Journal home Browse Most accessed

Most accessed

  • Select all
  • RESEARCH ARTICLE
    Miyesaier Abudureyimu, Mingjie Yang, Xiang Wang, Xuanming Luo, Junbo Ge, Hu Peng, Yingmei Zhang, Jun Ren
    Frontiers of Medicine, 2023, 17(6): 1219-1235. https://doi.org/10.1007/s11684-023-0983-0

    Heart failure with preserved ejection fraction (HFpEF) displays normal or near-normal left ventricular ejection fraction, diastolic dysfunction, cardiac hypertrophy, and poor exercise capacity. Berberine, an isoquinoline alkaloid, possesses cardiovascular benefits. Adult male mice were assigned to chow or high-fat diet with L-NAME (“two-hit” model) for 15 weeks. Diastolic function was assessed using echocardiography and non-invasive Doppler technique. Myocardial morphology, mitochondrial ultrastructure, and cardiomyocyte mechanical properties were evaluated. Proteomics analysis, autophagic flux, and intracellular Ca2+ were also assessed in chow and HFpEF mice. The results show exercise intolerance and cardiac diastolic dysfunction in “two-hit”-induced HFpEF model, in which unfavorable geometric changes such as increased cell size, interstitial fibrosis, and mitochondrial swelling occurred in the myocardium. Diastolic dysfunction was indicated by the elevated E value, mitral E/A ratio, and E/e’ ratio, decreased e’ value and maximal velocity of re-lengthening (–dL/dt), and prolonged re-lengthening in HFpEF mice. The effects of these processes were alleviated by berberine. Moreover, berberine ameliorated autophagic flux, alleviated Drp1 mitochondrial localization, mitochondrial Ca2+ overload and fragmentation, and promoted intracellular Ca2+ reuptake into sarcoplasmic reticulum by regulating phospholamban and SERCA2a. Finally, berberine alleviated diastolic dysfunction in “two-hit” diet-induced HFpEF model possibly because of the promotion of autophagic flux, inhibition of mitochondrial fragmentation, and cytosolic Ca2+ overload.

  • RESEARCH ARTICLE
    Beibei Jiang, Tong Zhang, Minjuan Deng, Wei Jin, Yuan Hong, Xiaotong Chen, Xin Chen, Jing Wang, Hongjia Hou, Yajuan Gao, Wenfeng Gong, Xing Wang, Haiying Li, Xiaosui Zhou, Yingcai Feng, Bo Zhang, Bin Jiang, Xueping Lu, Lijie Zhang, Yang Li, Weiwei Song, Hanzi Sun, Zuobai Wang, Xiaomin Song, Zhirong Shen, Xuesong Liu, Kang Li, Lai Wang, Ye Liu
    Frontiers of Medicine, 2023, 17(6): 1170-1185. https://doi.org/10.1007/s11684-023-0996-8

    OX40 is a costimulatory receptor that is expressed primarily on activated CD4+, CD8+, and regulatory T cells. The ligation of OX40 to its sole ligand OX40L potentiates T cell expansion, differentiation, and activation and also promotes dendritic cells to mature to enhance their cytokine production. Therefore, the use of agonistic anti-OX40 antibodies for cancer immunotherapy has gained great interest. However, most of the agonistic anti-OX40 antibodies in the clinic are OX40L-competitive and show limited efficacy. Here, we discovered that BGB-A445, a non-ligand-competitive agonistic anti-OX40 antibody currently under clinical investigation, induced optimal T cell activation without impairing dendritic cell function. In addition, BGB-A445 dose-dependently and significantly depleted regulatory T cells in vitro and in vivo via antibody-dependent cellular cytotoxicity. In the MC38 syngeneic model established in humanized OX40 knock-in mice, BGB-A445 demonstrated robust and dose-dependent antitumor efficacy, whereas the ligand-competitive anti-OX40 antibody showed antitumor efficacy characterized by a hook effect. Furthermore, BGB-A445 demonstrated a strong combination antitumor effect with an anti-PD-1 antibody. Taken together, our findings show that BGB-A445, which does not block OX40–OX40L interaction in contrast to clinical-stage anti-OX40 antibodies, shows superior immune-stimulating effects and antitumor efficacy and thus warrants further clinical investigation.

  • REVIEW
    Huichao Qin, Jiaxing Feng, Xiaoke Wu
    Frontiers of Medicine, 2024, 18(1): 46-67. https://doi.org/10.1007/s11684-023-1051-5

    Globally, public health interventions have resulted in a 30-year increase in women’s life expectancy. However, women’s health has not increased when socioeconomic status is ignored. Women’s health has become a major public health concern, for those women from developing countries are still struggling with infectious and labor-related diseases, and their counterparts in developed countries are suffering from physical and psychological disorders. In recent years, complementary and alternative medicine has attracted wide attentions with regards to maintaining women’s health. Acupuncture, a crucial component of traditional Chinese medicine, has been used to treat many obstetric and gynecological diseases for thousands of years due to its analgesic and anti-inflammatory effects and its effects on stimulating the sympathetic/parasympathetic nervous system. To fully understand the mechanism through which acupuncture exerts its effects in these diseases would significantly extend the list of available interventions and would allow for more reasonable advice to be given to general practitioners. Therefore, by searching PubMed and CNKI regarding the use of acupuncture in treating obstetric and gynecological diseases, we aimed to summarize the proven evidence of using acupuncture in maintaining women’s health by considering both its effectiveness and the underlying mechanisms behind its effects.

