-phase selective hydrogenation of furfural on an efficient TiOx-modified Ni nanocatalyst. ACS Sustainable Chemistry & Engineering, 2021, 9(41): 13902–13914
CrossRef
Google scholar
|
[159] |
Balla P , Seelam P K , Balaga R , Rajesh R , Perupogu V , Liang T X . Immobilized highly dispersed Ni nanoparticles over porous carbon as an efficient catalyst for selective hydrogenation of furfural and levulinic acid. Journal of Environmental Chemical Engineering, 2021, 9(6): 106530
CrossRef
Google scholar
|
[160] |
Fan Y , Zhuang C , Li S , Wang Y , Zou X , Liu X , Huang W , Zhu G . Efficient single-atom Ni for catalytic transfer hydrogenation of furfural to furfuryl alcohol. Journal of Materials Chemistry A, 2021, 9(2): 1110–1118
CrossRef
Google scholar
|
[161] |
Yi D , Min Y , Muzzi B , Marty A , Romana I , Fazzini P F , Blon T , Viau G , Serp P , Soulantica K . Epsilon cobalt nanoparticles as highly performant catalysts in cinnamaldehyde selective hydrogenation. ACS Applied Nano Materials, 2022, 5(4): 5498–5507
CrossRef
Google scholar
|
[162] |
Zhang R , Wang L , Ren J , Hu C , Lv B . Effect of boron nitride overlayers on Co@BNNSs/BN-catalyzed aqueous phase selective hydrogenation of cinnamaldehyde. Journal of Colloid and Interface Science, 2023, 630: 549–558
CrossRef
Google scholar
|
[163] |
Shen Y , Chen C , Zou Z , Hu Z , Fu Z , Li W , Pan S , Zhang Y , Zhang H , Yu Z .
CrossRef
Google scholar
|
[164] |
Bustamante T M , Fraga M A , Fierro J L G , Campos C H , Pecchi G . Cobalt SiO2 core-shell catalysts for chemoselective hydrogenation of cinnamaldehyde. Catalysis Today, 2020, 356: 330–338
CrossRef
Google scholar
|
[165] |
Cui H , Liu S , Lv Y , Wu S , Wang L , Hao F , Liu P , Xiong W , Luo H . Transfer hydrogenation of cinnamaldehyde to cinnamyl alcohol in hydrophobically modified core-shell MOFs nanoreactor: identification of the formed metal-N as the structure of an active site. Journal of Catalysis, 2020, 381: 468–481
CrossRef
Google scholar
|
[166] |
Zhao J , Malgras V , Na J , Liang R , Cai Y , Kang Y , Alshehri A A , Alzahrani K A , Alghamdi Y G , Asahi T .
CrossRef
Google scholar
|
[167] |
Li H , Liu J , Xie S , Qiao M , Dai W , Li H . Highly active Co-B amorphous alloy catalyst with uniform nanoparticles prepared in oil-in-water microemulsion. Journal of Catalysis, 2008, 259(1): 104–110
CrossRef
Google scholar
|
[168] |
Mo M , Tang J , Zou L , Xun Y , Guan H . Improvement and regeneration of Co–B amorphous alloy nanowires for the selective hydrogenation of cinnamaldehyde. RSC Advances, 2022, 12(51): 33099–33107
CrossRef
Google scholar
|
[169] |
Pei Y , Guo P , Qiao M , Li H , Wei S , He H , Fan K . The modification effect of Fe on amorphous CoB alloy catalyst for chemoselective hydrogenation of crotonaldehyde. Journal of Catalysis, 2007, 248(2): 303–310
CrossRef
Google scholar
|
[170] |
Kurokawa H , Mori K , Yoshida K , Ohshima M A , Sugiyama K , Miura H . The promoting effect of halogen ions on selective hydrogenation of (E)-2-butenal to (E)-2-buten-1-ol over alumina-supported cobalt catalyst. Catalysis Communications, 2005, 6(12): 766–769
CrossRef
Google scholar
|
[171] |
