Journal home Browse Most accessed

Most accessed

  • Select all
  • REVIEW
    Tianjing Sun, Mo Li, Qi Liu, Anyong Yu, Kun Cheng, Jianxing Ma, Sean Murphy, Patrick Michael McNutt, Yuanyuan Zhang
    Frontiers of Medicine, 2024, 18(2): 258-284. https://doi.org/10.1007/s11684-023-1031-9

    Exosome therapy holds great promise as a novel approach to improve acute skin wound healing. This review provides a comprehensive overview of the current understanding of exosome biology and its potential applications in acute skin wound healing and beyond. Exosomes, small extracellular vesicles secreted by various stem cells, have emerged as potent mediators of intercellular communication and tissue repair. One advantage of exosome therapy is its ability to avoid potential risks associated with stem cell therapy, such as immune rejection or stem cells differentiating into unwanted cell types. However, further research is necessary to optimize exosome therapy, not only in the areas of exosome isolation, characterization, and engineering, but also in determining the optimal dose, timing, administration, and frequency of exosome therapy. Thus, optimization of exosome therapy is critical for the development of more effective and safer exosome-based therapies for acute skin wound healing and other diseases induced by cancer, ischemia, or inflammation. This review provides valuable insights into the potential of exosome therapy and highlights the need for further research to optimize exosome therapy for clinical use.

  • REVIEW
    Min Zhang, Ting Hu, Tianyu Ma, Wei Huang, Yan Wang
    Frontiers of Medicine, 2024, 18(4): 571-596. https://doi.org/10.1007/s11684-023-1038-2

    Epigenetic modifications including DNA methylation, histone modifications, chromatin remodeling, and RNA modifications complicate gene regulation and heredity and profoundly impact various physiological and pathological processes. In recent years, accumulating evidence indicates that epigenetics is vulnerable to environmental changes and regulates the growth, development, and diseases of individuals by affecting chromatin activity and regulating gene expression. Environmental exposure or induced epigenetic changes can regulate the state of development and lead to developmental disorders, aging, cardiovascular disease, Alzheimer’s disease, cancers, and so on. However, epigenetic modifications are reversible. The use of specific epigenetic inhibitors targeting epigenetic changes in response to environmental exposure is useful in disease therapy. Here, we provide an overview of the role of epigenetics in various diseases. Furthermore, we summarize the mechanism of epigenetic alterations induced by different environmental exposures, the influence of different environmental exposures, and the crosstalk between environmental variation epigenetics, and genes that are implicated in the body’s health. However, the interaction of multiple factors and epigenetics in regulating the initiation and progression of various diseases complicates clinical treatments. We discuss some commonly used epigenetic drugs targeting epigenetic modifications and methods to prevent or relieve various diseases regulated by environmental exposure and epigenetics through diet.

  • REVIEW
    Chang Peng, Jun Chen, Rui Wu, Haowen Jiang, Jia Li
    Frontiers of Medicine, 2024, 18(2): 205-236. https://doi.org/10.1007/s11684-023-1033-7

    Macrophages, a heterogeneous population of innate immune cells, exhibit remarkable plasticity and play pivotal roles in coordinating immune responses and maintaining tissue homeostasis within the context of metabolic diseases. The activation of inflammatory macrophages in obese adipose tissue leads to detrimental effects, inducing insulin resistance through increased inflammation, impaired thermogenesis, and adipose tissue fibrosis. Meanwhile, adipose tissue macrophages also play a beneficial role in maintaining adipose tissue homeostasis by regulating angiogenesis, facilitating the clearance of dead adipocytes, and promoting mitochondrial transfer. Exploring the heterogeneity of macrophages in obese adipose tissue is crucial for unraveling the pathogenesis of obesity and holds significant potential for targeted therapeutic interventions. Recently, the dual effects and some potential regulatory mechanisms of macrophages in adipose tissue have been elucidated using single-cell technology. In this review, we present a comprehensive overview of the intricate activation mechanisms and diverse functions of macrophages in adipose tissue during obesity, as well as explore the potential of drug delivery systems targeting macrophages, aiming to enhance the understanding of current regulatory mechanisms that may be potentially targeted for treating obesity or metabolic diseases.

  • RESEARCH ARTICLE
    Yingbin Wang, Yu Zhang, Guihua Yao, Hong Tang, Lixin Chen, Lixue Yin, Tiangang Zhu, Jianjun Yuan, Wei Han, Jun Yang, Xianhong Shu, Ya Yang, Yulin Wei, Yanli Guo, Weidong Ren, Dongmei Gao, Guilin Lu, Ji Wu, Hongning Yin, Yuming Mu, Jiawei Tian, Lijun Yuan, Xiaojing Ma, Hongyan Dai, Yunchuan Ding, Mingyan Ding, Qing Zhou, Hao Wang, Di Xu, Mei Zhang, Yun Zhang
    Frontiers of Medicine, 2024, 18(4): 649-663. https://doi.org/10.1007/s11684-023-1045-3

    Current guidelines encourage large studies in a diverse population to establish normal reference ranges for three-dimensional (3D) echocardiography for different ethnic groups. This study was designed to establish the normal values of 3D-left ventricular (LV) and left atrial (LA) volume and function in a nationwide, population-based cohort of healthy Han Chinese adults. A total of 1117 healthy volunteers aged 18–89 years were enrolled from 28 collaborating laboratories in China. Two sets of 3D echocardiographic instruments were used, and full-volume echocardiographic images were recorded and transmitted to a core laboratory for image analysis with a vendor-independent off-line workstation. Finally, 866 volunteers (mean age of 48.4 years, 402 men) were qualified for final analysis. Most parameters exhibited substantial differences between different sex and age groups, even after indexation by body surface area. The normal ranges of 3D-LV and 3D-LA volume and function differed from those recommended by the American Society of Echocardiography and the European Association of Cardiovascular Imaging guidelines, presented by the World Alliance Societies of Echocardiography (WASE) study, and from the 2D values in the EMINCA study. The normal reference values of 3D echocardiography-derived LV and LA volume and function were established for the first time in healthy Han Chinese adults. Normal ranges of 3D-LV and 3D-LA echocardiographic measurements stratified with sex, age, and race should be recommended for clinical applications.

