Talin and kindlin: the one-two punch in integrin activation
Feng Ye, Adam K. Snider, Mark H. Ginsberg
Talin and kindlin: the one-two punch in integrin activation
Proper cell-cell and cell-matrix contacts mediated by integrin adhesion receptors are important for development, immune response, hemostasis and wound healing. Integrins pass trans-membrane signals bidirectionally through their regulated affinities for extracellular ligands and intracellular signaling molecules. Such bidirectional signaling by integrins is enabled by the conformational changes that are often linked among extracellular, transmembrane and cytoplasmic domains. Here, we review how talin-integrin and kindlin-integrin interactions, in cooperation with talin-lipid and kindlin-lipid interactions, regulate integrin affinities and how the progress in these areas helps us understand integrin-related diseases.
signal transduction / transmembrane domain / nanodisc / integrin / talin / kindling / cell adhesion
[1] |
Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell2002; 110(6): 673–687
CrossRef
Pubmed
Google scholar
|
[2] |
Humphries JD, Byron A, Humphries MJ. Integrin ligands at a glance. J Cell Sci2006; 119(Pt 19): 3901–3903
CrossRef
Pubmed
Google scholar
|
[3] |
Giancotti FG, Ruoslahti E. Integrin signaling. Science1999; 285(5430): 1028–1032
CrossRef
Pubmed
Google scholar
|
[4] |
Du XP, Plow EF, Frelinger AL3rd, O’Toole TE, Loftus JC, Ginsberg MH. Ligands “activate” integrin alpha IIb beta 3 (platelet GPIIb-IIIa). Cell1991; 65(3): 409–416
CrossRef
Pubmed
Google scholar
|
[5] |
Zhu J, Carman CV, Kim M, Shimaoka M, Springer TA, Luo BH. Requirement of α and β subunit transmembrane helix separation for integrin outside-in signaling. Blood2007; 110(7): 2475–2483
CrossRef
Pubmed
Google scholar
|
[6] |
Shattil SJ, Newman PJ. Integrins: dynamic scaffolds for adhesion and signaling in platelets. Blood2004; 104(6): 1606–1615
CrossRef
Pubmed
Google scholar
|
[7] |
Kim M, Carman CV, Springer TA. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science2003; 301(5640): 1720–1725
CrossRef
Pubmed
Google scholar
|
[8] |
Bodeau AL, Berrier AL, Mastrangelo AM, Martinez R, LaFlamme SE. A functional comparison of mutations in integrin β cytoplasmic domains: effects on the regulation of tyrosine phosphorylation, cell spreading, cell attachment and β1 integrin conformation. J Cell Sci2001; 114(Pt 15): 2795–2807
Pubmed
|
[9] |
Berrier AL, Mastrangelo AM, Downward J, Ginsberg M, LaFlamme SE. Activated R-ras, Rac1, PI 3-kinase and PKCepsilon can each restore cell spreading inhibited by isolated integrin β1 cytoplasmic domains. J Cell Biol2000; 151(7): 1549–1560
CrossRef
Pubmed
Google scholar
|
[10] |
Díaz-González F, Forsyth J, Steiner B, Ginsberg MH. Trans-dominant inhibition of integrin function. Mol Biol Cell1996; 7(12): 1939–1951
CrossRef
Pubmed
Google scholar
|
[11] |
LaFlamme SE, Thomas LA, Yamada SS, Yamada KM. Single subunit chimeric integrins as mimics and inhibitors of endogenous integrin functions in receptor localization, cell spreading and migration, and matrix assembly. J Cell Biol1994; 126(5): 1287–1298
CrossRef
Pubmed
Google scholar
|
[12] |
LaFlamme SE, Akiyama SK, Yamada KM. Regulation of fibronectin receptor distribution. J Cell Biol1992; 117(2): 437–447
CrossRef
Pubmed
Google scholar
|
[13] |
Cluzel C, Saltel F, Lussi J, Paulhe F, Imhof BA, Wehrle-Haller B. The mechanisms and dynamics of αvβ3 integrin clustering in living cells. J Cell Biol2005; 171(2): 383–392
CrossRef
Pubmed
Google scholar
|
[14] |
Arias-Salgado EG, Lizano S, Sarkar S, Brugge JS, Ginsberg MH, Shattil SJ. Src kinase activation by direct interaction with the integrin β cytoplasmic domain. Proc Natl Acad Sci USA2003; 100(23): 13298–13302
CrossRef
Pubmed
Google scholar
|
[15] |
Miyamoto S, Teramoto H, Coso OA, Gutkind JS, Burbelo PD, Akiyama SK, Yamada KM. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol1995; 131(3): 791–805
CrossRef
Pubmed
Google scholar
|
[16] |
Miyamoto S, Akiyama SK, Yamada KM. Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science1995; 267(5199): 883–885
