It has been known that, the novel coronavirus, 2019-nCoV, which is considered similar to SARS-CoV, invades human cells via the receptor angiotensin converting enzyme II (ACE2). Moreover, lung cells that have ACE2 expression may be the main target cells during 2019-nCoV infection. However, some patients also exhibit non-respiratory symptoms, such as kidney failure, implying that 2019-nCoV could also invade other organs. To construct a risk map of different human organs, we analyzed the single-cell RNA sequencing (scRNA-seq) datasets derived from major human physiological systems, including the respiratory, cardiovascular, digestive, and urinary systems. Through scRNA-seq data analyses, we identified the organs at risk, such as lung, heart, esophagus, kidney, bladder, and ileum, and located specific cell types (i.e., type II alveolar cells (AT2), myocardial cells, proximal tubule cells of the kidney, ileum and esophagus epithelial cells, and bladder urothelial cells), which are vulnerable to 2019-nCoV infection. Based on the findings, we constructed a risk map indicating the vulnerability of different organs to 2019-nCoV infection. This study may provide potential clues for further investigation of the pathogenesis and route of 2019-nCoV infection.
Obesity increases the risk for type 2 diabetes through induction of insulin resistance. Treatment of type 2 diabetes has been limited by little translational knowledge of insulin resistance although there have been several well-documented hypotheses for insulin resistance. In those hypotheses, inflammation, mitochondrial dysfunction, hyperinsulinemia and lipotoxicity have been the major concepts and have received a lot of attention. Oxidative stress, endoplasmic reticulum (ER) stress, genetic background, aging, fatty liver, hypoxia and lipodystrophy are active subjects in the study of these concepts. However, none of those concepts or views has led to an effective therapy for type 2 diabetes. The reason is that, there has been no consensus for a unifying mechanism of insulin resistance. In this review article, literature is critically analyzed and reinterpreted for a new energy-based concept of insulin resistance, in which insulin resistance is a result of energy surplus in cells. The energy surplus signal is mediated by ATP and sensed by adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Decreasing ATP level by suppression of production or stimulation of utilization is a promising approach in the treatment of insulin resistance. In support, many of existing insulin sensitizing medicines inhibit ATP production in mitochondria. The effective therapies such as weight loss, exercise, and caloric restriction all reduce ATP in insulin sensitive cells. This new concept provides a unifying cellular and molecular mechanism of insulin resistance in obesity, which may apply to insulin resistance in aging and lipodystrophy.
The cell-biological program termed the epithelial-to-mesenchymal transition (EMT) plays an important role in both development and cancer progression. Depending on the contextual signals and intracellular gene circuits of a particular cell, this program can drive fully epithelial cells to enter into a series of phenotypic states arrayed along the epithelial-mesenchymal phenotypic axis. These cell states display distinctive cellular characteristics, including stemness, invasiveness, drug-resistance and the ability to form metastases at distant organs, and thereby contribute to cancer metastasis and relapse. Currently we still lack a coherent overview of the molecular and biochemical mechanisms inducing cells to enter various states along the epithelial-mesenchymal phenotypic spectrum. An improved understanding of the dynamic and plastic nature of the EMT program has the potential to yield novel therapies targeting this cellular program that may aid in the management of high-grade malignancies.
Leptin is secreted into the bloodstream by adipocytes and is required for the maintenance of energy homeostasis and body weight. Leptin deficiency or genetic defects in the components of the leptin signaling pathways cause obesity. Leptin controls energy balance and body weight mainly through leptin receptor b (LEPRb)-expressing neurons in the brain, particularly in the hypothalamus. These LEPRb-expressing neurons function as the first-order neurons that project to the second-order neurons located within and outside the hypothalamus, forming a neural network that controls the energy homeostasis and body weight. Multiple factors, including inflammation and endoplasmic reticulum (ER) stress, contribute to leptin resistance. Leptin resistance is the key risk factor for obesity. This review is focused on recent advance about leptin action, leptin signaling, and leptin resistance.
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has posed a significant threat to global health. It caused a total of 80 868 confirmed cases and 3101 deaths in Chinese mainland until March 8, 2020. This novel virus spread mainly through respiratory droplets and close contact. As disease progressed, a series of complications tend to develop, especially in critically ill patients. Pathological findings showed representative features of acute respiratory distress syndrome and involvement of multiple organs. Apart from supportive care, no specific treatment has been established for COVID-19. The efficacy of some promising antivirals, convalescent plasma transfusion, and tocilizumab needs to be investigated by ongoing clinical trials.