  • LETTER TO FRONTIERS OF MEDICINE
    Wenjin Chen, Xiuwu Pan, Wang Zhou, Da Xu, Jiaxin Chen, Keqin Dong, Weijie Chen, Brian Rini, Xingang Cui
    Frontiers of Medicine, 2024, 18(2): 399-402. https://doi.org/10.1007/s11684-023-1029-3
  • REVIEW
    Chaolong Lin, Wenzhong Teng, Yang Tian, Shaopeng Li, Ningshao Xia, Chenghao Huang
    Frontiers of Medicine, 2024, 18(3): 411-429. https://doi.org/10.1007/s11684-023-1048-0

    Oncolytic virus (OV)-based immunotherapy has emerged as a promising strategy for cancer treatment, offering a unique potential to selectively target malignant cells while sparing normal tissues. However, the immunosuppressive nature of tumor microenvironment (TME) poses a substantial hurdle to the development of OVs as effective immunotherapeutic agents, as it restricts the activation and recruitment of immune cells. This review elucidates the potential of OV-based immunotherapy in modulating the immune landscape within the TME to overcome immune resistance and enhance antitumor immune responses. We examine the role of OVs in targeting specific immune cell populations, including dendritic cells, T cells, natural killer cells, and macrophages, and their ability to alter the TME by inhibiting angiogenesis and reducing tumor fibrosis. Additionally, we explore strategies to optimize OV-based drug delivery and improve the efficiency of OV-mediated immunotherapy. In conclusion, this review offers a concise and comprehensive synopsis of the current status and future prospects of OV-based immunotherapy, underscoring its remarkable potential as an effective immunotherapeutic agent for cancer treatment.

  • RESEARCH ARTICLE
    Liang Dong, Wenwen Luo, Skaldin Maksym, Simon C. Robson, Andrey V. Zavialov
    Frontiers of Medicine, 2024, 18(5): 814-830. https://doi.org/10.1007/s11684-024-1067-5

    Human cells contain two types of adenosine deaminases (ADA) each with unique properties: ADA1, which is present in all cells where it modulates intracellular functions and extracellular signaling, and ADA2, which is secreted by immune cells. The exact intracellular functions of ADA2 remain undetermined and less defined than those of ADA1. ADA2 has distinct characteristics, such as low adenosine affinity, heparin-binding ability, and putative lysosomal entry. Here, we confirm that ADA2 is a lysosomal protein that binds toll-like receptor 9 (TLR9) agonists, specifically CpG oligodeoxynucleotides (CpG ODNs). We show that interferon-alpha (IFN-α) is secreted in response to TLR9 activation by CpG ODNs and natural DNA and markedly increases when ADA2 expression is downregulated in plasmacytoid dendritic cells (pDCs). Additionally, the pretreatment of pDCs with RNA further stimulates IFN-α secretion by pDCs after activation with CpG ODNs. Our findings indicate that ADA2 regulates TLR9 responses to DNA in activated pDCs. In conclusion, decreasing ADA2 expression or blocking it with specific oligonucleotides can enhance IFN-α secretion from pDCs, improving immune responses against intracellular infections and cancer.

  • RESEARCH ARTICLE
    Niu Qiao, Yizhu Lyu, Feng Liu, Yuliang Zhang, Xiaolin Ma, Xiaojing Lin, Junyu Wang, Yinyin Xie, Ruihong Zhang, Jing Qiao, Hongming Zhu, Li Chen, Hai Fang, Tong Yin, Zhu Chen, Qiang Tian, Saijuan Chen
    Frontiers of Medicine, 2024, 18(2): 327-343. https://doi.org/10.1007/s11684-023-1022-x

    The treatment of PML/RARA+ acute promyelocytic leukemia (APL) with all-trans-retinoic acid and arsenic trioxide (ATRA/ATO) has been recognized as a model for translational medicine research. Though an altered microenvironment is a general cancer hallmark, how APL blasts shape their plasma composition is poorly understood. Here, we reported a cross-sectional correlation network to interpret multilayered datasets on clinical parameters, proteomes, and metabolomes of paired plasma samples from patients with APL before or after ATRA/ATO induction therapy. Our study revealed the two prominent features of the APL plasma, suggesting a possible involvement of APL blasts in modulating plasma composition. One was characterized by altered secretory protein and metabolite profiles correlating with heightened proliferation and energy consumption in APL blasts, and the other featured APL plasma-enriched proteins or enzymes catalyzing plasma-altered metabolites that were potential trans-regulatory targets of PML/RARA. Furthermore, results indicated heightened interferon-gamma signaling characterizing a tumor-suppressing function of the immune system at the first hematological complete remission stage, which likely resulted from therapy-induced cell death or senescence and ensuing supraphysiological levels of intracellular proteins. Overall, our work sheds new light on the pathophysiology and treatment of APL and provides an information-rich reference data cohort for the exploratory and translational study of leukemia microenvironment.

