Moderate expression of CD39 in GPC3-CAR-T cells shows high efficacy against hepatocellular carcinoma
Fan Zou, Jialiang Wei, Jialang Zhuang, Yafang Liu, Jizhou Tan, Xianzhang Huang, Ting Liu
Moderate expression of CD39 in GPC3-CAR-T cells shows high efficacy against hepatocellular carcinoma
CD39 serves as a crucial biomarker for neoantigen-specific CD8+ T cells and is associated with antitumor activity and exhaustion. However, the relationship between CD39 expression levels and the function of chimeric antigen receptor T (CAR-T) cells remains controversial. This study aimed to investigate the role of CD39 in the functional performance of CAR-T cells against hepatocellular carcinoma (HCC) and explore the therapeutic potential of CD39 modulators, such as mitochondrial division inhibitor-1 (mdivi-1), or knockdown CD39 through short hairpin RNA. Our findings demonstrated that glypican-3-CAR-T cells with moderate CD39 expression exhibited a strong antitumor activity, while high and low levels of CD39 led to an impaired cellular function. Methods modulating the proportion of CD39 intermediate (CD39int)-phenotype CAR-T cells such as mdivi-1 and CD39 knockdown enhanced and impaired T cell function, respectively. The combination of mdivi-1 and CD39 knockdown in CAR-T cells yielded the highest proportion of infiltrated CD39int CAR-T cells and demonstrated a robust antitumor activity in vivo. In conclusion, this study revealed the crucial role of CD39 in CAR-T cell function, demonstrated the potential therapeutic efficacy of combining mdivi-1 with CD39 knockdown in HCC, and provided a novel treatment strategy for HCC patients in the field of cellular immunotherapy.
CD39 / CAR-T cells / mdivi-1 / hepatocellular carcinoma / antitumor activity
[1] |
Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol 2019; 16(10): 589–604
CrossRef
Google scholar
|
[2] |
Llovet JM, Castet F, Heikenwalder M, Maini MK, Mazzaferro V, Pinato DJ, Pikarsky E, Zhu AX, Finn RS. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol 2022; 19(3): 151–172
CrossRef
Google scholar
|
[3] |
Zhou F, Shang W, Yu X, Tian J. Glypican-3: a promising biomarker for hepatocellular carcinoma diagnosis and treatment. Med Res Rev 2018; 38(2): 741–767
CrossRef
Google scholar
|
[4] |
Taniguchi M, Mizuno S, Yoshikawa T, Fujinami N, Sugimoto M, Kobayashi S, Takahashi S, Konishi M, Gotohda N, Nakatsura T. Peptide vaccine as an adjuvant therapy for glypican-3-positive hepatocellular carcinoma induces peptide-specific CTLs and improves long prognosis. Cancer Sci 2020; 111(8): 2747–2759
CrossRef
Google scholar
|
[5] |
Sawada Y, Yoshikawa T, Nobuoka D, Shirakawa H, Kuronuma T, Motomura Y, Mizuno S, Ishii H, Nakachi K, Konishi M, Nakagohri T, Takahashi S, Gotohda N, Takayama T, Yamao K, Uesaka K, Furuse J, Kinoshita T, Nakatsura T. Phase I trial of a glypican-3-derived peptide vaccine for advanced hepatocellular carcinoma: immunologic evidence and potential for improving overall survival. Clin Cancer Res 2012; 18(13): 3686–3696
CrossRef
Google scholar
|
[6] |