Diabetes mellitus is one of the major public health problems worldwide. Considerable recent evidence suggests that the cellular reduction–oxidation (redox) imbalance leads to oxidative stress and subsequent occurrence and development of diabetes and related complications by regulating certain signaling pathways involved in β-cell dysfunction and insulin resistance. Reactive oxide species (ROS) can also directly oxidize certain proteins (defined as redox modification) involved in the diabetes process. There are a number of potential problems in the clinical application of antioxidant therapies including poor solubility, storage instability and non-selectivity of antioxidants. Novel antioxidant delivery systems may overcome pharmacokinetic and stability problem and improve the selectivity of scavenging ROS. We have therefore focused on the role of oxidative stress and antioxidative therapies in the pathogenesis of diabetes mellitus. Precise therapeutic interventions against ROS and downstream targets are now possible and provide important new insights into the treatment of diabetes.
The prevalence of obesity among children and adolescents (aged 2–18 years) has increased rapidly, with more than 100 million affected in 2015. Moreover, the epidemic of obesity in this population has been an important public health problem in developed and developing countries for the following reasons. Childhood and adolescent obesity tracks adulthood obesity and has been implicated in many chronic diseases, including type 2 diabetes, hypertension, and cardiovascular disease. Furthermore, childhood and adolescent obesity is linked to adulthood mortality and premature death. Although an imbalance between caloric intake and physical activity is a principal cause of childhood and adolescent obesity, environmental factors are exclusively important for development of obesity among children and adolescents. In addition to genetic and biological factors, socioenvironmental factors, including family, school, community, and national policies, can play a crucial role. The complexity of risk factors for developing obesity among children and adolescents leads to difficulty in treatment for this population. Many interventional trials for childhood and adolescent obesity have been proven ineffective. Therefore, early identification and prevention is the key to control the global epidemic of obesity. Given that the proportion of overweight children and adolescents is far greater than that of obesity, an effective prevention strategy is to focus on overweight youth, who are at high risk for developing obesity. Multifaceted, comprehensive strategies involving behavioral, psychological, and environmental risk factors must also be developed to prevent obesity among children and adolescents.
Berberine, an isoquinoline alkaloid isolated from the Chinese herb Coptis chinensis and other Berberis plants, has a wide range of pharmacological properties. Berberine can be used to treat many diseases, such as cancer and digestive, metabolic, cardiovascular, and neurological diseases. Berberine has protective capacities in digestive diseases. It can inhibit toxins and bacteria, including Helicobacter pylori, protect the intestinal epithelial barrier from injury, and ameliorate liver injury. Berberine also inhibits the proliferation of various types of cancer cells and impedes invasion and metastasis. Recent evidence has confirmed that berberine improves the efficacy and safety of chemoradiotherapies. In addition, berberine regulates glycometabolism and lipid metabolism, improves energy expenditure, reduces body weight, and alleviates nonalcoholic fatty liver disease. Berberine also improves cardiovascular hemodynamics, suppresses ischemic arrhythmias, attenuates the development of atherosclerosis, and reduces hypertension. Berberine shows potent neuroprotective effects, including antioxidative, antiapoptotic, and anti-ischemic. Furthermore, berberine exerts protective effects against other diseases. The mechanisms of its functions have been extensively explored, but much remains to be clarified. This article summarizes the main pharmacological actions of berberine and its mechanisms in cancer and digestive, metabolic, cardiovascular, and neurological diseases.