  • RESEARCH ARTICLE
    Di He, Xunzhe Yang, Liyang Liu, Dongchao Shen, Qing Liu, Mingsheng Liu, Xue Zhang, Liying Cui
    Frontiers of Medicine, 2024, 18(2): 285-302. https://doi.org/10.1007/s11684-023-1035-5

    Amyotrophic lateral sclerosis (ALS) is a progressive neurogenerative disorder with uncertain origins. Emerging evidence implicates N6-methyladenosine (m6A) modification in ALS pathogenesis. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and liquid chromatography–mass spectrometry were utilized for m6A profiling in peripheral immune cells and serum proteome analysis, respectively, in patients with ALS (n = 16) and controls (n = 6). The single-cell transcriptomic dataset (GSE174332) of primary motor cortex was further analyzed to illuminate the biological implications of differentially methylated genes and cell communication changes. Analysis of peripheral immune cells revealed extensive RNA hypermethylation, highlighting candidate genes with differential m6A modification and expression, including C-X3-C motif chemokine receptor 1 (CX3CR1). In RAW264.7 macrophages, disrupted CX3CR1 signaling affected chemotaxis, potentially influencing immune cell migration in ALS. Serum proteome analysis demonstrated the role of dysregulated immune cell migration in ALS. Cell type-specific expression variations of these genes in the central nervous system (CNS), particularly microglia, were observed. Intercellular communication between neurons and glial cells was selectively altered in ALS CNS. This integrated approach underscores m6A dysregulation in immune cells as a potential ALS contributor.

  • REVIEW
    Yixin Chen, Murad Al-Nusaif, Song Li, Xiang Tan, Huijia Yang, Huaibin Cai, Weidong Le
    Frontiers of Medicine, 2024, 18(3): 446-464. https://doi.org/10.1007/s11684-023-1047-1

    Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects both cognition and non-cognition functions. The disease follows a continuum, starting with preclinical stages, progressing to mild cognitive and behavioral impairment, ultimately leading to dementia. Early detection of AD is crucial for better diagnosis and more effective treatment. However, the current AD diagnostic tests of biomarkers using cerebrospinal fluid and/or brain imaging are invasive or expensive, and mostly are still not able to detect early disease state. Consequently, there is an urgent need to develop new diagnostic techniques with higher sensitivity and specificity during the preclinical stages of AD. Various non-cognitive manifestations, including behavioral abnormalities, sleep disturbances, sensory dysfunctions, and physical changes, have been observed in the preclinical AD stage before occurrence of notable cognitive decline. Recent research advances have identified several biofluid biomarkers as early indicators of AD. This review focuses on these non-cognitive changes and newly discovered biomarkers in AD, specifically addressing the preclinical stages of the disease. Furthermore, it is of importance to explore the potential for developing a predictive system or network to forecast disease onset and progression at the early stage of AD.

  • RESEARCH ARTICLE
    Tingting Wu, Lulu Wang, Chen Jian, Zhenhe Zhang, Ruiyin Zeng, Bobin Mi, Guohui Liu, Yu Zhang, Chen Shi
    Frontiers of Medicine, 2024, 18(3): 516-537. https://doi.org/10.1007/s11684-023-1024-8

    Regulatory T cells (Tregs) suppress immune responses and inflammation. Here, we described the distinct nonimmunological role of Tregs in fracture healing. The recruitment from the circulation pool, peripheral induction, and local expansion rapidly enriched Tregs in the injured bone. The Tregs in the injured bone displayed superiority in direct osteogenesis over Tregs from lymphoid organs. Punctual depletion of Tregs compromised the fracture healing process, which leads to increased bone nonunion. In addition, bone callus Tregs showed unique T-cell receptor repertoires. Amphiregulin was the most overexpressed protein in bone callus Tregs, and it can directly facilitate the proliferation and differentiation of osteogenic precursor cells by activation of phosphatidylinositol 3-kinase/protein kinase B signaling pathways. The results of loss- and gain-function studies further evidenced that amphiregulin can reverse the compromised healing caused by Treg dysfunction. Tregs also enriched in patient bone callus and amphiregulin can promote the osteogenesis of human pre-osteoblastic cells. Our findings indicate the distinct and nonredundant role of Tregs in fracture healing, which will provide a new therapeutic target and strategy in the clinical treatment of fractures.

  • RESEARCH ARTICLE
    Haoyu Wang, Zhengyuan Wang, Zheng Wang, Xiaoyang Li, Yuntong Li, Ni Yan, Lili Wu, Ying Liang, Jiale Wu, Huaxin Song, Qing Qu, Jiahui Huang, Chunkang Chang, Kunwei Shen, Xiaosong Chen, Min Lu
    Frontiers of Medicine, 2024, 18(2): 357-374. https://doi.org/10.1007/s11684-023-1016-8

    p53 is mutated in half of cancer cases. However, no p53-targeting drugs have been approved. Here, we reposition decitabine for triple-negative breast cancer (TNBC), a subtype with frequent p53 mutations and extremely poor prognosis. In a retrospective study on tissue microarrays with 132 TNBC cases, DNMT1 overexpression was associated with p53 mutations (P = 0.037) and poor overall survival (OS) (P = 0.010). In a prospective DEciTabinE and Carboplatin in TNBC (DETECT) trial (NCT03295552), decitabine with carboplatin produced an objective response rate (ORR) of 42% in 12 patients with stage IV TNBC. Among the 9 trialed patients with available TP53 sequencing results, the 6 patients with p53 mutations had higher ORR (3/6 vs. 0/3) and better OS (16.0 vs. 4.0 months) than the patients with wild-type p53. In a mechanistic study, isogenic TNBC cell lines harboring DETECT-derived p53 mutations exhibited higher DNMT1 expression and decitabine sensitivity than the cell line with wild-type p53. In the DETECT trial, decitabine induced strong immune responses featuring the striking upregulation of the innate immune player IRF7 in the p53-mutated TNBC cell line (upregulation by 16-fold) and the most responsive patient with TNBC. Our integrative studies reveal the potential of repurposing decitabine for the treatment of p53-mutated TNBC and suggest IRF7 as a potential biomarker for decitabine-based treatments.