  • RESEARCH ARTICLE
    Guoqiang Li, Peng Pu, Mengqiao Pan, Xiaoling Weng, Shimei Qiu, Yiming Li, Sk Jahir Abbas, Lu Zou, Ke Liu, Zheng Wang, Ziyu Shao, Lin Jiang, Wenguang Wu, Yun Liu, Rong Shao, Fatao Liu, Yingbin Liu
    Frontiers of Medicine, 2024, 18(1): 109-127. https://doi.org/10.1007/s11684-023-1008-8

    Altered three-dimensional architecture of chromatin influences various genomic regulators and subsequent gene expression in human cancer. However, knowledge of the topological rearrangement of genomic hierarchical layers in cancer is largely limited. Here, by taking advantage of in situ Hi-C, RNA-sequencing, and chromatin immunoprecipitation sequencing (ChIP-seq), we investigated structural reorganization and functional changes in chromosomal compartments, topologically associated domains (TADs), and CCCTC binding factor (CTCF)-mediated loops in gallbladder cancer (GBC) tissues and cell lines. We observed that the chromosomal compartment A/B switch was correlated with CTCF binding levels and gene expression changes. Increased inter-TAD interactions with weaker TAD boundaries were identified in cancer cell lines relative to normal controls. Furthermore, the chromatin short loops and cancer unique loops associated with chromatin remodeling and epithelial–mesenchymal transition activation were enriched in cancer compared with their control counterparts. Cancer-specific enhancer–promoter loops, which contain multiple transcription factor binding motifs, acted as a central element to regulate aberrant gene expression. Depletion of individual enhancers in each loop anchor that connects with promoters led to the inhibition of their corresponding gene expressions. Collectively, our data offer the landscape of hierarchical layers of cancer genome and functional alterations that contribute to the development of GBC.

  • RESEARCH ARTICLE
    Meiling Xia, Rui Yan, Wenjuan Wang, Meng Zhang, Zhigang Miao, Bo Wan, Xingshun Xu
    Frontiers of Medicine, 2023, 17(6): 1204-1218. https://doi.org/10.1007/s11684-023-1007-9

    Brain development requires a delicate balance between self-renewal and differentiation in neural stem cells (NSC), which rely on the precise regulation of gene expression. Ten-eleven translocation 2 (TET2) modulates gene expression by the hydroxymethylation of 5-methylcytosine in DNA as an important epigenetic factor and participates in the neuronal differentiation. Yet, the regulation of TET2 in the process of neuronal differentiation remains unknown. Here, the protein level of TET2 was reduced by the ubiquitin-proteasome pathway during NSC differentiation, in contrast to mRNA level. We identified that TET2 physically interacts with the core subunits of the glucose-induced degradation-deficient (GID) ubiquitin ligase complex, an evolutionarily conserved ubiquitin ligase complex and is ubiquitinated by itself. The protein levels of GID complex subunits increased reciprocally with TET2 level upon NSC differentiation. The silencing of the core subunits of the GID complex, including WDR26 and ARMC8, attenuated the ubiquitination and degradation of TET2, increased the global 5-hydroxymethylcytosine levels, and promoted the differentiation of the NSC. TET2 level increased in the brain of the Wdr26+/− mice. Our results illustrated that the GID complex negatively regulates TET2 protein stability, further modulates NSC differentiation, and represents a novel regulatory mechanism involved in brain development.

  • REVIEW
    Tianjing Sun, Mo Li, Qi Liu, Anyong Yu, Kun Cheng, Jianxing Ma, Sean Murphy, Patrick Michael McNutt, Yuanyuan Zhang
    Frontiers of Medicine, 2024, 18(2): 258-284. https://doi.org/10.1007/s11684-023-1031-9

    Exosome therapy holds great promise as a novel approach to improve acute skin wound healing. This review provides a comprehensive overview of the current understanding of exosome biology and its potential applications in acute skin wound healing and beyond. Exosomes, small extracellular vesicles secreted by various stem cells, have emerged as potent mediators of intercellular communication and tissue repair. One advantage of exosome therapy is its ability to avoid potential risks associated with stem cell therapy, such as immune rejection or stem cells differentiating into unwanted cell types. However, further research is necessary to optimize exosome therapy, not only in the areas of exosome isolation, characterization, and engineering, but also in determining the optimal dose, timing, administration, and frequency of exosome therapy. Thus, optimization of exosome therapy is critical for the development of more effective and safer exosome-based therapies for acute skin wound healing and other diseases induced by cancer, ischemia, or inflammation. This review provides valuable insights into the potential of exosome therapy and highlights the need for further research to optimize exosome therapy for clinical use.

  • EDITORIAL
    Guangbiao Zhou, Saijuan Chen, Zongjiu Zhang, Zhu Chen
    Frontiers of Medicine, 2023, 17(6): 1011-1013. https://doi.org/10.1007/s11684-024-1059-5
  • REVIEW
    Ben Hu, Hua Guo, Haorui Si, Zhengli Shi
    Frontiers of Medicine, 2024, 18(1): 1-18. https://doi.org/10.1007/s11684-024-1066-6

    Severe acute respiratory syndrome (SARS) and coronavirus disease 2019 (COVID-19) are two human coronavirus diseases emerging in this century, posing tremendous threats to public health and causing great loss to lives and economy. In this review, we retrospect the studies tracing the molecular evolution of SARS-CoV, and we sort out current research findings about the potential ancestor of SARS-CoV-2. Updated knowledge about SARS-CoV-2-like viruses found in wildlife, the animal susceptibility to SARS-CoV-2, as well as the interspecies transmission risk of SARS-related coronaviruses (SARSr-CoVs) are gathered here. Finally, we discuss the strategies of how to be prepared against future outbreaks of emerging or re-emerging coronaviruses.