The aim of this study was to investigate the clinical characteristics of neonates born to SARS-CoV-2 infected mothers and increase the current knowledge on the perinatal consequences of COVID-19. Nineteen neonates were admitted to Tongji Hospital from January 31 to February 29, 2020. Their mothers were clinically diagnosed or laboratory-confirmed with COVID-19. We prospectively collected and analyzed data of mothers and infants. There are 19 neonates included in the research. Among them, 10 mothers were confirmed COVID-19 by positive SARS-CoV-2 RT-PCR in throat swab, and 9 mothers were clinically diagnosed with COVID-19. Delivery occurred in an isolation room and neonates were immediately separated from the mothers and isolated for at least 14 days. No fetal distress was found. Gestational age of the neonates was 38.6±1.5 weeks, and average birth weight was 3293±425 g. SARS-CoV-2 RT-PCR in throat swab, urine, and feces of all neonates were negative. SARS-CoV-2 RT-PCR in breast milk and amniotic fluid was negative too. None of the neonates developed clinical, radiologic, hematologic, or biochemical evidence of COVID-19. No vertical transmission of SARS-CoV-2 and no perinatal complications in the third trimester were found in our study. The delivery should occur in isolation and neonates should be separated from the infected mothers and care givers.
T cells engineered with chimeric antigen receptor (CAR) have been successfully applied to treat advanced refractory B cell malignancy. However, many challenges remain in extending its application toward the treatment of solid tumors. The immunosuppressive nature of tumor microenvironment is considered one of the key factors limiting CAR-T efficacy. One negative regulator of T cell activity is lymphocyte activation gene-3 (LAG-3). We successfully generated LAG-3 knockout T and CAR-T cells with high efficiency using CRISPR-Cas9 mediated gene editing and found that the viability and immune phenotype were not dramatically changed during in vitro culture. LAG-3 knockout CAR-T cells displayed robust antigen-specific antitumor activity in cell culture and in murine xenograft model, which is comparable to standard CAR-T cells. Our study demonstrates an efficient approach to silence immune checkpoint in CAR-T cells via gene editing.
Transcription factor networks have evolved in order to control, coordinate, and separate, the functions of distinct network modules spatially and temporally. In this review we focus on the MYC network (also known as the MAX-MLX Network), a highly conserved super-family of related basic-helix-loop-helix-zipper (bHLHZ) proteins that functions to integrate extracellular and intracellular signals and modulate global gene expression. Importantly the MYC network has been shown to be deeply involved in a broad spectrum of human and other animal cancers. Here we summarize molecular and biological properties of the network modules with emphasis on functional interactions among network members. We suggest that these network interactions serve to modulate growth and metabolism at the transcriptional level in order to balance nutrient demand with supply, to maintain growth homeostasis, and to influence cell fate. Moreover, oncogenic activation of MYC and/or loss of a MYC antagonist, results in an imbalance in the activity of the network as a whole, leading to tumor initiation, progression and maintenance.
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a global pandemic in only 3 months. In addition to major respiratory distress, characteristic neurological manifestations are also described, indicating that SARS-CoV-2 may be an underestimated opportunistic pathogen of the brain. Based on previous studies of neuroinvasive human respiratory coronaviruses, it is proposed that after physical contact with the nasal mucosa, laryngopharynx, trachea, lower respiratory tract, alveoli epithelium, or gastrointestinal mucosa, SARS-CoV-2 can induce intrinsic and innate immune responses in the host involving increased cytokine release, tissue damage, and high neurosusceptibility to COVID-19, especially in the hypoxic conditions caused by lung injury. In some immune-compromised individuals, the virus may invade the brain through multiple routes, such as the vasculature and peripheral nerves. Therefore, in addition to drug treatments, such as pharmaceuticals and traditional Chinese medicine, non-pharmaceutical precautions, including facemasks and hand hygiene, are critically important.
Mesenchymal stem cells (MSC) have been used in clinical trials for severe diabetes, a chronic disease with high morbidity and mortality. Bone marrow is the traditional source of human MSC, but human term placenta appears to be an alternative and more readily available source. Here, the therapeutic effect of human placenta-derived MSC (PD-MSC) was studied in type 2 diabetes patients with longer duration, islet cell dysfunction, high insulin doses as well as poor glycemic control in order to evaluate the safety, efficacy and feasibility of PD-MSC treatment in type 2 diabetes (T2D). Ten patients with T2D received three intravenous infusions of PDSC, with one month interval of infusion. The total number of PDSC for each patient was (1.22–1.51) × 106/kg, with an average of 1.35 × 106/kg. All of the patients were followed up after therapy for at least 3 months. A daily mean dose of insulin used in 10 patients was decreased from 63.7?±?18.7 to 34.7?±?13.4 IU (
N6-methyladenosine (m6A) is the most common post-transcriptional RNA modification throughout the transcriptome, affecting fundamental aspects of RNA metabolism. m6A modification could be installed by m6A “writers” composed of core catalytic components (METTL3/METTL14/WTAP) and newly defined regulators and removed by m6A “erasers” (FTO and ALKBH5). The function of m6A is executed by m6A “readers” that bind to m6A directly (YTH domain-containing proteins, eIF3 and IGF2BPs) or indirectly (HNRNPA2B1). In the past few years, advances in m6A modulators (“writers,” “erasers,” and “readers”) have remarkably renewed our understanding of the function and regulation of m6A in different cells under normal or disease conditions. However, the mechanism and the regulatory network of m6A are still largely unknown. Moreover, investigations of the m6A physiological roles in human diseases are limited. In this review, we summarize the recent advances in m6A research and highlight the functional relevance and importance of m6A modification in in vitro cell lines, in physiological contexts, and in cancers.