  • RESEARCH ARTICLE
    Fu’an Xie, Yujia Niu, Lanlan Lian, Yue Wang, Aobo Zhuang, Guangting Yan, Yantao Ren, Xiaobing Chen, Mengmeng Xiao, Xi Li, Zhe Xi, Gen Zhang, Dongmei Qin, Kunrong Yang, Zhigang Zheng, Quan Zhang, Xiaogang Xia, Peng Li, Lingwei Gu, Ting Wu, Chenghua Luo, Shu-Hai Lin, Wengang Li
    Frontiers of Medicine, 2024, 18(2): 375-393. https://doi.org/10.1007/s11684-023-1020-z

    Retroperitoneal liposarcoma (RLPS) is the main subtype of retroperitoneal soft sarcoma (RSTS) and has a poor prognosis and few treatment options, except for surgery. The proteomic and metabolic profiles of RLPS have remained unclear. The aim of our study was to reveal the metabolic profile of RLPS. Here, we performed proteomic analysis (n = 10), metabolomic analysis (n = 51), and lipidomic analysis (n = 50) of retroperitoneal dedifferentiated liposarcoma (RDDLPS) and retroperitoneal well-differentiated liposarcoma (RWDLPS) tissue and paired adjacent adipose tissue obtained during surgery. Data analysis mainly revealed that glycolysis, purine metabolism, pyrimidine metabolism and phospholipid formation were upregulated in both RDDLPS and RWDLPS tissue compared with the adjacent adipose tissue, whereas the tricarboxylic acid (TCA) cycle, lipid absorption and synthesis, fatty acid degradation and biosynthesis, as well as glycine, serine, and threonine metabolism were downregulated. Of particular importance, the glycolytic inhibitor 2-deoxy-D-glucose and pentose phosphate pathway (PPP) inhibitor RRX-001 significantly promoted the antitumor effects of the MDM2 inhibitor RG7112 and CDK4 inhibitor abemaciclib. Our study not only describes the metabolic profiles of RDDLPS and RWDLPS, but also offers potential therapeutic targets and strategies for RLPS.

  • RESEARCH ARTICLE
    Han Wu, Weitao Jiang, Ping Pang, Wei Si, Xue Kong, Xinyue Zhang, Yuting Xiong, Chunlei Wang, Feng Zhang, Jinglun Song, Yang Yang, Linghua Zeng, Kuiwu Liu, Yingqiong Jia, Zhuo Wang, Jiaming Ju, Hongtao Diao, Yu Bian, Baofeng Yang
    Frontiers of Medicine, 2024, 18(3): 499-515. https://doi.org/10.1007/s11684-023-1052-4

    Cardiac fibrosis caused by ventricular remodeling and dysfunction such as post-myocardial infarction (MI) can lead to heart failure. RNA N6-methyladenosine (m6A) methylation has been shown to play a pivotal role in the occurrence and development of many illnesses. In investigating the biological function of the m6A reader YTHDF1 in cardiac fibrosis, adeno-associated virus 9 was used to knock down or overexpress the YTHDF1 gene in mouse hearts, and MI surgery in vivo and transforming growth factor-β (TGF-β)-activated cardiac fibroblasts in vitro were performed to establish fibrosis models. Our results demonstrated that silencing YTHDF1 in mouse hearts can significantly restore impaired cardiac function and attenuate myocardial fibrosis, whereas YTHDF1 overexpression could further enhance cardiac dysfunction and aggravate the occurrence of ventricular pathological remodeling and fibrotic development. Mechanistically, zinc finger BED-type containing 6 mediated the transcriptional function of the YTHDF1 gene promoter. YTHDF1 augmented AXL translation and activated the TGF-β-Smad2/3 signaling pathway, thereby aggravating the occurrence and development of cardiac dysfunction and myocardial fibrosis. Consistently, our data indicated that YTHDF1 was involved in activation, proliferation, and migration to participate in cardiac fibrosis in vitro. Our results revealed that YTHDF1 could serve as a potential therapeutic target for myocardial fibrosis.

  • RESEARCH ARTICLE
    Wei Cheng, Jieqing Chen, Xudong Ma, Jialu Sun, Sifa Gao, Ye Wang, Longxiang Su, Lu Wang, Wei Du, Huaiwu He, Yujie Chen, Zunzhu Li, Qi Li, Jianhua Sun, Hongbo Luo, Jinbang Liu, Guangliang Shan, Bing Du, Yanhong Guo, Dawei Liu, Chang Yin, Xiang Zhou, on behalf of the China National Critical Care Quality Control Center – the ECMO quality improvement action (EQIA) study
    Frontiers of Medicine, 2024, 18(2): 315-326. https://doi.org/10.1007/s11684-023-1014-x

    This cohort study was performed to explore the influence of intensive care unit (ICU) quality on in-hospital mortality of veno-venous (V-V) extracorporeal membrane oxygenation (ECMO)-supported patients in China. The study involved all V-V ECMO-supported patients in 318 of 1700 tertiary hospitals from 2017 to 2019, using data from the National Clinical Improvement System and China National Critical Care Quality Control Center. ICU quality was assessed by quality control indicators and capacity parameters. Among the 2563 V-V ECMO-supported patients in 318 hospitals, a significant correlation was found between ECMO-related complications and prognosis. The reintubation rate within 48 hours after extubation and the total ICU mortality rate were independent risk factors for higher in-hospital mortality of V-V ECMO-supported patients (cutoff: 1.5% and 7.0%; 95% confidence interval: 1.05–1.48 and 1.04–1.45; odds ratios: 1.25 and 1.23; P = 0.012 and P = 0.015, respectively). Meanwhile, the V-V ECMO center volume was a protective factor (cutoff of ≥ 50 cases within the 3-year study period; 95% confidence interval: 0.57–0.83, odds ratio: 0.69, P = 0.0001). The subgroup analysis of 864 patients in 11 high-volume centers further strengthened these findings. Thus, ICU quality may play an important role in improving the prognosis of V-V ECMO-supported patients.