CrossRef
Pubmed
Google scholar
|
[17] |
Hirahashi J, Mekala D, Van Ziffle J, Xiao L, Saffaripour S, Wagner DD, Shapiro SD, Lowell C, Mayadas TN. Mac-1 signaling via Src-family and Syk kinases results in elastase-dependent thrombohemorrhagic vasculopathy. Immunity2006; 25(2): 271–283
CrossRef
Pubmed
Google scholar
|
[18] |
Giagulli C, Ottoboni L, Caveggion E, Rossi B, Lowell C, Constantin G, Laudanna C, Berton G. The Src family kinases Hck and Fgr are dispensable for inside-out, chemoattractant-induced signaling regulating β2 integrin affinity and valency in neutrophils, but are required for β2 integrin-mediated outside-in signaling involved in sustained adhesion. J Immunol2006; 177(1): 604–611
Pubmed
|
[19] |
Mócsai A, Zhou M, Meng F, Tybulewicz VL, Lowell CA. Syk is required for integrin signaling in neutrophils. Immunity2002; 16(4): 547–558
CrossRef
Pubmed
Google scholar
|
[20] |
McNamee HP, Ingber DE, Schwartz MA. Adhesion to fibronectin stimulates inositol lipid synthesis and enhances PDGF-induced inositol lipid breakdown. J Cell Biol1993; 121(3): 673–678
CrossRef
Pubmed
Google scholar
|
[21] |
Schaller MD, Otey CA, Hildebrand JD, Parsons JT. Focal adhesion kinase and paxillin bind to peptides mimicking β integrin cytoplasmic domains. J Cell Biol1995; 130(5): 1181–1187
CrossRef
Pubmed
Google scholar
|
[22] |
Ling K, Doughman RL, Firestone AJ, Bunce MW, Anderson RA. Type I g phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature2002; 420(6911): 89–93
CrossRef
Pubmed
Google scholar
|
[23] |
Di Paolo G, Pellegrini L, Letinic K, Cestra G, Zoncu R, Voronov S, Chang S, Guo J, Wenk MR, De Camilli P. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 g by the FERM domain of talin. Nature2002; 420(6911): 85–89
CrossRef
Pubmed
Google scholar
|
[24] |
Mitra SK, Hanson DA, Schlaepfer DD. Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol2005; 6(1): 56–68
CrossRef
Pubmed
Google scholar
|
[25] |
Choi CK, Vicente-Manzanares M, Zareno J, Whitmore LA, Mogilner A, Horwitz AR. Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat Cell Biol2008; 10(9): 1039–1050
CrossRef
Pubmed
Google scholar
|
[26] |
Boylan B, Gao C, Rathore V, Gill JC, Newman DK, Newman PJ. Identification of FcgRIIa as the ITAM-bearing receptor mediating αIIbβ3 outside-in integrin signaling in human platelets. Blood2008; 112(7): 2780–2786
CrossRef
Pubmed
Google scholar
|
[27] |
Mócsai A, Abram CL, Jakus Z, Hu Y, Lanier LL, Lowell CA. Integrin signaling in neutrophils and macrophages uses adaptors containing immunoreceptor tyrosine-based activation motifs. Nat Immunol2006; 7(12): 1326–1333
CrossRef
Pubmed
Google scholar
|
[28] |
Abtahian F, Bezman N, Clemens R, Sebzda E, Cheng L, Shattil SJ, Kahn ML, Koretzky GA. Evidence for the requirement of ITAM domains but not SLP-76/Gads interaction for integrin signaling in hematopoietic cells. Mol Cell Biol2006; 26(18): 6936–6949
CrossRef
Pubmed
Google scholar
|
[29] |
del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP. Stretching single talin rod molecules activates vinculin binding. Science2009; 323(5914): 638–641
CrossRef
Pubmed
Google scholar
|
[30] |
Zhang X, Jiang G, Cai Y, Monkley SJ, Critchley DR, Sheetz MP. Talin depletion reveals independence of initial cell spreading from integrin activation and traction. Nat Cell Biol2008; 10(9): 1062–1068
CrossRef
Pubmed
Google scholar
|
[31] |
Humphries JD, Wang P, Streuli C, Geiger B, Humphries MJ, Ballestrem C. Vinculin controls focal adhesion formation by direct interactions with talin and actin. J Cell Biol2007; 179(5): 1043–1057
CrossRef
Pubmed
Google scholar
|
[32] |
Saunders RM, Holt MR, Jennings L, Sutton DH, Barsukov IL, Bobkov A, Liddington RC, Adamson EA, Dunn GA, Critchley DR. Role of vinculin in regulating focal adhesion turnover. Eur J Cell Biol2006; 85(6): 487–500
CrossRef
Pubmed
Google scholar
|
[33] |
Even-Ram S, Artym V, Yamada KM. Matrix control of stem cell fate. Cell2006; 126(4): 645–647
CrossRef
Pubmed
Google scholar
|
[34] |
Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell2006; 126(4): 677–689
CrossRef
Pubmed
Google scholar
|
[35] |
Kim C, Ye F, Ginsberg MH. Regulation of integrin activation. Annu Rev Cell Dev Biol2011; 27(1): 321–345
CrossRef
Pubmed
Google scholar
|
[36] |
Shattil SJ, Kim C, Ginsberg MH. The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol2010; 11(4): 288–300
CrossRef
Pubmed
Google scholar
|
[37] |
Wagner CL, Mascelli MA, Neblock DS, Weisman HF, Coller BS, Jordan RE. Analysis of GPIIb/IIIa receptor number by quantification of 7E3 binding to human platelets. Blood1996; 88(3): 907–914
Pubmed
|
[38] |
Shattil SJ, Kashiwagi H, Pampori N. Integrin signaling: the platelet paradigm. Blood1998; 91(8): 2645–2657
Pubmed
|
[39] |
Abram CL, Lowell CA. The ins and outs of leukocyte integrin signaling. Annu Rev Immunol2009; 27(1): 339–362
CrossRef
Pubmed
Google scholar
|
[40] |
Pouwels J, Nevo J, Pellinen T, Ylänne J, Ivaska J. Negative regulators of integrin activity. J Cell Sci2012; 125(Pt 14): 3271–3280
CrossRef
Pubmed
Google scholar
|
[41] |
Luo BH, Carman CV, Springer TA. Structural basis of integrin regulation and signaling. Annu Rev Immunol2007; 25(1): 619–647
CrossRef
Pubmed
Google scholar
|
[42] |
Arnaout MA, Goodman SL, Xiong JP. Structure and mechanics of integrin-based cell adhesion. Curr Opin Cell Biol2007; 19(5): 495–507
CrossRef
Pubmed
Google scholar
|
[43] |
Luo BH, Springer TA. Integrin structures and conformational signaling. Curr Opin Cell Biol2006; 18(5): 579–586
CrossRef
Pubmed
Google scholar
|
[44] |
Arnaout MA, Mahalingam B, Xiong JP. Integrin structure, allostery, and bidirectional signaling. Annu Rev Cell Dev Biol2005; 21(1): 381–410
CrossRef
Pubmed
Google scholar
|
[45] |
Shimaoka M, Takagi J, Springer TA. Conformational regulation of integrin structure and function. Annu Rev Biophys Biomol Struct2002; 31(1): 485–516
CrossRef
Pubmed
Google scholar
|
[46] |
Zhu J, Luo BH, Xiao T, Zhang C, Nishida N, Springer TA. Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. Mol Cell2008; 32(6): 849–861
CrossRef
Pubmed
Google scholar
|
[47] |
Xiong JP, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, Joachimiak A, Goodman SL, Arnaout MA. Crystal structure of the extracellular segment of integrin αVβ3. Science2001; 294(5541): 339–345
CrossRef
Pubmed
Google scholar
|
[48] |
Takagi J, Petre BM, Walz T, Springer TA. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell2002; 110(5): 599–611
CrossRef
Pubmed
Google scholar
|
[49] |
Chen X, Xie C, Nishida N, Li Z, Walz T, Springer TA. Requirement of open headpiece conformation for activation of leukocyte integrin αXβ2. Proc Natl Acad Sci USA2010; 107(33): 14727–14732
CrossRef
Pubmed
Google scholar
|
[50] |
Luo BH, Strokovich K, Walz T, Springer TA, Takagi J. Allosteric beta1 integrin antibodies that stabilize the low affinity state by preventing the swing-out of the hybrid domain. J Biol Chem2004; 279(26): 27466–27471
CrossRef
Pubmed
Google scholar
|
[51] |
Xiong JP, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL, Arnaout MA. Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science2002; 296(5565): 151–155
CrossRef
Pubmed
Google scholar
|
[52] |
Adair BD, Xiong JP, Maddock C, Goodman SL, Arnaout MA, Yeager M. Three-dimensional EM structure of the ectodomain of integrin αVβ3 in a complex with fibronectin. J Cell Biol2005; 168(7): 1109–1118
CrossRef
Pubmed
Google scholar
|
[53] |
Ye F, Liu J, Winkler H, Taylor KA. Integrin αIIbβ3 in a membrane environment remains the same height after Mn2+ activation when observed by cryoelectron tomography. J Mol Biol2008; 378(5): 976–986
CrossRef
Pubmed
Google scholar
|
[54] |
Mehta RJ, Diefenbach B, Brown A, Cullen E, Jonczyk A, Güssow D, Luckenbach GA, Goodman SL. Transmembrane-truncated αvβ3 integrin retains high affinity for ligand binding: evidence for an “inside-out” suppressor? Biochem J1998; 330(Pt 2): 861–869
Pubmed
|
[55] |
Partridge AW, Liu S, Kim S, Bowie JU, Ginsberg MH. Transmembrane domain helix packing stabilizes integrin αIIbβ3 in the low affinity state. J Biol Chem2005; 280(8): 7294–7300