Pang N, Shi J, Qin L, Chen A, Tang Y, Yang H, Huang Y, Wu Q, Li X, He B, Li T, Liang B, Zhang J, Cao B, Liu M, Feng Y, Ye X, Chen X, Wang L, Tian Y, Li H, Li J, Hu H, He J, Hu Y, Zhi C, Tang Z, Gong Y, Xu F, Xu L, Fan W, Zhao M, Chen D, Lian H, Yang L, Li P, Zhang Z. IL-7 and CCL19-secreting CAR-T cell therapy for tumors with positive glypican-3 or mesothelin. J Hematol Oncol 2021; 14(1): 118
CrossRef
Google scholar
|
[7] |
Mizukoshi E, Kaneko S. Immune cell therapy for hepatocellular carcinoma. J Hematol Oncol 2019; 12(1): 52
CrossRef
Google scholar
|
[8] |
Allard B, Longhi MS, Robson SC, Stagg J. The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets. Immunol Rev 2017; 276(1): 121–144
CrossRef
Google scholar
|
[9] |
Krishna S, Lowery FJ, Copeland AR, Bahadiroglu E, Mukherjee R, Jia L, Anibal JT, Sachs A, Adebola SO, Gurusamy D, Yu Z, Hill V, Gartner JJ, Li YF, Parkhurst M, Paria B, Kvistborg P, Kelly MC, Goff SL, Altan-Bonnet G, Robbins PF, Rosenberg SA. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 2020; 370(6522): 1328–1334
CrossRef
Google scholar
|
[10] |
Liu T, Tan J, Wu M, Fan W, Wei J, Zhu B, Guo J, Wang S, Zhou P, Zhang H, Shi L, Li J. High-affinity neoantigens correlate with better prognosis and trigger potent antihepatocellular carcinoma (HCC) activity by activating CD39+CD8+ T cells. Gut 2021; 70(10): 1965–1977
CrossRef
Google scholar
|
[11] |
Gupta PK, Godec J, Wolski D, Adland E, Yates K, Pauken KE, Cosgrove C, Ledderose C, Junger WG, Robson SC, Wherry EJ, Alter G, Goulder PJ, Klenerman P, Sharpe AH, Lauer GM, Haining WN. CD39 expression identifies terminally exhausted CD8+ T cells. PLoS Pathog 2015; 11(10): e1005177
CrossRef
Google scholar
|
[12] |
Chow A, Uddin FZ, Liu M, Dobrin A, Nabet BY, Mangarin L, Lavin Y, Rizvi H, Tischfield SE, Quintanal-Villalonga A, Chan JM, Shah N, Allaj V, Manoj P, Mattar M, Meneses M, Landau R, Ward M, Kulick A, Kwong C, Wierzbicki M, Yavner J, Egger J, Chavan SS, Farillas A, Holland A, Sridhar H, Ciampricotti M, Hirschhorn D, Guan X, Richards AL, Heller G, Mansilla-Soto J, Sadelain M, Klebanoff CA, Hellmann MD, Sen T, de Stanchina E, Wolchok JD, Merghoub T, Rudin CM. The ectonucleotidase CD39 identifies tumor-reactive CD8+ T cells predictive of immune checkpoint blockade efficacy in human lung cancer. Immunity 2023; 56(1): 93–106.e6
CrossRef
Google scholar
|
[13] |
Zou F, Tan J, Liu T, Liu B, Tang Y, Zhang H, Li J. The CD39+ HBV surface protein-targeted CAR-T and personalized tumor-reactive CD8+ T cells exhibit potent anti-HCC activity. Mol Ther 2021; 29(5): 1794–1807
CrossRef
Google scholar
|
[14] |
Cui M, Ding H, Chen F, Zhao Y, Yang Q, Dong Q. Mdivi-1 protects against ischemic brain injury via elevating extracellular adenosine in a cAMP/CREB-CD39-dependent manner. Mol Neurobiol 2016; 53(1): 240–253
CrossRef
Google scholar
|
[15] |
Bao R, Shui X, Hou J, Li J, Deng X, Zhu X, Yang T. Adenosine and the adenosine A2A receptor agonist, CGS21680, upregulate CD39 and CD73 expression through E2F-1 and CREB in regulatory T cells isolated from septic mice. Int J Mol Med 2016; 38(3): 969–975
CrossRef
Google scholar
|
[16] |