  • CASE REPORT
    Shiyuan Zhang, Xiaoxi Zhou, Shangkun Zhang, Na Wang, Tongcun Zhang, Donghua Zhang, Qilin Ao, Yang Cao, Liang Huang
    Frontiers of Medicine, 2024, 18(2): 394-398. https://doi.org/10.1007/s11684-023-1032-8

    Epstein–Barr virus (EBV)-associated lymphoproliferative diseases (EBV-LPDs) are common complications that occur after solid organ transplantation or allogeneic hematopoietic stem-cell transplantation (HSCT). However, their occurrence and treatment post-chimeric antigen receptor-modified T (CAR-T) cell therapy has not been reported. Two patients had been diagnosed with EBV-positive aggressive B-cell lymphoma and experienced relapses after multiple lines of treatment. After receiving CAR-T cell therapy in tandem with autologous HSCT, the patients achieved complete remission. However, with a median time of 38.5 months after CAR-T cell therapy, B-cell-derived EBV-LPDs were diagnosed, and they were relieved through the administration of immune checkpoint inhibitor or B-cell-depleting agents. Collectively, our report suggests that EBV-LPDs may represent a long-term adverse event after CAR-T cell therapy, especially in patients who previously had EBV-positive disorders, and they can be resolved by immune normalization strategy or B-cell depleting therapy.

  • REVIEW
    Hongye Zeng, Wenjing Ning, Xue Liu, Wenxin Luo, Ningshao Xia
    Frontiers of Medicine, 2024, 18(4): 597-621. https://doi.org/10.1007/s11684-024-1072-8

    Antibody–drug conjugates (ADCs) are biologically targeted drugs composed of antibodies and cytotoxic drugs connected by linkers. These innovative compounds enable precise drug delivery to tumor cells, minimizing harm to normal tissues and offering excellent prospects for cancer treatment. However, monoclonal antibody-based ADCs still present challenges, especially in terms of balancing efficacy and safety. Bispecific antibodies are alternatives to monoclonal antibodies and exhibit superior internalization and selectivity, producing ADCs with increased safety and therapeutic efficacy. In this review, we present available evidence and future prospects regarding the use of bispecific ADCs for cancer treatment, including a comprehensive overview of bispecific ADCs that are currently in clinical trials. We offer insights into the future development of bispecific ADCs to provide novel strategies for cancer treatment.

  • RESEARCH ARTICLE
    Rui Fu, Yuanyuan Xiong, Miao Cai, Fang Li, Rongrong Chen, Yilong Wu, Wenzhao Zhong
    Frontiers of Medicine, 2024, 18(4): 735-743. https://doi.org/10.1007/s11684-024-1060-z

    Gene fusions and MET alterations are rare and difficult to detect in plasma samples. The clinical detection efficacy of molecular residual disease (MRD) based on circulating tumor DNA (ctDNA) in patients with non-small cell lung cancer (NSCLC) with these mutations remains unknown. This prospective, non-intervention study recruited 49 patients with operable NSCLC with actionable gene fusions (ALK, ROS1, RET, and FGFR1), MET exon 14 skipping or de novo MET amplification. We analyzed 43 tumor tissues and 111 serial perioperative plasma samples using 1021- and 338-gene panels, respectively. Detectable MRD correlated with a significantly higher recurrence rate (P < 0.001), yielding positive predictive values of 100% and 90.9%, and negative predictive values of 82.4% and 86.4% at landmark and longitudinal time points, respectively. Patients with detectable MRD showed reduced disease-free survival (DFS) compared to those with undetectable MRD (P < 0.001). Patients who harbored tissue-derived fusion/MET alterations in their MRD had reduced DFS compared to those who did not (P = 0.05). To our knowledge, this is the first comprehensive study on ctDNA-MRD clinical detection efficacy in operable NSCLC patients with gene fusions and MET alterations. Patients with detectable tissue-derived fusion/MET alterations in postoperative MRD had worse clinical outcomes.

  • RESEARCH ARTICLE
    Shubei Chen, Dianjia Liu, Bingyi Chen, Zijuan Li, Binhe Chang, Chunhui Xu, Ningzhe Li, Changzhou Feng, Xibo Hu, Weiying Wang, Yuanliang Zhang, Yinyin Xie, Qiuhua Huang, Yingcai Wang, Stephen D. Nimer, Saijuan Chen, Zhu Chen, Lan Wang, Xiaojian Sun
    Frontiers of Medicine, 2024, 18(5): 831-849. https://doi.org/10.1007/s11684-024-1095-1

    SETD2 is the only enzyme responsible for transcription-coupled histone H3 lysine 36 trimethylation (H3K36me3). Mutations in SETD2 cause human diseases including cancer and developmental defects. In mice, Setd2 is essential for embryonic vascular remodeling. Given that many epigenetic modifiers have recently been found to possess noncatalytic functions, it is unknown whether the major function(s) of Setd2 is dependent on its catalytic activity or not. Here, we established a site-specific knockin mouse model harboring a cancer patient-derived catalytically dead Setd2 (Setd2-CD). We found that the essentiality of Setd2 in mouse development is dependent on its methyltransferase activity, as the Setd2CD/CD and Setd2−/− mice showed similar embryonic lethal phenotypes and largely comparable gene expression patterns. However, compared with Setd2−/−, the Setd2CD/CD mice showed less severe defects in allantois development, and single-cell RNA-seq analysis revealed differentially regulated allantois-specific 5′ Hoxa cluster genes in these two models. Collectively, this study clarifies the importance of Setd2 catalytic activity in mouse development and provides a new model for comparative study of previously unrecognized Setd2 functions.