Blood pressure monitoring has come a long way from the initial observations made by Reverend Hales in the 18th century. There are none that deny the importance of monitoring perioperative blood pressure; however, the limited ability of the current prevalent technology (oscillometric blood pressure monitoring) to offer continuous blood pressure measurements leaves room for improvement. Invasive monitoring is able to detect beat-to-beat blood pressure measurement, but the risks inherent to the procedure make it unsuitable for routine use except when this risk is outweighed by the benefits. This review focuses on the discoveries which have led up to the current blood pressure monitoring technologies, and especially the creation of those offering non-invasive but continuous blood pressure monitoring capabilities, including their methods of measurement and limitations.
Zinc (Zn) is an essential mineral that is required for various cellular functions. Zn dyshomeostasis always is related to certain disorders such as metabolic syndrome, diabetes and diabetic complications. The associations of Zn with metabolic syndrome, diabetes and diabetic complications, thus, stem from the multiple roles of Zn: (1) a constructive component of many important enzymes or proteins, (2) a requirement for insulin storage and secretion, (3) a direct or indirect antioxidant action, and (4) an insulin-like action. However, whether there is a clear cause-and-effect relationship of Zn with metabolic syndrome, diabetes, or diabetic complications remains unclear. In fact, it is known that Zn deficiency is a common phenomenon in diabetic patients. Chronic low intake of Zn was associated with the increased risk of diabetes and diabetes also impairs Zn metabolism. Theoretically Zn supplementation should prevent the metabolic syndrome, diabetes, and diabetic complications; however, limited available data are not always supportive of the above notion. Therefore, this review has tried to summarize these pieces of available information, possible mechanisms by which Zn prevents the metabolic syndrome, diabetes, and diabetic complications. In the final part, what are the current issues for Zn supplementation were also discussed.
The teeth are highly differentiated chewing organs formed by the development of tooth germ tissue located in the jaw and consist of the enamel, dentin, cementum, pulp, and periodontal tissue. Moreover, the teeth have a complicated regulatory mechanism, special histologic origin, diverse structure, and important function in mastication,, articulation,, and aesthetics. These characteristics, to a certain extent, greatly complicate the research in tooth regeneration. Recently, new ideas for tooth and tissue regeneration have begun to appear with rapid developments in the theories and technologies in tissue engineering. Numerous types of stem cells have been isolated from dental tissue, such as dental pulp stem cells (DPSCs), stem cells isolated from human pulp of exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), stem cells from apical papilla (SCAPs), and dental follicle cells (DFCs). All these cells can regenerate the tissue of tooth. This review outlines the cell types and strategies of stem cell therapy applied in tooth regeneration, in order to provide theoretical basis for clinical treatments.
Precision medicine for cancer patients aims to adopt the most suitable treatment options during diagnosis and treatment of individuals. Detecting circulating tumor cell (CTC) or circulating tumor DNA (ctDNA) in plasma or serum could serve as liquid biopsy, which would be useful for numerous diagnostic applications. Liquid biopsies can help clinicians screen and detect cancer early, stratify patients to the most suitable treatment and real-time monitoring of treatment response and resistance mechanisms in the tumor, evaluate the risk for metastatic relapse, and estimate prognosis. We summarized the advantages and disadvantages of tissue and liquid biopsies. We also further compared and analyzed the advantages and limitations of detecting CTCs, ctDNAs, and exosomes. Furthermore, we reviewed the literature related with the application of serum or plasma CTCs, ctDNAs, and exosomes for diagnosis and prognosis of cancer. We also analyzed their opportunities and challenges as future biomarkers. In the future, liquid biopsies could be used to guide cancer treatment. They could also provide the ideal scheme to personalize treatment in precision medicine.