  • RESEARCH ARTICLE
    Yuanyuan Hao, Panpan Chen, Shanshan Guo, Mengyuan Li, Xueli Jin, Minghuan Zhang, Wenhai Deng, Ping Li, Wen Lei, Aibin Liang, Wenbin Qian
    Frontiers of Medicine, 2024, 18(1): 128-146. https://doi.org/10.1007/s11684-023-1010-1

    Tumor-derived exosomes (TEXs) enriched in immune suppressive molecules predominantly drive T-cell dysfunction and impair antitumor immunity. Chimeric antigen receptor (CAR) T-cell therapy has emerged as a promising treatment for refractory and relapsed hematological malignancies, but whether lymphoma TEXs have the same impact on CAR T-cell remains unclear. Here, we demonstrated that B-cell lymphoma-derived exosomes induce the initial activation of CD19–CAR T-cells upon stimulation with exosomal CD19. However, lymphoma TEXs might subsequently induce CAR T-cell apoptosis and impair the tumor cytotoxicity of the cells because of the upregulated expression of the inhibitory receptors PD-1, TIM3, and LAG3 upon prolonged exposure. Similar results were observed in the CAR T-cells exposed to plasma exosomes from patients with lymphoma. More importantly, single-cell RNA sequencing revealed that CAR T-cells typically showed differentiated phenotypes and regulatory T-cell (Treg) phenotype conversion. By blocking transforming growth factor β (TGF-β)–Smad3 signaling with TGF-β inhibitor LY2109761, the negative effects of TEXs on Treg conversion, terminal differentiation, and immune checkpoint expression were rescued. Collectively, although TEXs lead to the initial activation of CAR T-cells, the effect of TEXs suppressed CAR T-cells, which can be rescued by LY2109761. A treatment regimen combining CAR T-cell therapy and TGF-β inhibitors might be a novel therapeutic strategy for refractory and relapsed B-cell lymphoma.

  • REVIEW
    Chang Peng, Jun Chen, Rui Wu, Haowen Jiang, Jia Li
    Frontiers of Medicine, 2024, 18(2): 205-236. https://doi.org/10.1007/s11684-023-1033-7

    Macrophages, a heterogeneous population of innate immune cells, exhibit remarkable plasticity and play pivotal roles in coordinating immune responses and maintaining tissue homeostasis within the context of metabolic diseases. The activation of inflammatory macrophages in obese adipose tissue leads to detrimental effects, inducing insulin resistance through increased inflammation, impaired thermogenesis, and adipose tissue fibrosis. Meanwhile, adipose tissue macrophages also play a beneficial role in maintaining adipose tissue homeostasis by regulating angiogenesis, facilitating the clearance of dead adipocytes, and promoting mitochondrial transfer. Exploring the heterogeneity of macrophages in obese adipose tissue is crucial for unraveling the pathogenesis of obesity and holds significant potential for targeted therapeutic interventions. Recently, the dual effects and some potential regulatory mechanisms of macrophages in adipose tissue have been elucidated using single-cell technology. In this review, we present a comprehensive overview of the intricate activation mechanisms and diverse functions of macrophages in adipose tissue during obesity, as well as explore the potential of drug delivery systems targeting macrophages, aiming to enhance the understanding of current regulatory mechanisms that may be potentially targeted for treating obesity or metabolic diseases.

  • RESEARCH ARTICLE
    Xinyue Zhao, Haijun Ge, Wenshuai Xu, Chongsheng Cheng, Wangji Zhou, Yan Xu, Junping Fan, Yaping Liu, Xinlun Tian, Kai-Feng Xu, Xue Zhang
    Frontiers of Medicine, 2023, 17(6): 1236-1249. https://doi.org/10.1007/s11684-023-0997-7

    Primary ciliary dyskinesia (PCD) is a highly heterogeneous recessive inherited disorder. FAP54, the homolog of CFAP54 in Chlamydomonas reinhardtii, was previously demonstrated as the C1d projection of the central microtubule apparatus of flagella. A Cfap54 knockout mouse model was then reported to have PCD-relevant phenotypes. Through whole-exome sequencing, compound heterozygous variants c.2649_2657delinC (p. E883Dfs*47) and c.7312_7313insCGCAGGCTGAATTCTTGG (p. T2438delinsTQAEFLA) in a new suspected PCD-relevant gene, CFAP54, were identified in an individual with PCD. Two missense variants, c.4112A>C (p. E1371A) and c.6559C>T (p. P2187S), in CFAP54 were detected in another unrelated patient. In this study, a minigene assay was conducted on the frameshift mutation showing a reduction in mRNA expression. In addition, a CFAP54 in-frame variant knock-in mouse model was established, which recapitulated the typical symptoms of PCD, including hydrocephalus, infertility, and mucus accumulation in nasal sinuses. Correspondingly, two missense variants were deleterious, with a dramatic reduction in mRNA abundance from bronchial tissue and sperm. The identification of PCD-causing variants of CFAP54 in two unrelated patients with PCD for the first time provides strong supportive evidence that CFAP54 is a new PCD-causing gene. This study further helps expand the disease-associated gene spectrum and improve genetic testing for PCD diagnosis in the future.