CrossRef
Pubmed
Google scholar
|
[56] |
Luo BH, Carman CV, Takagi J, Springer TA. Disrupting integrin transmembrane domain heterodimerization increases ligand binding affinity, not valency or clustering. Proc Natl Acad Sci USA2005; 102(10): 3679–3684
CrossRef
Pubmed
Google scholar
|
[57] |
Li W, Metcalf DG, Gorelik R, Li R, Mitra N, Nanda V, Law PB, Lear JD, Degrado WF, Bennett JS. A push-pull mechanism for regulating integrin function. Proc Natl Acad Sci USA2005; 102(5): 1424–1429
CrossRef
Pubmed
Google scholar
|
[58] |
Li R, Mitra N, Gratkowski H, Vilaire G, Litvinov R, Nagasami C, Weisel JW, Lear JD, DeGrado WF, Bennett JS. Activation of integrin αIIbβ3 by modulation of transmembrane helix associations. Science2003; 300(5620): 795–798
CrossRef
Pubmed
Google scholar
|
[59] |
Kim C, Lau TL, Ulmer TS, Ginsberg MH. Interactions of platelet integrin αIIb and β3 transmembrane domains in mammalian cell membranes and their role in integrin activation. Blood2009; 113(19): 4747–4753
CrossRef
Pubmed
Google scholar
|
[60] |
Zhu J, Luo BH, Barth P, Schonbrun J, Baker D, Springer TA. The structure of a receptor with two associating transmembrane domains on the cell surface: integrin αIIbβ3. Mol Cell2009; 34(2): 234–249
CrossRef
Pubmed
Google scholar
|
[61] |
Luo BH, Springer TA, Takagi J. A specific interface between integrin transmembrane helices and affinity for ligand. PLoS Biol2004; 2(6): e153
CrossRef
Pubmed
Google scholar
|
[62] |
Lau TL, Kim C, Ginsberg MH, Ulmer TS. The structure of the integrin αIIbβ3 transmembrane complex explains integrin transmembrane signalling. EMBO J2009; 28(9): 1351–1361
CrossRef
Pubmed
Google scholar
|
[63] |
Li R, Babu CR, Lear JD, Wand AJ, Bennett JS, DeGrado WF. Oligomerization of the integrin αIIbβ3: roles of the transmembrane and cytoplasmic domains. Proc Natl Acad Sci USA2001; 98(22): 12462–12467
CrossRef
Pubmed
Google scholar
|
[64] |
Hughes PE, Diaz-Gonzalez F, Leong L, Wu C, McDonald JA, Shattil SJ, Ginsberg MH. Breaking the integrin hinge. A defined structural constraint regulates integrin signaling. J Biol Chem1996; 271(12): 6571–6574
Pubmed
|
[65] |
Kim C, Schmidt T, Cho EG, Ye F, Ulmer TS, Ginsberg MH. Basic amino-acid side chains regulate transmembrane integrin signalling. Nature2012; 481(7380): 209–213
CrossRef
Pubmed
Google scholar
|
[66] |
Critchley DR. Biochemical and structural properties of the integrin-associated cytoskeletal protein talin. Annu Rev Biophys2009; 38(1): 235–254
CrossRef
Pubmed
Google scholar
|
[67] |
Elliott PR, Goult BT, Kopp PM, Bate N, Grossmann JG, Roberts GC, Critchley DR, Barsukov IL. The Structure of the talin head reveals a novel extended conformation of the FERM domain. Structure2010; 18(10): 1289–1299
CrossRef
Pubmed
Google scholar
|
[68] |
Calderwood DA, Fujioka Y, de Pereda JM, García-Alvarez B, Nakamoto T, Margolis B, McGlade CJ, Liddington RC, Ginsberg MH. Integrin β cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. Proc Natl Acad Sci USA2003; 100(5): 2272–2277
CrossRef
Pubmed
Google scholar
|
[69] |
Calderwood DA, Yan B, de Pereda JM, Alvarez BG, Fujioka Y, Liddington RC, Ginsberg MH. The phosphotyrosine binding-like domain of talin activates integrins. J Biol Chem2002; 277(24): 21749–21758
CrossRef
Pubmed
Google scholar
|
[70] |
Lee HS, Lim CJ, Puzon-McLaughlin W, Shattil SJ, Ginsberg MH. RIAM activates integrins by linking talin to ras GTPase membrane-targeting sequences. J Biol Chem2009; 284(8): 5119–5127
CrossRef
Pubmed
Google scholar
|
[71] |
Han J, Lim CJ, Watanabe N, Soriani A, Ratnikov B, Calderwood DA, Puzon-McLaughlin W, Lafuente EM, Boussiotis VA, Shattil SJ, Ginsberg MH. Reconstructing and deconstructing agonist-induced activation of integrin αIIbβ3. Curr Biol2006; 16(18): 1796–1806
CrossRef
Pubmed
Google scholar
|
[72] |
Calderwood DA, Zent R, Grant R, Rees DJ, Hynes RO, Ginsberg MH. The Talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation. J Biol Chem1999; 274(40): 28071–28074
CrossRef
Pubmed
Google scholar
|
[73] |