Liao H, Hyman MC, Baek AE, Fukase K, Pinsky DJ. cAMP/CREB-mediated transcriptional regulation of ectonucleoside triphosphate diphosphohydrolase 1 (CD39) expression. J Biol Chem 2010; 285(19): 14791–14805
CrossRef
Google scholar
|
[17] |
Zou F, Lu L, Liu J, Xia B, Zhang W, Hu Q, Liu W, Zhang Y, Lin Y, Jing S, Huang M, Huang B, Liu B, Zhang H. Engineered triple inhibitory receptor resistance improves anti-tumor CAR-T cell performance via CD56. Nat Commun 2019; 10(1): 4109
CrossRef
Google scholar
|
[18] |
Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarró LM, Bradshaw CR, Allen GE, Arnes-Benito R, Sidorova O, Gaspersz MP, Georgakopoulos N, Koo BK, Dietmann S, Davies SE, Praseedom RK, Lieshout R, IJzermans JNM, Wigmore SJ, Saeb-Parsy K, Garnett MJ, van der Laan LJ, Huch M. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med 2017; 23(12): 1424–1435
CrossRef
Google scholar
|
[19] |
Nuciforo S, Fofana I, Matter MS, Blumer T, Calabrese D, Boldanova T, Piscuoglio S, Wieland S, Ringnalda F, Schwank G, Terracciano LM, Ng CKY, Heim MH. Organoid models of human liver cancers derived from tumor needle biopsies. Cell Rep 2018; 24(5): 1363–1376
CrossRef
Google scholar
|
[20] |
Qiao Y, Chen J, Wang X, Yan S, Tan J, Xia B, Chen Y, Lin K, Zou F, Liu B, He X, Zhang Y, Zhang X, Zhang H, Wu X, Lu L. Enhancement of CAR-T cell activity against cholangiocarcinoma by simultaneous knockdown of six inhibitory membrane proteins. Cancer Commun (Lond) 2023; 43(7): 788–807
CrossRef
Google scholar
|
[21] |
Simoni Y, Becht E, Fehlings M, Loh CY, Koo SL, Teng KWW, Yeong JPS, Nahar R, Zhang T, Kared H, Duan K, Ang N, Poidinger M, Lee YY, Larbi A, Khng AJ, Tan E, Fu C, Mathew R, Teo M, Lim WT, Toh CK, Ong BH, Koh T, Hillmer AM, Takano A, Lim TKH, Tan EH, Zhai W, Tan DSW, Tan IB, Newell EW. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 2018; 557(7706): 575–579
CrossRef
Google scholar
|
[22] |
Qiao M, Zhou F, Liu X, Jiang T, Wang H, Jia Y, Li X, Zhao C, Cheng L, Chen X, Ren S, Liu H, Zhou C. Interleukin-10 induces expression of CD39 on CD8+ T cells to potentiate anti-PD1 efficacy in EGFR-mutated non-small cell lung cancer. J Immunother Cancer 2022; 10(12): e005436
CrossRef
Google scholar
|
[23] |
Oliveira G, Stromhaug K, Klaeger S, Kula T, Frederick DT, Le PM, Forman J, Huang T, Li S, Zhang W, Xu Q, Cieri N, Clauser KR, Shukla SA, Neuberg D, Justesen S, MacBeath G, Carr SA, Fritsch EF, Hacohen N, Sade-Feldman M, Livak KJ, Boland GM, Ott PA, Keskin DB, Wu CJ. Phenotype, specificity and avidity of antitumour CD8+ T cells in melanoma. Nature 2021; 596(7870): 119–125
CrossRef
Google scholar
|
[24] |
Xie N, Wang C, Lian Y, Wu C, Zhang H, Zhang Q. Inhibition of mitochondrial fission attenuates Aβ-induced microglia apoptosis. Neuroscience 2014; 256: 36–42
CrossRef
Google scholar
|
[25] |
Fan LF, He PY, Peng YC, Du QH, Ma YJ, Jin JX, Xu HZ, Li JR, Wang ZJ, Cao SL, Li T, Yan F, Gu C, Wang L, Chen G. Mdivi-1 ameliorates early brain injury after subarachnoid hemorrhage via the suppression of inflammation-related blood-brain barrier disruption and endoplasmic reticulum stress-based apoptosis. Free Radic Biol Med 2017; 112: 336–349
CrossRef
Google scholar
|
/
〈 | 〉 |