  • REVIEW
    Min Zhang, Ting Hu, Tianyu Ma, Wei Huang, Yan Wang
    Frontiers of Medicine, 2024, 18(4): 571-596. https://doi.org/10.1007/s11684-023-1038-2

    Epigenetic modifications including DNA methylation, histone modifications, chromatin remodeling, and RNA modifications complicate gene regulation and heredity and profoundly impact various physiological and pathological processes. In recent years, accumulating evidence indicates that epigenetics is vulnerable to environmental changes and regulates the growth, development, and diseases of individuals by affecting chromatin activity and regulating gene expression. Environmental exposure or induced epigenetic changes can regulate the state of development and lead to developmental disorders, aging, cardiovascular disease, Alzheimer’s disease, cancers, and so on. However, epigenetic modifications are reversible. The use of specific epigenetic inhibitors targeting epigenetic changes in response to environmental exposure is useful in disease therapy. Here, we provide an overview of the role of epigenetics in various diseases. Furthermore, we summarize the mechanism of epigenetic alterations induced by different environmental exposures, the influence of different environmental exposures, and the crosstalk between environmental variation epigenetics, and genes that are implicated in the body’s health. However, the interaction of multiple factors and epigenetics in regulating the initiation and progression of various diseases complicates clinical treatments. We discuss some commonly used epigenetic drugs targeting epigenetic modifications and methods to prevent or relieve various diseases regulated by environmental exposure and epigenetics through diet.

  • REVIEW
    Linhua Zhao, Chuanxi Tian, Yingying Yang, Huifang Guan, Yu Wei, Yuxin Zhang, Xiaomin Kang, Ling Zhou, Qingwei Li, Jing Ma, Li Wan, Yujiao Zheng, Xiaolin Tong
    Frontiers of Medicine, 2023, 17(6): 1014-1029. https://doi.org/10.1007/s11684-023-1040-8

    Traditional Chinese medicine (TCM) has played an important role in the prevention and treatment of coronavirus disease 2019 (COVID-19) epidemic in China. The integration of Chinese and Western medicine is an important feature of Chinese COVID-19 prevention and treatment. According to a series of evidence-based studies, TCM can reduce the infection rate of severe acute respiratory syndrome coronavirus 2 in high-risk groups. For patients with mild and moderate forms of COVID-19, TCM can relieve the related signs and symptoms, shorten the period of nucleic-acid negative conversion, and reduce conversion rate to the severe form of the disease. For COVID-19 patients with severe and critical illnesses, TCM can improve inflammatory indicators and blood oxygen saturation, shorten the hospital stay, and reduce the mortality rate. During recovery, TCM can improve patients’ symptoms, promote organ function recovery, boost the quality of patients’ life, and reduce the nucleic-acid repositive conversion rate. A series of mechanism research studies revealed that capability of TCM to treat COVID-19 through antiviral and anti-inflammatory effects, immune regulation, and protection of organ function via a multicomponent, multitarget, and multipathway approach.

  • LETTER TO FRONTIERS OF MEDICINE
    Wenjin Chen, Xiuwu Pan, Wang Zhou, Da Xu, Jiaxin Chen, Keqin Dong, Weijie Chen, Brian Rini, Xingang Cui
    Frontiers of Medicine, 2024, 18(2): 399-402. https://doi.org/10.1007/s11684-023-1029-3
  • RESEARCH ARTICLE
    Fang Wang, Yuxing Liu, Yi Dong, Meifang Zhao, Hao Huang, Jieyuan Jin, Liangliang Fan, Rong Xiang
    Frontiers of Medicine, 2024, 18(1): 180-191. https://doi.org/10.1007/s11684-023-1003-0

    Lipin proteins including Lipin 1–3 act as transcriptional co-activators and phosphatidic acid phosphohydrolase enzymes, which play crucial roles in lipid metabolism. However, little is known about the function of Lipin3 in triglyceride (TG) metabolism. Here, we identified a novel mutation (NM_001301860: p.1835A>T/p.D612V) of Lipin3 in a large family with hypertriglyceridemia (HTG) and obesity through whole-exome sequencing and Sanger sequencing. Functional studies revealed that the novel variant altered the half-life and stability of the Lipin3 protein. Hence, we generated Lipin3 heterozygous knockout (Lipin3-heKO) mice and cultured primary hepatocytes to explore the pathophysiological roles of Lipin3 in TG metabolism. We found that Lipin3-heKO mice exhibited obvious obesity, HTG, and non-alcoholic fatty liver disorder. Mechanistic study demonstrated that the haploinsufficiency of Lipin3 in primary hepatocytes may induce the overexpression and abnormal distribution of Lipin1 in cytosol and nucleoplasm. The increased expression of Lipin1 in cytosol may contribute to TG anabolism, and the decreased Lipin1 in nucleoplasm can reduce PGC1α, further leading to mitochondrial dysfunction and reduced TG catabolism. Our study suggested that Lipin3 was a novel disease-causing gene inducing obesity and HTG. We also established a relationship between Lipin3 and mitochondrial dysfunction.

  • RESEARCH ARTICLE
    Di He, Xunzhe Yang, Liyang Liu, Dongchao Shen, Qing Liu, Mingsheng Liu, Xue Zhang, Liying Cui
    Frontiers of Medicine, 2024, 18(2): 285-302. https://doi.org/10.1007/s11684-023-1035-5

    Amyotrophic lateral sclerosis (ALS) is a progressive neurogenerative disorder with uncertain origins. Emerging evidence implicates N6-methyladenosine (m6A) modification in ALS pathogenesis. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and liquid chromatography–mass spectrometry were utilized for m6A profiling in peripheral immune cells and serum proteome analysis, respectively, in patients with ALS (n = 16) and controls (n = 6). The single-cell transcriptomic dataset (GSE174332) of primary motor cortex was further analyzed to illuminate the biological implications of differentially methylated genes and cell communication changes. Analysis of peripheral immune cells revealed extensive RNA hypermethylation, highlighting candidate genes with differential m6A modification and expression, including C-X3-C motif chemokine receptor 1 (CX3CR1). In RAW264.7 macrophages, disrupted CX3CR1 signaling affected chemotaxis, potentially influencing immune cell migration in ALS. Serum proteome analysis demonstrated the role of dysregulated immune cell migration in ALS. Cell type-specific expression variations of these genes in the central nervous system (CNS), particularly microglia, were observed. Intercellular communication between neurons and glial cells was selectively altered in ALS CNS. This integrated approach underscores m6A dysregulation in immune cells as a potential ALS contributor.