Transforming growth factor (TGF)-β regulates a wide variety of cellular responses, including cell growth arrest, apoptosis, cell differentiation, motility, invasion, extracellular matrix production, tissue fibrosis, angiogenesis, and immune function. Although tumor-suppressive roles of TGF-β have been extensively studied and well-characterized in many cancers, especially at early stages, accumulating evidence has revealed the critical roles of TGF-β as a pro-tumorigenic factor in various types of cancer. This review will focus on recent findings regarding epithelial-mesenchymal transition (EMT) induced by TGF-β, in relation to crosstalk with some other signaling pathways, and the roles of TGF-β in lung and pancreatic cancers, in which TGF-β has been shown to be involved in cancer progression. Recent findings also strongly suggested that targeting TGF-β signaling using specific inhibitors may be useful for the treatment of some cancers. TGF-β plays a pivotal role in the differentiation and function of regulatory T cells (Tregs). TGF-β is produced as latent high molecular weight complexes, and the latent TGF-β complex expressed on the surface of Tregs contains glycoprotein A repetitions predominant (GARP, also known as leucine-rich repeat containing 32 or LRRC32). Inhibition of the TGF-β activities through regulation of the latent TGF-β complex activation will be discussed.
The world must act fast to contain wider international spread of the epidemic of COVID-19 now. The unprecedented public health efforts in China have contained the spread of this new virus. Measures taken in China are currently proven to reduce human-to-human transmission successfully. We summarized the effective intervention and prevention measures in the fields of public health response, clinical management, and research development in China, which may provide vital lessons for the global response. It is really important to take collaborative actions now to save more lives from the pandemic of COVID-19.
The coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 was identified in December 2019. The symptoms include fever, cough, dyspnea, early symptom of sputum, and acute respiratory distress syndrome (ARDS). Mesenchymal stem cell (MSC) therapy is the immediate treatment used for patients with severe cases of COVID-19. Herein, we describe two confirmed cases of COVID-19 in Wuhan to explore the role of MSC in the treatment of COVID-19. MSC transplantation increases the immune indicators (including CD4 and lymphocytes) and decreases the inflammation indicators (interleukin-6 and C-reactive protein). High-flow nasal cannula can be used as an initial support strategy for patients with ARDS. With MSC transplantation, the fraction of inspired O2 (FiO2) of the two patients gradually decreased while the oxygen saturation (SaO2) and partial pressure of oxygen (PO2) improved. Additionally, the patients’ chest computed tomography showed that bilateral lung exudate lesions were adsorbed after MSC infusion. Results indicated that MSC transplantation provides clinical data on the treatment of COVID-19 and may serve as an alternative method for treating COVID-19, particularly in patients with ARDS.
Foodborne disease is one of the most important public health issues worldwide. China faces various and unprecedented challenges in all aspects of the food chain. Data from laboratory-based foodborne disease surveillance systems from 2013 to 2016, as well as different regions and ages, can be found along with differences in the patterns of pathogens detected with diverse characteristics. Vibrio parahaemolyticus has been the leading cause of infectious diarrhea in China, especially among adults in coastal regions. Salmonella has been a serious and widely distributed pathogen responsible for substantial socioeconomic burden. Shigella was mostly identified in Northwest China and the inland province (Henan) with less-developed regions among children under 5 years. Data from foodborne disease outbreak reporting system from 2011 to 2016 showed that poisonous animals and plant factors responsible for most deaths were poisonous mushrooms (54.7%) in remote districts in southwest regions. The biological hazard that caused most cases reported (42.3%) was attributed to V. parahaemolyticus, the leading cause of foodborne outbreaks. In this review, we summarize the recent monitoring approach to foodborne diseases in China and compare the results with those in developed countries.