  • REVIEW
    Yue Ma, Hongwei Lv, Fuxue Xing, Wei Xiang, Zixin Wu, Qiyu Feng, Hongyang Wang, Wen Yang
    Frontiers of Medicine, 2024, 18(3): 430-445. https://doi.org/10.1007/s11684-023-1049-z

    Crosstalk between cancer cells and the immune microenvironment is determinant for liver cancer progression. A tumor subpopulation called liver cancer stem cells (CSCs) significantly accounts for the initiation, metastasis, therapeutic resistance, and recurrence of liver cancer. Emerging evidence demonstrates that the interaction between liver CSCs and immune cells plays a crucial role in shaping an immunosuppressive microenvironment and determining immunotherapy responses. This review sheds light on the bidirectional crosstalk between liver CSCs and immune cells for liver cancer progression, as well as the underlying molecular mechanisms after presenting an overview of liver CSCs characteristic and their microenvironment. Finally, we discuss the potential application of liver CSCs-targeted immunotherapy for liver cancer treatment.

  • REVIEW
    Xuefei Li, Wenhua Chen, Dan Liu, Pinghua Chen, Shiyun Wang, Fangfang Li, Qian Chen, Shunyi Lv, Fangyu Li, Chen Chen, Suxia Guo, Weina Yuan, Pan Li, Zhijun Hu
    Frontiers of Medicine, 2024, 18(2): 237-257. https://doi.org/10.1007/s11684-024-1061-y

    Osteoarthritis (OA) is a degenerative bone disease associated with aging. The rising global aging population has led to a surge in OA cases, thereby imposing a significant socioeconomic burden. Researchers have been keenly investigating the mechanisms underlying OA. Previous studies have suggested that the disease starts with synovial inflammation and hyperplasia, advancing toward cartilage degradation. Ultimately, subchondral-bone collapse, sclerosis, and osteophyte formation occur. This progression is deemed as “top to bottom.” However, recent research is challenging this perspective by indicating that initial changes occur in subchondral bone, precipitating cartilage breakdown. In this review, we elucidate the epidemiology of OA and present an in-depth overview of the subchondral bone’s physiological state, functions, and the varied pathological shifts during OA progression. We also introduce the role of multifunctional signal pathways (including osteoprotegerin (OPG)/receptor activator of nuclear factor-kappa B ligand (RANKL)/receptor activator of nuclear factor-kappa B (RANK), and chemokine (CXC motif) ligand 12 (CXCL12)/CXC motif chemokine receptor 4 (CXCR4)) in the pathology of subchondral bone and their role in the “bottom-up” progression of OA. Using vivid pattern maps and clinical images, this review highlights the crucial role of subchondral bone in driving OA progression, illuminating its interplay with the condition.

  • COMMENT
    Yingyan Yu, Hongzhuan Chen
    Frontiers of Medicine, 2024, 18(2): 403-409. https://doi.org/10.1007/s11684-023-1039-1
  • RESEARCH ARTICLE
    Fei Xu, Han Chen, Changyi Zhou, Tongtong Zang, Rui Wang, Shutong Shen, Chaofu Li, Yue Yu, Zhiqiang Pei, Li Shen, Juying Qian, Junbo Ge
    Frontiers of Medicine, 2024, 18(3): 465-483. https://doi.org/10.1007/s11684-024-1056-8

    Atherosclerosis is a chronic artery disease that causes various types of cardiovascular dysfunction. Vascular smooth muscle cells (VSMCs), the main components of atherosclerotic plaque, switch from contractile to synthetic phenotypes during atherogenesis. Ubiquitylation is crucial in regulating VSMC phenotypes in atherosclerosis, and it can be reversely regulated by deubiquitinases. However, the specific effects of deubiquitinases on atherosclerosis have not been thoroughly elucidated. In this study, RNAi screening in human aortic smooth muscle cells was performed to explore the effects of OTU family deubiquitinases, which revealed that silencing OTUB1 inhibited PDGF-BB-stimulated VSMC phenotype switch. Further in vivo studies using Apoe−/− mice revealed that knockdown of OTUB1 in VSMCs alleviated atherosclerosis plaque burden in the advanced stage and led to a stable plaque phenotype. Moreover, VSMC proliferation and migration upon PDGF-BB stimulation could be inhibited by silencing OTUB1 in vitro. Unbiased RNA-sequencing data indicated that knocking down OTUB1 influenced VSMC differentiation, adhesion, and proliferation. Mass spectrometry of ubiquitinated protein confirmed that proteins related to cell growth and migration were differentially ubiquitylated. Mechanistically, we found that OTUB1 recognized the K707 residue ubiquitylation of PDGFRβ with its catalytic triad, thereby reducing the K48-linked ubiquitylation of PDGFRβ. Inhibiting OTUB1 in VSMCs could promote PDGFRβ degradation via the ubiquitin–proteasome pathway, so it was beneficial in preventing VSMCs’ phenotype switch. These findings revealed that knocking down OTUB1 ameliorated VSMCs’ phenotype switch and atherosclerosis progression, indicating that OTUB1 could be a valuable translational therapeutic target in the future.