  • RESEARCH ARTICLE
    Jie Shao, Wenjuan Wang, Baorui Tao, Zihao Cai, Haixia Li, Jinhong Chen
    Frontiers of Medicine, 2023, 17(6): 1186-1203. https://doi.org/10.1007/s11684-023-0999-5

    Through bioinformatics predictions, we identified that GTF2I and FAT1 were downregulated in thyroid carcinoma (TC). Further, Pearson’s correlation coefficient revealed a positive correlation between GTF2I expression and FAT1 expression. Therefore, we selected them for this present study, where the effects of bone marrow mesenchymal stem cell-derived EVs (BMSDs-EVs) enriched with GTF2I were evaluated on the epithelial–to–mesenchymal transition (EMT) and stemness maintenance in TC. The under-expression of GTF2I and FAT1 was validated in TC cell lines. Ectopically expressed GTF2I and FAT1 were found to augment malignant phenotypes of TC cells, EMT, and stemness maintenance. Mechanistic studies revealed that GTF2I bound to the promoter region of FAT1 and consequently upregulated its expression. MSC-EVs could shuttle GTF2I into TPC-1 cells, where GTF2I inhibited TC malignant phenotypes, EMT, and stemness maintenance by increasing the expression of FAT1 and facilitating the FAT1-mediated CDK4/FOXM1 downregulation. In vivo experiments confirmed that silencing of GTF2I accelerated tumor growth in nude mice. Taken together, our work suggests that GTF2I transferred by MSC-EVs confer antioncogenic effects through the FAT1/CDK4/FOXM1 axis and may be used as a promising biomarker for TC treatment.

  • REVIEW
    Chaolong Lin, Wenzhong Teng, Yang Tian, Shaopeng Li, Ningshao Xia, Chenghao Huang
    Frontiers of Medicine, 2024, 18(3): 411-429. https://doi.org/10.1007/s11684-023-1048-0

    Oncolytic virus (OV)-based immunotherapy has emerged as a promising strategy for cancer treatment, offering a unique potential to selectively target malignant cells while sparing normal tissues. However, the immunosuppressive nature of tumor microenvironment (TME) poses a substantial hurdle to the development of OVs as effective immunotherapeutic agents, as it restricts the activation and recruitment of immune cells. This review elucidates the potential of OV-based immunotherapy in modulating the immune landscape within the TME to overcome immune resistance and enhance antitumor immune responses. We examine the role of OVs in targeting specific immune cell populations, including dendritic cells, T cells, natural killer cells, and macrophages, and their ability to alter the TME by inhibiting angiogenesis and reducing tumor fibrosis. Additionally, we explore strategies to optimize OV-based drug delivery and improve the efficiency of OV-mediated immunotherapy. In conclusion, this review offers a concise and comprehensive synopsis of the current status and future prospects of OV-based immunotherapy, underscoring its remarkable potential as an effective immunotherapeutic agent for cancer treatment.

  • RESEARCH ARTICLE
    Niu Qiao, Yizhu Lyu, Feng Liu, Yuliang Zhang, Xiaolin Ma, Xiaojing Lin, Junyu Wang, Yinyin Xie, Ruihong Zhang, Jing Qiao, Hongming Zhu, Li Chen, Hai Fang, Tong Yin, Zhu Chen, Qiang Tian, Saijuan Chen
    Frontiers of Medicine, 2024, 18(2): 327-343. https://doi.org/10.1007/s11684-023-1022-x

    The treatment of PML/RARA+ acute promyelocytic leukemia (APL) with all-trans-retinoic acid and arsenic trioxide (ATRA/ATO) has been recognized as a model for translational medicine research. Though an altered microenvironment is a general cancer hallmark, how APL blasts shape their plasma composition is poorly understood. Here, we reported a cross-sectional correlation network to interpret multilayered datasets on clinical parameters, proteomes, and metabolomes of paired plasma samples from patients with APL before or after ATRA/ATO induction therapy. Our study revealed the two prominent features of the APL plasma, suggesting a possible involvement of APL blasts in modulating plasma composition. One was characterized by altered secretory protein and metabolite profiles correlating with heightened proliferation and energy consumption in APL blasts, and the other featured APL plasma-enriched proteins or enzymes catalyzing plasma-altered metabolites that were potential trans-regulatory targets of PML/RARA. Furthermore, results indicated heightened interferon-gamma signaling characterizing a tumor-suppressing function of the immune system at the first hematological complete remission stage, which likely resulted from therapy-induced cell death or senescence and ensuing supraphysiological levels of intracellular proteins. Overall, our work sheds new light on the pathophysiology and treatment of APL and provides an information-rich reference data cohort for the exploratory and translational study of leukemia microenvironment.