The increased levels of intracellular reactive oxygen species (ROS) in granulosa cells (GCs) may affect the pregnancy results in women with polycystic ovary syndrome (PCOS). In this study, we compared thein vitro fertilization and embryo transfer (IVF-ET) results of 22 patients with PCOS and 25 patients with tubal factor infertility and detected the ROS levels in the GCs of these two groups. Results showed that the PCOS group had significantly larger follicles on the administration day for human chorionic gonadotropin than the tubal factor group (P<0.05); however, the number of retrieved oocytes was not significantly different between the two groups (P>0.05). PCOS group had slightly lower fertilization, cleavage, grade I/II embryo, clinical pregnancy, and implantation rates and higher miscarriage rate than the tubal factor group (P>0.05). We further found a significantly higher ROS level of GCs in the PCOS group than in the tubal factor group (P<0.05). The increased ROS levels in GCs caused GC apoptosis, whereas NADPH oxidase 2 (NOX2) specific inhibitors (diphenyleneiodonium and apocynin) significantly reduced the ROS production in the PCOS group. In conclusion, the increased ROS expression levels in PCOS GCs greatly induced cell apoptosis, which further affected the oocyte quality and reduced the positive IVF-ET pregnancy results of women with PCOS. NADPH oxidase pathway may be involved in the mechanism of ROS production in GCs of women with PCOS.
Insulin resistance (IR) is a key pathological feature of metabolic syndrome and subsequently causes serious health problems with an increased risk of several common metabolic disorders. IR related metabolic disturbance is not restricted to carbohydrates but impacts global metabolic network. Branched-chain amino acids (BCAAs), namely valine, leucine and isoleucine, are among the nine essential amino acids, accounting for 35% of the essential amino acids in muscle proteins and 40% of the preformed amino acids required by mammals. The BCAAs are particularly responsive to the inhibitory insulin action on amino acid release by skeletal muscle and their metabolism is profoundly altered in insulin resistant conditions and/or insulin deficiency. Although increased circulating BCAA concentration in insulin resistant conditions has been noted for many years and BCAAs have been reported to be involved in the regulation of glucose homeostasis and body weight, it is only recently that BCAAs are found to be closely associated with IR. This review will focus on the recent findings on BCAAs from both epidemic and mechanistic studies.
The occurrence of high concentrations of arsenic in the groundwater of the Southeast Asia region has received much attention in the past decade. This study presents an overview of the arsenic contamination problems in Vietnam, Cambodia, Lao People’s Democratic Republic and Thailand. Most groundwater used as a source of drinking water in rural areas has been found to be contaminated with arsenic exceeding the WHO drinking water guideline of 10 μg·L-1. With the exception of Thailand, groundwater was found to be contaminated with naturally occurring arsenic in the region. Interestingly, high arsenic concentrations (>10 μg·L-1) were generally found in the floodplain areas located along the Mekong River. The source of elevated arsenic concentrations in groundwater is thought to be the release of arsenic from river sediments under highly reducing conditions. In Thailand, arsenic has never been found naturally in groundwater, but originates from tin mining activities. More than 10 million residents in Southeast Asia are estimated to be at risk from consuming arsenic-contaminated groundwater. In Southeast Asia, groundwater has been found to be a significant source of daily inorganic arsenic intake in humans. A positive correlation between groundwater arsenic concentration and arsenic concentration in human hair has been observed in Cambodia and Vietnam. A substantial knowledge gap exists between the epidemiology of arsenicosis and its impact on human health. More collaborative studies particularly on the scope of public health and its epidemiology are needed to conduct to fulfill the knowledge gaps of As as well as to enhance the operational responses to As issue in Southeast Asian countries.
In December 2019, an outbreak of novel coronavirus (2019-nCoV) occurred in Wuhan, Hubei Province, China. By February 14, 2020, it has led to 66 492 confirmed patients in China and high mortality up to ~2.96% (1123/37 914) in Wuhan. Here we report the first family case of coronavirus disease 2019 (COVID-19) confirmed in Wuhan and treated using the combination of western medicine and Chinese traditional patent medicine Shuanghuanglian oral liquid (SHL). This report describes the identification, diagnosis, clinical course, and management of three cases from a family, suggests the expected therapeutic effects of SHL on COVID-19, and warrants further clinical trials.