Petrich BG, Marchese P, Ruggeri ZM, Spiess S, Weichert RA, Ye F, Tiedt R, Skoda RC, Monkley SJ, Critchley DR, Ginsberg MH. Talin is required for integrin-mediated platelet function in hemostasis and thrombosis. J Exp Med2007; 204(13): 3103–3111
CrossRef
Pubmed
Google scholar
|
[74] |
Nieswandt B, Moser M, Pleines I, Varga-Szabo D, Monkley S, Critchley D, Fässler R. Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. J Exp Med2007; 204(13): 3113–3118
CrossRef
Pubmed
Google scholar
|
[75] |
Ye F, Hu G, Taylor D, Ratnikov B, Bobkov AA, McLean MA, Sligar SG, Taylor KA, Ginsberg MH. Recreation of the terminal events in physiological integrin activation. J Cell Biol2010; 188(1): 157–173
CrossRef
Pubmed
Google scholar
|
[76] |
Tadokoro S, Shattil SJ, Eto K, Tai V, Liddington RC, de Pereda JM, Ginsberg MH, Calderwood DA. Talin binding to integrin beta tails: a final common step in integrin activation. Science2003; 302(5642): 103–106
CrossRef
Pubmed
Google scholar
|
[77] |
Wegener KL, Partridge AW, Han J, Pickford AR, Liddington RC, Ginsberg MH, Campbell ID. Structural basis of integrin activation by talin. Cell2007; 128(1): 171–182
CrossRef
Pubmed
Google scholar
|
[78] |
García-Alvarez B, de Pereda JM, Calderwood DA, Ulmer TS, Critchley D, Campbell ID, Ginsberg MH, Liddington RC. Structural determinants of integrin recognition by talin. Mol Cell2003; 11(1): 49–58
CrossRef
Pubmed
Google scholar
|
[79] |
Tanentzapf G, Brown NH. An interaction between integrin and the talin FERM domain mediates integrin activation but not linkage to the cytoskeleton. Nat Cell Biol2006; 8(6): 601–606
CrossRef
Pubmed
Google scholar
|
[80] |
Petrich BG, Fogelstrand P, Partridge AW, Yousefi N, Ablooglu AJ, Shattil SJ, Ginsberg MH. The antithrombotic potential of selective blockade of talin-dependent integrin αIIbβ3 (platelet GPIIb-IIIa) activation. J Clin Invest2007; 117(8): 2250–2259
CrossRef
Pubmed
Google scholar
|
[81] |
Haling JR, Monkley SJ, Critchley DR, Petrich BG. Talin-dependent integrin activation is required for fibrin clot retraction by platelets. Blood2011; 117(5): 1719–1722
CrossRef
Pubmed
Google scholar
|
[82] |
Goult BT, Bouaouina M, Elliott PR, Bate N, Patel B, Gingras AR, Grossmann JG, Roberts GC, Calderwood DA, Critchley DR, Barsukov IL. Structure of a double ubiquitin-like domain in the talin head: a role in integrin activation. EMBO J2010; 29(6): 1069–1080
CrossRef
Pubmed
Google scholar
|
[83] |
Anthis NJ, Wegener KL, Ye F, Kim C, Goult BT, Lowe ED, Vakonakis I, Bate N, Critchley DR, Ginsberg MH, Campbell ID. The structure of an integrin/talin complex reveals the basis of inside-out signal transduction. EMBO J2009; 28(22): 3623–3632
CrossRef
Pubmed
Google scholar
|
[84] |
Kim C, Ye F, Hu X, Ginsberg MH. Talin activates integrins by altering the topology of the β transmembrane domain. J Cell Biol2012; 197(5): 605–611
CrossRef
Pubmed
Google scholar
|
[85] |
Kalli AC, Wegener KL, Goult BT, Anthis NJ, Campbell ID, Sansom MS. The structure of the talin/integrin complex at a lipid bilayer: an NMR and MD simulation study. Structure2010; 18(10): 1280–1288
CrossRef
Pubmed
Google scholar
|
[86] |
Moser M, Legate KR, Zent R, Fässler R. The tail of integrins, talin, and kindlins. Science2009; 324(5929): 895–899
CrossRef
Pubmed
Google scholar
|
[87] |
Rogalski TM, Mullen GP, Gilbert MM, Williams BD, Moerman DG. The UNC-112 gene in Caenorhabditis elegans encodes a novel component of cell-matrix adhesion structures required for integrin localization in the muscle cell membrane. J Cell Biol2000; 150(1): 253–264
CrossRef
Pubmed
Google scholar
|
[88] |
Ussar S, Wang HV, Linder S, Fässler R, Moser M. The Kindlins: subcellular localization and expression during murine development. Exp Cell Res2006; 312(16): 3142–3151
CrossRef
Pubmed
Google scholar
|
[89] |
Ussar S, Moser M, Widmaier M, Rognoni E, Harrer C, Genzel-Boroviczeny O, Fässler R. Loss of Kindlin-1 causes skin atrophy and lethal neonatal intestinal epithelial dysfunction. PLoS Genet2008; 4(12): e1000289
CrossRef
Pubmed
Google scholar
|
[90] |