  • RESEARCH ARTICLE
    Yi Ding, Xiaoli Xu, Zhuojun Xin, Qiuyu Cao, Jiaojiao Huang, Xianglin Wu, Yanan Huo, Qin Wan, Yingfen Qin, Ruying Hu, Lixin Shi, Qing Su, Xuefeng Yu, Li Yan, Guijun Qin, Xulei Tang, Gang Chen, Min Xu, Tiange Wang, Zhiyun Zhao, Zhengnan Gao, Guixia Wang, Feixia Shen, Zuojie Luo, Li Chen, Qiang Li, Zhen Ye, Yinfei Zhang, Chao Liu, Youmin Wang, Tao Yang, Huacong Deng, Lulu Chen, Tianshu Zeng, Jiajun Zhao, Yiming Mu, Shengli Wu, Yuhong Chen, Jieli Lu, Weiqing Wang, Guang Ning, Yu Xu, Yufang Bi, Mian Li
    Frontiers of Medicine, 2024, 18(2): 303-314. https://doi.org/10.1007/s11684-023-1019-5

    Studies have found a U-shaped relationship between sleep duration and chronic kidney disease (CKD) risk, but limited research evaluated the association of reallocating excessive sleep to other behavior with CKD. We included 104 538 participants from the nationwide cohort of the Risk Evaluation of Cancers in Chinese Diabetic Individuals: A Longitudinal Study, with self-reported time of daily-life behavior. Using isotemporal substitution models, we found that substituting 1 h of sleeping with sitting, walking, or moderate-to-vigorous physical activity was associated with a lower CKD prevalence. Leisure-time physical activity displacement was associated with a greater prevalence reduction than occupational physical activity in working population. In stratified analysis, a lower CKD prevalence related to substitution toward physical activity was found in long sleepers. More pronounced correlations were observed in long sleepers with diabetes than in those with prediabetes, and they benefited from other behavior substitutions toward a more active way. The U-shaped association between sleep duration and CKD prevalence implied the potential effects of insufficient and excessive sleep on the kidneys, in which the pernicious link with oversleep could be reversed by time reallocation to physical activity. The divergence in the predicted effect on CKD following time reallocation to behavior of different domains and intensities and in subpopulations with diverse metabolic statuses underlined the importance of optimizing sleeping patterns and adjusting integral behavioral composition.

  • RESEARCH ARTICLE
    Qianru Li, Changfa Xia, He Li, Xinxin Yan, Fan Yang, Mengdi Cao, Shaoli Zhang, Yi Teng, Siyi He, Maomao Cao, Wanqing Chen
    Frontiers of Medicine, 2024, 18(5): 911-920. https://doi.org/10.1007/s11684-024-1058-6

    Cancer is a major public health problem and represents substantial disparities worldwide. This study reported estimates for 36 cancers across 185 countries by incidence, mortality, 5-year prevalence, mortality-to-prevalence ratio (MPR), and mortality-to-incidence ratio (MIR) to examine its association with human development index (HDI) and gross national income (GNI). Data were collected from the GLOBOCAN 2020. MPR and MIR were calculated by sex, age group, country, and cancer type and then summarized into totals. Segi’s population and global cancer spectrum were used to calculate age- and type-standardized ratios. Correlation analyses were conducted to assess associations. Results showed that breast cancer was the most diagnosed cancer globally. Low- and middle-income countries had high MPR and MIR. Cancers of esophagus, pancreas, and liver had the highest ratios. Males and the older population had the highest ratios. HDI and GNI were positively correlated with incidence and mortality but negatively correlated with MPR/MIR. Substantial disparities in cancer burden were observed among 36 cancer types across 185 countries. Socioeconomic development may contribute to narrowing these disparities, and tailored strategies are crucial for regional- and country-specific cancer control.

  • RESEARCH ARTICLE
    Xue Han, Chune Ren, Aifang Jiang, Yonghong Sun, Jiayi Lu, Xi Ling, Chao Lu, Zhenhai Yu
    Frontiers of Medicine, 2024, 18(2): 344-356. https://doi.org/10.1007/s11684-023-1028-4

    ALKBH5 is a master regulator of N6-methyladenosine (m6A) modification, which plays a crucial role in many biological processes. Here, we show that ALKBH5 is required for breast tumor growth. Interestingly, PRMT6 directly methylates ALKBH5 at R283, which subsequently promotes breast tumor growth. Furthermore, arginine methylation of ALKBH5 by PRMT6 increases LDHA RNA stability via m6A demethylation, leading to increased aerobic glycolysis. Moreover, PRMT6-mediated ALKBH5 arginine methylation is confirmed in PRMT6-knockout mice. Collectively, these findings identify a PRMT6-ALKBH5-LDHA signaling axis as a novel target for the treatment of breast cancer.

  • RESEARCH ARTICLE
    Yuanxin Yao, Honghui Lv, Meiying Zhang, Yuan Li, James G. Herman, Malcolm V. Brock, Aiai Gao, Qian Wang, Francois Fuks, Lirong Zhang, Mingzhou Guo
    Frontiers of Medicine, 2024, 18(4): 721-734. https://doi.org/10.1007/s11684-023-1053-3