Members of the fibroblast growth factor (FGF) family play pleiotropic roles in cellular and metabolic homeostasis. During evolution, the ancestor FGF expands into multiple members by acquiring divergent structural elements that enable functional divergence and specification. Heparan sulfate-binding FGFs, which play critical roles in embryonic development and adult tissue remodeling homeostasis, adapt to an autocrine/paracrine mode of action to promote cell proliferation and population growth. By contrast, FGF19, 21, and 23 coevolve through losing binding affinity for extracellular matrix heparan sulfate while acquiring affinity for transmembrane α-Klotho (KL) or β-KL as a coreceptor, thereby adapting to an endocrine mode of action to drive interorgan crosstalk that regulates a broad spectrum of metabolic homeostasis. FGF19 metabolic axis from the ileum to liver negatively controls diurnal bile acid biosynthesis. FGF21 metabolic axes play multifaceted roles in controlling the homeostasis of lipid, glucose, and energy metabolism. FGF23 axes from the bone to kidney and parathyroid regulate metabolic homeostasis of phosphate, calcium, vitamin D, and parathyroid hormone that are important for bone health and systemic mineral balance. The significant divergence in structural elements and multiple functional specifications of FGF19, 21, and 23 in cellular and organismal metabolism instead of cell proliferation and growth sufficiently necessitate a new unified and specific term for these three endocrine FGFs. Thus, the term “FGF Metabolic Axis,” which distinguishes the unique pathways and functions of endocrine FGFs from other autocrine/paracrine mitogenic FGFs, is coined.
With the increasing number of immunocompromised hosts, the epidemiological characteristics of fungal infections have undergone enormous changes worldwide, including in China. In this paper, we reviewed the existing data on mycosis across China to summarize available epidemiological profiles. We found that the general incidence of superficial fungal infections in China has been stable, but the incidence of tinea capitis has decreased and the transmission route has changed. By contrast, the overall incidence of invasive fungal infections has continued to rise. The occurrence of candidemia caused by Candida species other than C. albicans and including some uncommon Candida species has increased recently in China. Infections caused by Aspergillus have also propagated in recent years, particularly with the emergence of azole-resistant Aspergillus fumigatus. An increasing trend of cryptococcosis has been noted in China, with Cryptococcus neoformans var. grubii ST 5 genotype isolates as the predominant pathogen. Retrospective studies have suggested that the epidemiological characteristics of Pneumocystis pneumonia in China may be similar to those in other developing countries. Endemic fungal infections, such as sporotrichosis in Northeastern China, must arouse research, diagnostic, and treatment vigilance. Currently, the epidemiological data on mycosis in China are variable and fragmentary. Thus, a nationwide epidemiological research on fungal infections in China is an important need for improving the country’s health.
Proper cell-cell and cell-matrix contacts mediated by integrin adhesion receptors are important for development, immune response, hemostasis and wound healing. Integrins pass trans-membrane signals bidirectionally through their regulated affinities for extracellular ligands and intracellular signaling molecules. Such bidirectional signaling by integrins is enabled by the conformational changes that are often linked among extracellular, transmembrane and cytoplasmic domains. Here, we review how talin-integrin and kindlin-integrin interactions, in cooperation with talin-lipid and kindlin-lipid interactions, regulate integrin affinities and how the progress in these areas helps us understand integrin-related diseases.
Diabetic kidney disease (DKD) is one of the primary causes of end-stage renal disease (ESRD). Early diagnosis is very important in preventing the development of DKD. Urinary albumin excretion rate (UAER) and glomerular filtration rate (GFR) are widely accepted as criteria for the diagnosis and clinical grading of DKD, and microalbuminuria has been recommended as the first clinical sign of DKD. The natural history of DKD has been divided into three stages: normoalbuminuria, microalbuminuria, and macroalbuminuria. However, this clinical paradigm has been questioned recently, as studies have shown that a portion of diabetes mellitus (DM) patients with normoalbuminuria have progressive renal insufficiency, referred to as normoalbuminuric diabetic kidney disease (NADKD) or nonalbuminuric diabetic nephropathy. Epidemiologic research has demonstrated that normoalbuminuric diabetic kidney disease is common, and the large number of NADKD patients suggests that the traditional paradigm needs to be shifted. Currently, the pathogenesis of NADKD remains unclear, but many clinical studies have identified some clinical and pathological features of NADKD. In addition, the long-term outcomes of NADKD patients remain controversial. In this article, we reviewed the latest studies addressing the pathogenesis, pathology, treatment and prevention of NADKD.