  • RESEARCH ARTICLE
    Yingbin Wang, Yu Zhang, Guihua Yao, Hong Tang, Lixin Chen, Lixue Yin, Tiangang Zhu, Jianjun Yuan, Wei Han, Jun Yang, Xianhong Shu, Ya Yang, Yulin Wei, Yanli Guo, Weidong Ren, Dongmei Gao, Guilin Lu, Ji Wu, Hongning Yin, Yuming Mu, Jiawei Tian, Lijun Yuan, Xiaojing Ma, Hongyan Dai, Yunchuan Ding, Mingyan Ding, Qing Zhou, Hao Wang, Di Xu, Mei Zhang, Yun Zhang
    Frontiers of Medicine, 2024, 18(4): 649-663. https://doi.org/10.1007/s11684-023-1045-3

    Current guidelines encourage large studies in a diverse population to establish normal reference ranges for three-dimensional (3D) echocardiography for different ethnic groups. This study was designed to establish the normal values of 3D-left ventricular (LV) and left atrial (LA) volume and function in a nationwide, population-based cohort of healthy Han Chinese adults. A total of 1117 healthy volunteers aged 18–89 years were enrolled from 28 collaborating laboratories in China. Two sets of 3D echocardiographic instruments were used, and full-volume echocardiographic images were recorded and transmitted to a core laboratory for image analysis with a vendor-independent off-line workstation. Finally, 866 volunteers (mean age of 48.4 years, 402 men) were qualified for final analysis. Most parameters exhibited substantial differences between different sex and age groups, even after indexation by body surface area. The normal ranges of 3D-LV and 3D-LA volume and function differed from those recommended by the American Society of Echocardiography and the European Association of Cardiovascular Imaging guidelines, presented by the World Alliance Societies of Echocardiography (WASE) study, and from the 2D values in the EMINCA study. The normal reference values of 3D echocardiography-derived LV and LA volume and function were established for the first time in healthy Han Chinese adults. Normal ranges of 3D-LV and 3D-LA echocardiographic measurements stratified with sex, age, and race should be recommended for clinical applications.

  • RESEARCH ARTICLE
    Fu’an Xie, Yujia Niu, Lanlan Lian, Yue Wang, Aobo Zhuang, Guangting Yan, Yantao Ren, Xiaobing Chen, Mengmeng Xiao, Xi Li, Zhe Xi, Gen Zhang, Dongmei Qin, Kunrong Yang, Zhigang Zheng, Quan Zhang, Xiaogang Xia, Peng Li, Lingwei Gu, Ting Wu, Chenghua Luo, Shu-Hai Lin, Wengang Li
    Frontiers of Medicine, 2024, 18(2): 375-393. https://doi.org/10.1007/s11684-023-1020-z

    Retroperitoneal liposarcoma (RLPS) is the main subtype of retroperitoneal soft sarcoma (RSTS) and has a poor prognosis and few treatment options, except for surgery. The proteomic and metabolic profiles of RLPS have remained unclear. The aim of our study was to reveal the metabolic profile of RLPS. Here, we performed proteomic analysis (n = 10), metabolomic analysis (n = 51), and lipidomic analysis (n = 50) of retroperitoneal dedifferentiated liposarcoma (RDDLPS) and retroperitoneal well-differentiated liposarcoma (RWDLPS) tissue and paired adjacent adipose tissue obtained during surgery. Data analysis mainly revealed that glycolysis, purine metabolism, pyrimidine metabolism and phospholipid formation were upregulated in both RDDLPS and RWDLPS tissue compared with the adjacent adipose tissue, whereas the tricarboxylic acid (TCA) cycle, lipid absorption and synthesis, fatty acid degradation and biosynthesis, as well as glycine, serine, and threonine metabolism were downregulated. Of particular importance, the glycolytic inhibitor 2-deoxy-D-glucose and pentose phosphate pathway (PPP) inhibitor RRX-001 significantly promoted the antitumor effects of the MDM2 inhibitor RG7112 and CDK4 inhibitor abemaciclib. Our study not only describes the metabolic profiles of RDDLPS and RWDLPS, but also offers potential therapeutic targets and strategies for RLPS.

  • RESEARCH ARTICLE
    Tingting Wu, Lulu Wang, Chen Jian, Zhenhe Zhang, Ruiyin Zeng, Bobin Mi, Guohui Liu, Yu Zhang, Chen Shi
    Frontiers of Medicine, 2024, 18(3): 516-537. https://doi.org/10.1007/s11684-023-1024-8

    Regulatory T cells (Tregs) suppress immune responses and inflammation. Here, we described the distinct nonimmunological role of Tregs in fracture healing. The recruitment from the circulation pool, peripheral induction, and local expansion rapidly enriched Tregs in the injured bone. The Tregs in the injured bone displayed superiority in direct osteogenesis over Tregs from lymphoid organs. Punctual depletion of Tregs compromised the fracture healing process, which leads to increased bone nonunion. In addition, bone callus Tregs showed unique T-cell receptor repertoires. Amphiregulin was the most overexpressed protein in bone callus Tregs, and it can directly facilitate the proliferation and differentiation of osteogenic precursor cells by activation of phosphatidylinositol 3-kinase/protein kinase B signaling pathways. The results of loss- and gain-function studies further evidenced that amphiregulin can reverse the compromised healing caused by Treg dysfunction. Tregs also enriched in patient bone callus and amphiregulin can promote the osteogenesis of human pre-osteoblastic cells. Our findings indicate the distinct and nonredundant role of Tregs in fracture healing, which will provide a new therapeutic target and strategy in the clinical treatment of fractures.