    Synthetic lethality is a novel model for cancer therapy. To understand the function and mechanism of BEN domain-containing protein 4 (BEND4) in pancreatic cancer, eight cell lines and a total of 492 cases of pancreatic neoplasia samples were included in this study. Methylation-specific polymerase chain reaction, CRISPR/Cas9, immunoprecipitation assay, comet assay, and xenograft mouse model were used. BEND4 is a new member of the BEN domain family. The expression of BEND4 is regulated by promoter region methylation. It is methylated in 58.1% (176/303) of pancreatic ductal adenocarcinoma (PDAC), 33.3% (14/42) of intraductal papillary mucinous neoplasm, 31.0% (13/42) of pancreatic neuroendocrine tumor, 14.3% (3/21) of mucinous cystic neoplasm, 4.3% (2/47) of solid pseudopapillary neoplasm, and 2.7% (1/37) of serous cystic neoplasm. BEND4 methylation is significantly associated with late-onset PDAC (> 50 years, P < 0.01) and tumor differentiation (P < 0.0001), and methylation of BEND4 is an independent poor prognostic marker (P < 0.01) in PDAC. Furthermore, BEND4 plays tumor-suppressive roles in vitro and in vivo. Mechanistically, BEND4 involves non-homologous end joining signaling by interacting with Ku80 and promotes DNA damage repair. Loss of BEND4 increased the sensitivity of PDAC cells to ATM inhibitor. Collectively, the present study revealed an uncharacterized tumor suppressor BEND4 and indicated that methylation of BEND4 may serve as a potential synthetic lethal marker for ATM inhibitor in PDAC treatment.

  • RESEARCH ARTICLE
    Fan Zou, Jialiang Wei, Jialang Zhuang, Yafang Liu, Jizhou Tan, Xianzhang Huang, Ting Liu
    Frontiers of Medicine, 2024, 18(4): 708-720. https://doi.org/10.1007/s11684-024-1071-9

    CD39 serves as a crucial biomarker for neoantigen-specific CD8+ T cells and is associated with antitumor activity and exhaustion. However, the relationship between CD39 expression levels and the function of chimeric antigen receptor T (CAR-T) cells remains controversial. This study aimed to investigate the role of CD39 in the functional performance of CAR-T cells against hepatocellular carcinoma (HCC) and explore the therapeutic potential of CD39 modulators, such as mitochondrial division inhibitor-1 (mdivi-1), or knockdown CD39 through short hairpin RNA. Our findings demonstrated that glypican-3-CAR-T cells with moderate CD39 expression exhibited a strong antitumor activity, while high and low levels of CD39 led to an impaired cellular function. Methods modulating the proportion of CD39 intermediate (CD39int)-phenotype CAR-T cells such as mdivi-1 and CD39 knockdown enhanced and impaired T cell function, respectively. The combination of mdivi-1 and CD39 knockdown in CAR-T cells yielded the highest proportion of infiltrated CD39int CAR-T cells and demonstrated a robust antitumor activity in vivo. In conclusion, this study revealed the crucial role of CD39 in CAR-T cell function, demonstrated the potential therapeutic efficacy of combining mdivi-1 with CD39 knockdown in HCC, and provided a novel treatment strategy for HCC patients in the field of cellular immunotherapy.

  • CASE REPORT
    Zhuangzhuang Yuan, Xin Zhu, Xiaohui Xie, Chenyu Wang, Heng Gu, Junlin Yang, Liangliang Fan, Rong Xiang, Yifeng Yang, Zhiping Tan
    Frontiers of Medicine, 2024, 18(3): 558-564. https://doi.org/10.1007/s11684-023-1042-6

    The establishment of left–right asymmetry is a fundamental process in animal development. Interference with this process leads to a range of disorders collectively known as laterality defects, which manifest as abnormal arrangements of visceral organs. Among patients with laterality defects, congenital heart diseases (CHD) are prevalent. Through multiple model organisms, extant research has established that myosin-Id (MYO1D) deficiency causes laterality defects. This study investigated over a hundred cases and identified a novel biallelic variant of MYO1D (NM_015194: c.1531G>A; p.D511N) in a consanguineous family with complex CHD and laterality defects. Further examination of the proband revealed asthenoteratozoospermia and shortened sperm. Afterward, the effects of the D511N variant and another known MYO1D variant (NM_015194: c.2293C>T; p.P765S) were assessed. The assessment showed that both enhance the interaction with β-actin and SPAG6. Overall, this study revealed the genetic heterogeneity of this rare disease and found that MYO1D variants are correlated with laterality defects and CHD in humans. Furthermore, this research established a connection between sperm defects and MYO1D variants. It offers guidance for exploring infertility and reproductive health concerns. The findings provide a critical basis for advancing personalized medicine and genetic counseling.

  • RESEARCH ARTICLE
    Zhe Nian, Dan Wang, Hao Wang, Wenxu Liu, Zhenyi Ma, Jie Yan, Yanna Cao, Jie Li, Qiang Zhao, Zhe Liu
    Frontiers of Medicine, 2024, 18(4): 690-707. https://doi.org/10.1007/s11684-024-1081-7

    Neuroblastoma (NB) is one of the most common childhood malignancies. Sixty percent of patients present with widely disseminated clinical signs at diagnosis and exhibit poor outcomes. However, the molecular mechanisms triggering NB metastasis remain largely uncharacterized. In this study, we generated a transcriptomic atlas of 15 447 NB cells from eight NB samples, including paired samples of primary tumors and bone marrow metastases. We used time-resolved analysis to chart the evolutionary trajectory of NB cells from the primary tumor to the metastases in the same patient and identified a common ‘starter’ subpopulation that initiates tumor development and metastasis. The ‘starter’ population exhibited high expression levels of multiple cell cycle-related genes, indicating the important role of cell cycle upregulation in NB tumor progression. In addition, our evolutionary trajectory analysis demonstrated the involvement of partial epithelial-to-mesenchymal transition (p-EMT) along the metastatic route from the primary site to the bone marrow. Our study provides insights into the program driving NB metastasis and presents a signature of metastasis-initiating cells as an independent prognostic indicator and potential therapeutic target to inhibit the initiation of NB metastasis.