Kloeker S, Major MB, Calderwood DA, Ginsberg MH, Jones DA, Beckerle MC. The Kindler syndrome protein is regulated by transforming growth factor-β and involved in integrin-mediated adhesion. J Biol Chem2004; 279(8): 6824–6833
CrossRef
Pubmed
Google scholar
|
[91] |
Montanez E, Ussar S, Schifferer M, Bösl M, Zent R, Moser M, Fässler R. Kindlin-2 controls bidirectional signaling of integrins. Genes Dev2008; 22(10): 1325–1330
CrossRef
Pubmed
Google scholar
|
[92] |
Harburger DS, Bouaouina M, Calderwood DA. Kindlin-1 and-2 directly bind the C-terminal region of β integrin cytoplasmic tails and exert integrin-specific activation effects. J Biol Chem2009; 284(17): 11485–11497
CrossRef
Pubmed
Google scholar
|
[93] |
Ma YQ, Qin J, Wu C, Plow EF. Kindlin-2 (Mig-2): a co-activator of β3 integrins. J Cell Biol2008; 181(3): 439–446
CrossRef
Pubmed
Google scholar
|
[94] |
Schmidt S, Nakchbandi I, Ruppert R, Kawelke N, Hess MW, Pfaller K, Jurdic P, Fässler R, Moser M. Kindlin-3-mediated signaling from multiple integrin classes is required for osteoclast-mediated bone resorption. J Cell Biol2011; 192(5): 883–897
CrossRef
Pubmed
Google scholar
|
[95] |
Svensson L, Howarth K, McDowall A, Patzak I, Evans R, Ussar S, Moser M, Metin A, Fried M, Tomlinson I, Hogg N. Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat Med2009; 15(3): 306–312
CrossRef
Pubmed
Google scholar
|
[96] |
Moser M, Bauer M, Schmid S, Ruppert R, Schmidt S, Sixt M, Wang HV, Sperandio M, Fässler R. Kindlin-3 is required for β2 integrin-mediated leukocyte adhesion to endothelial cells. Nat Med2009; 15(3): 300–305
CrossRef
Pubmed
Google scholar
|
[97] |
Malinin NL, Zhang L, Choi J, Ciocea A, Razorenova O, Ma YQ, Podrez EA, Tosi M, Lennon DP, Caplan AI, Shurin SB, Plow EF, Byzova TV. A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans. Nat Med2009; 15(3): 313–318
CrossRef
Pubmed
Google scholar
|
[98] |
Kuijpers TW, van de Vijver E, Weterman MA, de Boer M, Tool AT, van den Berg TK, Moser M, Jakobs ME, Seeger K, Sanal O, Unal S, Cetin M, Roos D, Verhoeven AJ, Baas F. LAD-1/variant syndrome is caused by mutations in FERMT3. Blood2009; 113(19): 4740–4746
CrossRef
Pubmed
Google scholar
|
[99] |
Moser M, Nieswandt B, Ussar S, Pozgajova M, Fässler R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med2008; 14(3): 325–330
CrossRef
Pubmed
Google scholar
|
[100] |
Bandyopadhyay A, Rothschild G, Kim S, Calderwood DA, Raghavan S. Functional differences between kindlin-1 and kindlin-2 in keratinocytes. J Cell Sci2012; 125(Pt 9): 2172–2184
CrossRef
Pubmed
Google scholar
|
[101] |
Qu H, Tu Y, Shi X, Larjava H, Saleem MA, Shattil SJ, Fukuda K, Qin J, Kretzler M, Wu C. Kindlin-2 regulates podocyte adhesion and fibronectin matrix deposition through interactions with phosphoinositides and integrins. J Cell Sci2011; 124(Pt 6): 879–891
CrossRef
Pubmed
Google scholar
|
[102] |
Yates LA, Lumb CN, Brahme NN, Zalyte R, Bird LE, De Colibus L, Owens RJ, Calderwood DA, Sansom MS, Gilbert RJ. Structural and functional characterization of the kindlin-1 pleckstrin homology domain. J Biol Chem2012; 287(52): 43246–43261
CrossRef
Pubmed
Google scholar
|
[103] |
Liu J, Fukuda K, Xu Z, Ma YQ, Hirbawi J, Mao X, Wu C, Plow EF, Qin J. Structural basis of phosphoinositide binding to kindlin-2 protein pleckstrin homology domain in regulating integrin activation. J Biol Chem2011; 286(50): 43334–43342
CrossRef
Pubmed
Google scholar
|
[104] |
Hart R, Stanley P, Chakravarty P, Hogg N. The kindlin 3 pleckstrin homology domain has an essential role in lymphocyte function-associated antigen 1 (LFA-1) integrin-mediated B cell adhesion and migration. J Biol Chem2013; 288(21): 14852–14862
CrossRef
Pubmed
Google scholar
|
[105] |
Goult BT, Bouaouina M, Harburger DS, Bate N, Patel B, Anthis NJ, Campbell ID, Calderwood DA, Barsukov IL, Roberts GC, Critchley DR. The structure of the N-terminus of kindlin-1: a domain important for αIIbβ3 integrin activation. J Mol Biol2009; 394(5): 944–956
CrossRef
Pubmed
Google scholar
|
[106] |