  • REVIEW
    Dong Wei, Yusang Xie, Xuefei Liu, Rong Chen, Min Zhou, Xinxin Zhang, Jieming Qu
    Frontiers of Medicine, 2023, 17(6): 1030-1046. https://doi.org/10.1007/s11684-023-1043-5

    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported at the end of 2019 as a worldwide health concern causing a pandemic of unusual viral pneumonia and many other organ damages, which was defined by the World Health Organization as coronavirus disease 2019 (COVID-19). The pandemic is considered a significant threat to global public health till now. In this review, we have summarized the lessons learnt during the emergence and spread of SARS-CoV-2, including its prototype and variants. The overall clinical features of variants of concern (VOC), heterogeneity in the clinical manifestations, radiology and pathology of COVID-19 patients are also discussed, along with advances in therapeutic agents.

  • RESEARCH ARTICLE
    Yanling Liu, Xi He, Yanchun Yuan, Bin Li, Zhen Liu, Wanzhen Li, Kaixuan Li, Shuo Tan, Quan Zhu, Zhengyan Tang, Feng Han, Ziqiang Wu, Lu Shen, Hong Jiang, Beisha Tang, Jian Qiu, Zhengmao Hu, Junling Wang
    Frontiers of Medicine, 2024, 18(1): 68-80. https://doi.org/10.1007/s11684-023-1005-y

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive degeneration of motor neurons, and it demonstrates high clinical heterogeneity and complex genetic architecture. A variation within TRMT2B (c.1356G>T; p.K452N) was identified to be associated with ALS in a family comprising two patients with juvenile ALS (JALS). Two missense variations and one splicing variation were identified in 10 patients with ALS in a cohort with 910 patients with ALS, and three more variants were identified in a public ALS database including 3317 patients with ALS. A decreased number of mitochondria, swollen mitochondria, lower expression of ND1, decreased mitochondrial complex I activities, lower mitochondrial aerobic respiration, and a high level of ROS were observed functionally in patient-originated lymphoblastoid cell lines and TRMT2B interfering HEK293 cells. Further, TRMT2B variations overexpression cells also displayed decreased ND1. In conclusion, a novel JALS-associated gene called TRMT2B was identified, thus broadening the clinical and genetic spectrum of ALS.

  • RESEARCH ARTICLE
    Haoyu Wang, Zhengyuan Wang, Zheng Wang, Xiaoyang Li, Yuntong Li, Ni Yan, Lili Wu, Ying Liang, Jiale Wu, Huaxin Song, Qing Qu, Jiahui Huang, Chunkang Chang, Kunwei Shen, Xiaosong Chen, Min Lu
    Frontiers of Medicine, 2024, 18(2): 357-374. https://doi.org/10.1007/s11684-023-1016-8

    p53 is mutated in half of cancer cases. However, no p53-targeting drugs have been approved. Here, we reposition decitabine for triple-negative breast cancer (TNBC), a subtype with frequent p53 mutations and extremely poor prognosis. In a retrospective study on tissue microarrays with 132 TNBC cases, DNMT1 overexpression was associated with p53 mutations (P = 0.037) and poor overall survival (OS) (P = 0.010). In a prospective DEciTabinE and Carboplatin in TNBC (DETECT) trial (NCT03295552), decitabine with carboplatin produced an objective response rate (ORR) of 42% in 12 patients with stage IV TNBC. Among the 9 trialed patients with available TP53 sequencing results, the 6 patients with p53 mutations had higher ORR (3/6 vs. 0/3) and better OS (16.0 vs. 4.0 months) than the patients with wild-type p53. In a mechanistic study, isogenic TNBC cell lines harboring DETECT-derived p53 mutations exhibited higher DNMT1 expression and decitabine sensitivity than the cell line with wild-type p53. In the DETECT trial, decitabine induced strong immune responses featuring the striking upregulation of the innate immune player IRF7 in the p53-mutated TNBC cell line (upregulation by 16-fold) and the most responsive patient with TNBC. Our integrative studies reveal the potential of repurposing decitabine for the treatment of p53-mutated TNBC and suggest IRF7 as a potential biomarker for decitabine-based treatments.

  • REVIEW
    Zeyu Zhang, Yue Yan, Lina Zhao, Yizhou Bian, Ning Zhao, You Wu, Dahai Zhao, Zongjiu Zhang
    Frontiers of Medicine, 2024, 18(1): 19-30. https://doi.org/10.1007/s11684-024-1074-6

    The pneumonia caused by novel coronavirus SARS-CoV-2 infection in early December 2019, which was later named coronavirus disease 2019 (COVID-19) by the World Health Organization (WHO), rapidly spread across the world. China has made extraordinary efforts to this unprecedented pandemic, put its response and control at a very high level of infectious disease management (Category B but with measures for Category A), given top priority to the people and their lives, and balanced the pandemic control and socio-economic development. After more than three years’ fighting against this disease, China downgraded the management of COVID-19 to Category B infectious disease on January 8, 2023 and the WHO declared the end of public health emergency on May 5, 2023. However, the ending of pandemic does not mean that the disease is no longer a health threat. Experiences against COVID-19 from China and the whole world should be learned to prepare well for the future public health emergencies. This article gives a systematic review of the trajectory of COVID-19 development in China, summarizes the critical policy arrangements and provides evidence for the adjustment during policy making process, so as to share experiences with international community and contribute to the global health for all humanity.