Kouachi K , Lafaye G , Especel C , Cherifi O , Marécot P . Preparation of silica-supported cobalt catalysts from water-in-oil microemulsion for selective hydrogenation of citral. Journal of Molecular Catalysis A: Chemical, 2009, 308(1–2): 142–149
CrossRef
Google scholar
|
[172] |
Di X , Lafaye G , Especel C , Epron F , Qi J , Li C , Liang C . Supported Co–Re bimetallic catalysts with different structures as efficient catalysts for hydrogenation of citral. ChemSusChem, 2019, 12(4): 807–823
CrossRef
Google scholar
|
[173] |
Zhou J , Yang Y , Li C , Zhang S , Chen Y , Shi S , Wei M . Synthesis of Co–Sn intermetallic nanocatalysts toward selective hydrogenation of citral. Journal of Materials Chemistry A, 2016, 4(33): 12825–12832
CrossRef
Google scholar
|
[174] |
Liu Y J , Zhang D H , Li X C , Deng S J , Zhao D , Zhang N , Chen C . Construction of highly-dispersed and composition-adjustable CoxN in stable Co@CoxN@C nanocomposite catalysts via a dual-ligand-MOF strategy for the selective hydrogenation of citral. Applied Surface Science, 2020, 505: 144387
CrossRef
Google scholar
|
[175] |
Tian Y , Feng Y , Li Z , Fan Y , Sperry J , Sun Y , Yang S , Tang X , Lin L , Zeng X . Green and efficient selective hydrogenation of furfural to furfuryl alcohol over hybrid CoOx/Nb2O5 nanocatalyst in water. Molecular Catalysis, 2023, 538: 112981
CrossRef
Google scholar
|
[176] |
Liu W , Hua J , Su S , Yang X . A highly accessible and robust carbon-coated cobalt nanoparticle catalyst for furfural hydrogenative valorization at mild reaction. Molecular Catalysis, 2023, 551: 113647
CrossRef
Google scholar
|
[177] |
Ishikawa H , Sheng M , Nakata A , Nakajima K , Yamazoe S , Yamasaki J , Yamaguchi S , Mizugaki T , Mitsudome T . Air-stable and reusable cobalt phosphide nanoalloy catalyst for selective hydrogenation of furfural derivatives. ACS Catalysis, 2021, 11(2): 750–757
CrossRef
Google scholar
|
[178] |
Xu L , Nie R , Lyu X , Wang J , Lu X . Selective hydrogenation of furfural to furfuryl alcohol without external hydrogen over N-doped carbon confined Co catalysts. Fuel Processing Technology, 2020, 197: 106205
CrossRef
Google scholar
|
[179] |
Jiang P , Li X , Gao W , Wang X , Tang Y , Lan K , Wang B , Li R . Highly selective hydrogenation of α,β-unsaturated carbonyl compounds over supported Co nanoparticles. Catalysis Communications, 2018, 111: 6–9
CrossRef
Google scholar
|
[180] |
Gong W , Chen C , Zhang H , Wang G , Zhao H . Highly dispersed Co and Ni nanoparticles encapsulated in N-doped carbon nanotubes as efficient catalysts for the reduction of unsaturated oxygen compounds in aqueous phase. Catalysis Science & Technology, 2018, 8(21): 5506–5514
CrossRef
Google scholar
|
[181] |
Li S , Fan Y , Wu C , Zhuang C , Wang Y , Li X , Zhao J , Zheng Z . Selective hydrogenation of furfural over the Co-based catalyst: a subtle synergy with Ni and Zn dopants. ACS Applied Materials & Interfaces, 2021, 13(7): 8507–8517
CrossRef
Google scholar
|
[182] |
Gong W B , Han M M , Chen C , Lin Y , Wang G H , Zhang H M , Zhao H J . CoO@Co nanoparticle-based catalyst for efficient selective transfer hydrogenation of α,β-unsaturated aldehydes. ChemCatChem, 2020, 12(4): 1019–1024
CrossRef
Google scholar
|
[183] |
Tian Y , Chen B , Yu Z , Huang R , Yan G , Li Z , Sun Y , Yang S , Tang X , Lin L .
CrossRef
Google scholar
|
/
〈 | 〉 |