Perera HD, Ma YQ, Yang J, Hirbawi J, Plow EF, Qin J. Membrane binding of the N-terminal ubiquitin-like domain of kindlin-2 is crucial for its regulation of integrin activation. Structure2011; 19(11): 1664–1671
CrossRef
Pubmed
Google scholar
|
[107] |
Bouaouina M, Goult BT, Huet-Calderwood C, Bate N, Brahme NN, Barsukov IL, Critchley DR, Calderwood DA. A conserved lipid-binding loop in the kindlin FERM F1 domain is required for kindlin-mediated αIIbβ3 integrin coactivation. J Biol Chem2012; 287(10): 6979–6990
CrossRef
Pubmed
Google scholar
|
[108] |
Ye F, Petrich BG. Kindlin: helper, co-activator, or booster of talin in integrin activation? Curr Opin Hematol2011; 18(5): 356–360
CrossRef
Pubmed
Google scholar
|
[109] |
Kahner BN, Kato H, Banno A, Ginsberg MH, Shattil SJ, Ye F. Kindlins, integrin activation and the regulation of talin recruitment to αIIbβ3. PLoS ONE2012; 7(3): e34056
CrossRef
Pubmed
Google scholar
|
[110] |
Bledzka K, Liu J, Xu Z, Perera HD, Yadav SP, Bialkowska K, Qin J, Ma YQ, Plow EF. Spatial coordination of kindlin-2 with talin head domain in interaction with integrin β cytoplasmic tails. J Biol Chem2012; 287(29): 24585–24594
CrossRef
Pubmed
Google scholar
|
[111] |
Lefort CT, Rossaint J, Moser M, Petrich BG, Zarbock A, Monkley SJ, Critchley DR, Ginsberg MH, Fässler R, Ley K. Distinct roles for talin-1 and kindlin-3 in LFA-1 extension and affinity regulation. Blood2012; 119(18): 4275–4282
CrossRef
Pubmed
Google scholar
|
[112] |
Morrison VL, MacPherson M, Savinko T, Lek HS, Prescott A, Fagerholm SC. The β2 integrin-kindlin-3 interaction is essential for T-cell homing but dispensable for T-cell activation in vivo. Blood2013; 122(8): 1428–1436
CrossRef
Pubmed
Google scholar
|
[113] |
Margadant C, Kreft M, de Groot DJ, Norman JC, Sonnenberg A. Distinct roles of talin and kindlin in regulating integrin α5β1 function and trafficking. Curr Biol2012; 22(17): 1554–1563
CrossRef
Pubmed
Google scholar
|
[114] |
Ye F, Petrich BG, Anekal P, Lefort CT, Kasirer-Friede A, Shattil SJ, Ruppert R, Moser M, Fässler R, Ginsberg MH. The mechanism of kindlin-mediated activation of integrin αIIbβ3. Curr Biol2013; 23(22): 2288–2295
CrossRef
Pubmed
Google scholar
|
[115] |
Feng C, Li YF, Yau YH, Lee HS, Tang XY, Xue ZH, Zhou YC, Lim WM, Cornvik TC, Ruedl C, Shochat SG, Tan SM. Kindlin-3 mediates integrin αLβ2 outside-in signaling, and it interacts with scaffold protein receptor for activated-C kinase 1 (RACK1). J Biol Chem2012; 287(14): 10714–10726
CrossRef
Pubmed
Google scholar
|
[116] |
Manevich-Mendelson E, Feigelson SW, Pasvolsky R, Aker M, Grabovsky V, Shulman Z, Kilic SS, Rosenthal-Allieri MA, Ben-Dor S, Mory A, Bernard A, Moser M, Etzioni A, Alon R. Loss of Kindlin-3 in LAD-III eliminates LFA-1 but not VLA-4 adhesiveness developed under shear flow conditions. Blood2009; 114(11): 2344–2353
CrossRef
Pubmed
Google scholar
|
[117] |
Böttcher RT, Stremmel C, Meves A, Meyer H, Widmaier M, Tseng HY, Fässler R. Sorting nexin 17 prevents lysosomal degradation of β1 integrins by binding to the β1-integrin tail. Nat Cell Biol2012; 14(6): 584–592
CrossRef
Pubmed
Google scholar
|
[118] |
Tu Y, Wu S, Shi X, Chen K, Wu C. Migfilin and Mig-2 link focal adhesions to filamin and the actin cytoskeleton and function in cell shape modulation. Cell2003; 113(1): 37–47
CrossRef
Pubmed
Google scholar
|
[119] |
Mackinnon AC, Qadota H, Norman KR, Moerman DG, Williams BD. C. elegans PAT-4/ILK functions as an adaptor protein within integrin adhesion complexes. Curr Biol2002; 12(10): 787–797
CrossRef
Pubmed
Google scholar
|
[120] |
Qadota H, Moerman DG, Benian GM. A molecular mechanism for the requirement of PAT-4 (integrin-linked kinase (ILK)) for the localization of UNC-112 (Kindlin) to integrin adhesion sites. J Biol Chem2012; 287(34): 28537–28551
CrossRef
Pubmed
Google scholar
|
[121] |
Ithychanda SS, Das M, Ma YQ, Ding K, Wang X, Gupta S, Wu C, Plow EF, Qin J. Migfilin, a molecular switch in regulation of integrin activation. J Biol Chem2009; 284(7): 4713–4722
CrossRef
Pubmed
Google scholar
|
[122] |