  • RESEARCH ARTICLE
    Liang Dong, Wenwen Luo, Skaldin Maksym, Simon C. Robson, Andrey V. Zavialov
    Frontiers of Medicine, 2024, 18(5): 814-830. https://doi.org/10.1007/s11684-024-1067-5

    Human cells contain two types of adenosine deaminases (ADA) each with unique properties: ADA1, which is present in all cells where it modulates intracellular functions and extracellular signaling, and ADA2, which is secreted by immune cells. The exact intracellular functions of ADA2 remain undetermined and less defined than those of ADA1. ADA2 has distinct characteristics, such as low adenosine affinity, heparin-binding ability, and putative lysosomal entry. Here, we confirm that ADA2 is a lysosomal protein that binds toll-like receptor 9 (TLR9) agonists, specifically CpG oligodeoxynucleotides (CpG ODNs). We show that interferon-alpha (IFN-α) is secreted in response to TLR9 activation by CpG ODNs and natural DNA and markedly increases when ADA2 expression is downregulated in plasmacytoid dendritic cells (pDCs). Additionally, the pretreatment of pDCs with RNA further stimulates IFN-α secretion by pDCs after activation with CpG ODNs. Our findings indicate that ADA2 regulates TLR9 responses to DNA in activated pDCs. In conclusion, decreasing ADA2 expression or blocking it with specific oligonucleotides can enhance IFN-α secretion from pDCs, improving immune responses against intracellular infections and cancer.

  • CASE REPORT
    Shiyuan Zhang, Xiaoxi Zhou, Shangkun Zhang, Na Wang, Tongcun Zhang, Donghua Zhang, Qilin Ao, Yang Cao, Liang Huang
    Frontiers of Medicine, 2024, 18(2): 394-398. https://doi.org/10.1007/s11684-023-1032-8

    Epstein–Barr virus (EBV)-associated lymphoproliferative diseases (EBV-LPDs) are common complications that occur after solid organ transplantation or allogeneic hematopoietic stem-cell transplantation (HSCT). However, their occurrence and treatment post-chimeric antigen receptor-modified T (CAR-T) cell therapy has not been reported. Two patients had been diagnosed with EBV-positive aggressive B-cell lymphoma and experienced relapses after multiple lines of treatment. After receiving CAR-T cell therapy in tandem with autologous HSCT, the patients achieved complete remission. However, with a median time of 38.5 months after CAR-T cell therapy, B-cell-derived EBV-LPDs were diagnosed, and they were relieved through the administration of immune checkpoint inhibitor or B-cell-depleting agents. Collectively, our report suggests that EBV-LPDs may represent a long-term adverse event after CAR-T cell therapy, especially in patients who previously had EBV-positive disorders, and they can be resolved by immune normalization strategy or B-cell depleting therapy.

  • REVIEW
    Qiuyu Cao, Yi Ding, Yu Xu, Mian Li, Ruizhi Zheng, Zhujun Cao, Weiqing Wang, Yufang Bi, Guang Ning, Yiping Xu, Ren Zhao
    Frontiers of Medicine, 2023, 17(6): 1068-1079. https://doi.org/10.1007/s11684-023-1037-3

    The coronavirus disease 2019 (COVID-19) pandemic has stimulated tremendous efforts to develop therapeutic agents that target severe acute respiratory syndrome coronavirus 2 to control viral infection. So far, a few small-molecule antiviral drugs, including nirmatrelvir–ritonavir (Paxlovid), remdesivir, and molnupiravir have been marketed for the treatment of COVID-19. Nirmatrelvir–ritonavir has been recommended by the World Health Organization as an early treatment for outpatients with mild-to-moderate COVID-19. However, the existing treatment options have limitations, and effective treatment strategies that are cost-effective and convenient for tackling COVID-19 are still needed. To date, four domestically developed oral anti-COVID-19 drugs have been granted conditional market approval in China. These drugs include azvudine, simnotrelvir–ritonavir (Xiannuoxin), leritrelvir, and mindeudesivir (VV116). Preclinical and clinical studies have explored the efficacy and tolerability of mindeudesivir and supported its early use in mild-to-moderate COVID-19 cases at high risk for progression. In this review, we discuss the most recent findings regarding the pharmacological mechanism and therapeutic effects focusing on mindeudesivir and other small-molecule antiviral agents for COVID-19. These findings will expand our understanding and highlight the potential widespread application of China’s homegrown anti-COVID-19 drugs.

  • RESEARCH ARTICLE
    Rui Fu, Yuanyuan Xiong, Miao Cai, Fang Li, Rongrong Chen, Yilong Wu, Wenzhao Zhong
    Frontiers of Medicine, 2024, 18(4): 735-743. https://doi.org/10.1007/s11684-024-1060-z

    Gene fusions and MET alterations are rare and difficult to detect in plasma samples. The clinical detection efficacy of molecular residual disease (MRD) based on circulating tumor DNA (ctDNA) in patients with non-small cell lung cancer (NSCLC) with these mutations remains unknown. This prospective, non-intervention study recruited 49 patients with operable NSCLC with actionable gene fusions (ALK, ROS1, RET, and FGFR1), MET exon 14 skipping or de novo MET amplification. We analyzed 43 tumor tissues and 111 serial perioperative plasma samples using 1021- and 338-gene panels, respectively. Detectable MRD correlated with a significantly higher recurrence rate (P < 0.001), yielding positive predictive values of 100% and 90.9%, and negative predictive values of 82.4% and 86.4% at landmark and longitudinal time points, respectively. Patients with detectable MRD showed reduced disease-free survival (DFS) compared to those with undetectable MRD (P < 0.001). Patients who harbored tissue-derived fusion/MET alterations in their MRD had reduced DFS compared to those who did not (P = 0.05). To our knowledge, this is the first comprehensive study on ctDNA-MRD clinical detection efficacy in operable NSCLC patients with gene fusions and MET alterations. Patients with detectable tissue-derived fusion/MET alterations in postoperative MRD had worse clinical outcomes.