Moik DV, Janbandhu VC, Fässler R. Loss of migfilin expression has no overt consequences on murine development and homeostasis. J Cell Sci2011; 124(Pt 3): 414–421
CrossRef
Pubmed
Google scholar
|
[123] |
Hato T, Pampori N, Shattil SJ. Complementary roles for receptor clustering and conformational change in the adhesive and signaling functions of integrin αIIbβ3. J Cell Biol 1998; 141(7): 1685–1695
CrossRef
Pubmed
Google scholar
|
[124] |
Mould AP, Garratt AN, Puzon-McLaughlin W, Takada Y, Humphries MJ. Regulation of integrin function: evidence that bivalent-cation-induced conformational changes lead to the unmasking of ligand-binding sites within integrin α5β1. Biochem J1998; 331(Pt 3): 821–828
Pubmed
|
[125] |
Puzon-McLaughlin W, Yednock TA, Takada Y. Regulation of conformation and ligand binding function of integrin α5β1 by the β1 cytoplasmic domain. J Biol Chem1996; 271(28): 16580–16585
CrossRef
Pubmed
Google scholar
|
[126] |
Phillips DR, Agin PP. Platelet membrane defects in Glanzmann’s thrombasthenia. Evidence for decreased amounts of two major glycoproteins. J Clin Invest1977; 60(3): 535–545
CrossRef
Pubmed
Google scholar
|
[127] |
Nurden AT, Caen JP. An abnormal platelet glycoprotein pattern in three cases of Glanzmann’s thrombasthenia. Br J Haematol1974; 28(2): 253–260
CrossRef
Pubmed
Google scholar
|
[128] |
Nurden AT. Glanzmann thrombasthenia. Orphanet J Rare Dis2006; 1(1): 10
CrossRef
Pubmed
Google scholar
|
[129] |
Lanza F, Stierlé A, Fournier D, Morales M, André G, Nurden AT, Cazenave JP. A new variant of Glanzmann’s thrombasthenia (Strasbourg I). Platelets with functionally defective glycoprotein IIb-IIIa complexes and a glycoprotein IIIa 214Arg→214Trp mutation. J Clin Invest1992; 89(6): 1995–2004
CrossRef
Pubmed
Google scholar
|
[130] |
Loftus JC, O’Toole TE, Plow EF, Glass A, Frelinger AL 3rd, Ginsberg MH. A β3 integrin mutation abolishes ligand binding and alters divalent cation-dependent conformation. Science1990; 249(4971): 915–918
CrossRef
Pubmed
Google scholar
|
[131] |
Chen YP, Djaffar I, Pidard D, Steiner B, Cieutat AM, Caen JP, Rosa JP. Ser-752→Pro mutation in the cytoplasmic domain of integrin β3 subunit and defective activation of platelet integrin αIIbβ3 (glycoprotein IIb-IIIa) in a variant of Glanzmann thrombasthenia. Proc Natl Acad Sci USA1992; 89(21): 10169–10173
CrossRef
Pubmed
Google scholar
|
[132] |
Wang R, Shattil SJ, Ambruso DR, Newman PJ. Truncation of the cytoplasmic domain of β3 in a variant form of Glanzmann thrombasthenia abrogates signaling through the integrin αIIbβ3 complex. J Clin Invest1997; 100(9): 2393–2403
CrossRef
Pubmed
Google scholar
|
[133] |
Ruiz C, Liu CY, Sun QH, Sigaud-Fiks M, Fressinaud E, Muller JY, Nurden P, Nurden AT, Newman PJ, Valentin N. A point mutation in the cysteine-rich domain of glycoprotein (GP) IIIa results in the expression of a GPIIb-IIIa (αIIbβ3) integrin receptor locked in a high-affinity state and a Glanzmann thrombasthenia-like phenotype. Blood2001; 98(8): 2432–2441
CrossRef
Pubmed
Google scholar
|
[134] |
Chen P, Melchior C, Brons NH, Schlegel N, Caen J, Kieffer N. Probing conformational changes in the I-like domain and the cysteine-rich repeat of human β3 integrins following disulfide bond disruption by cysteine mutations: identification of cysteine 598 involved in αIIbβ3 activation. J Biol Chem2001; 276(42): 38628–38635
CrossRef
Pubmed
Google scholar
|
[135] |
Hanna S, Etzioni A. Leukocyte adhesion deficiencies. Ann N Y Acad Sci2012; 1250(1): 50–55
CrossRef
Pubmed
Google scholar
|
[136] |
Lai-Cheong JE, McGrath JA. Kindler syndrome. Dermatol Clin2010; 28(1): 119–124
CrossRef
Pubmed
Google scholar
|
[137] |
D’Souza MA, Kimble RM, McMillan JR. Kindler syndrome pathogenesis and fermitin family homologue 1 (kindlin-1) function. Dermatol Clin2010; 28(1): 115–118
CrossRef
Pubmed
Google scholar
|
[138] |
Heinemann A, He Y, Zimina E, Boerries M, Busch H, Chmel N, Kurz T, Bruckner-Tuderman L, Has C. Induction of phenotype modifying cytokines by FERMT1 mutations. Hum Mutat2011; 32(4): 397–406
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |