Journal home Browse Online first

Online first

The manuscripts published below will continue to be available from this page until they are assigned to an issue.
  • Select all
  • REVIEW
    Yang Qu, Fan Yang, Yafang Deng, Haitao Li, Yidong Zhou, Xuebin Zhang

    The armadillo repeat containing 5 (ARMC5) gene is part of a family of protein-coding genes that are rich in armadillo repeat sequences, are ubiquitously present in eukaryotes, and mediate interactions between proteins, playing roles in various cellular processes. Current research has demonstrated that reduced expression or absence of the ARMC5 gene in various tumor tissues can lead to uncontrolled cell proliferation, thereby inducing a range of diseases. The ARMC5 gene was initially extensively studied in the context of bilateral macronodular adrenocortical disease (BMAD), with harmful pathogenic variants in ARMC5 identified in approximately 50% of BMAD patients. With advancing research, scientists have discovered that ARMC5 pathogenic variants may also have potential effects on other diseases and could be associated with increased susceptibility to certain cancers. This review aims to present the latest research progress on how the ARMC5 gene plays its role in tumors. It outlines the basic structure of ARMC5 and the regions where it functions, as well as the diseases currently proven to be associated with ARMC5. Moreover, some evidence suggests its relation to embryonic development and the regulation of immune system activity. In conclusion, the ARMC5 gene is a crucial focal point in genetic and medical research. Understanding its function and regulation is of great importance for the development of new therapeutic strategies related to diseases associated with its pathogenic variants.

  • RESEARCH ARTICLE
    Zhuo Zheng, Yongfang Lin, Hua Guo, Zheng Liu, Xiaoliang Jie, Guizhen Wang, Guangbiao Zhou

    The p60 subunit of the chromatin assembly factor-1 complex, that is, chromatin assembly factor-1 subunit B (CHAF1B), is a histone H3/H4 chaperone crucial for the transcriptional regulation of cell differentiation and self-renewal. CHAF1B is overexpressed in several cancers and may represent a potential target for cancer therapy. However, its expression and clinical significance in lung squamous-cell carcinoma (LUSC) remain unclear. In this study, we performed weighted gene correlation network analysis to analyze the Gene Expression Omnibus GSE68793 LUSC dataset and identified CHAF1B as one of the most important driver gene candidates. Immunohistochemical analysis of 126 LUSC tumor samples and 80 adjacent normal lung tissues showed the marked upregulation of CHAF1B in tumor tissues and the negative association of its expression level with patient survival outcomes. Silencing of CHAF1B suppressed LUSC proliferation in vitro and LUSC tumor growth in vivo. Furthermore, bulk RNA sequencing of CHAF1B knockdown cells indicated SET domain containing 7 (SETD7) as a significant CHAF1B target gene. In addition, CHAF1B competitively binds to the SETD7 promoter region and represses its transcription. Altogether, these results imply that CHAF1B plays a vital role in LUSC tumorigenesis and may represent a potential molecular target for this deadly disease.

  • RESEARCH ARTICLE
    Jing Wei, Yaping Deng, Xiaoyun Zhu, Xin Xiao, Yang Yang, Chunlei Tang, Jian Chen

    ADC189 is a novel drug of cap-dependent endonuclease inhibitor. In our study, its antiviral efficacy was evaluated in vitro and in vivo, and compared with baloxavir marboxil and oseltamivir. A first-in-human phase I study in healthy volunteers included single ascending dose (SAD) and food effect (FE) parts. In the pre-clinical study, ADC189 showed potent antiviral activity against various types of influenza viruses, including H1N1, H3N2, influenza B virus, and highly pathogenic avian influenza, comparable to baloxavir marboxil. Additionally, ADC189 exhibited much better antiviral efficacy than oseltamivir in H1N1 infected mice. In the phase I study, ADC189 was rapidly metabolized to ADC189-I07, and its exposure increased proportionally with the dose. The terminal elimination half-life (T1/2) ranged from 76.69 to 98.28 hours. Of note, food had no effect on the concentration, clearance, and exposure of ADC189. It was well tolerated, with few treatment-emergent adverse events (TEAEs) reported and no serious adverse events (SAEs). ADC189 demonstrated excellent antiviral efficacy both in vitro and in vivo. It was safe, well-tolerated, and had favorable pharmacokinetic characteristics in healthy volunteers, supporting its potential for single oral dosing in clinical practice.

  • RESEARCH ARTICLE
    Liang Dong, Bingtai Lu, Wenwen Luo, Xiaoqiong Gu, Chengxiang Wu, Luca Trotta, Mikko Seppanen, Yuxia Zhang, Andrey V. Zavialov

    Adenosine, a critical molecule regulating cellular function both inside and outside cells, is controlled by two human adenosine deaminases: ADA1 and ADA2. While ADA1 primarily resides in the cytoplasm, ADA2 can be transported to lysosomes within cells or secreted outside the cell. Patients with ADA2 deficiency (DADA2) often suffer from systemic vasculitis due to elevated levels of TNF-α in their blood. Monocytes from DADA2 patients exhibit excessive TNF-α secretion and differentiate into pro-inflammatory M1-type macrophages. Our findings demonstrate that ADA2 localizes to endolysosomes within macrophages, and its intracellular concentration decreases in cells secreting TNF-α. This suggests that ADA2 may function as a lysosomal adenosine deaminase, regulating TNF-α expression by the cells. Interestingly, pneumonia patients exhibit higher ADA2 concentrations in their bronchoalveolar lavage (BAL), correlating with elevated pro-inflammatory cytokine levels. Conversely, cord blood has low ADA2 levels, creating a more immunosuppressive environment. Additionally, secreted ADA2 can bind to apoptotic cells, activating immune cells by reducing extracellular adenosine levels. These findings imply that ADA2 release from monocytes during inflammation, triggered by growth factors, may be crucial for cell activation. Targeting intracellular and extracellular ADA2 activities could pave the way for novel therapies in inflammatory and autoimmune disorders.

  • COMMENT
    Zhen He, Yufei Wang, Siyu Zhang, Zhenwang Zhao, Xiaobo Hu
  • CASE REPORT
    Xiaotong Qiu, Liangkun You, Chongwei Wang, Jin Sheng

    SMARCA4-deficient non small cell lung cancer (SMARCA4-dNSCLC) has recently garnered increasing attention due to its high malignancy and poor prognosis. The literature suggests that in non small cell lung cancer (NSCLC), the loss of SMARCA4 frequently co-occurs with mutations in KRAS, KEAP1, and STK11 rather than in EGFR, ALK, and ROS1. Herein, we present the first documented case of SMARCA4-dNSCLC accompanied with rare mutations of EGFR exon 20 S768I and exon 18 G719X. The patient achieved partial response with afatinib for 17 months. Our case highlights the importance of EGFR mutations in the precision targeted treatment of SMARCA4-dNSCLC.

  • RESEARCH ARTICLE
    Xiaohan Li, Ling Liu, Han Lou, Xinxin Dong, Shengxin Hao, Zeqi Sun, Zijia Dou, Huimin Li, Wenjie Zhao, Xiuxiu Sun, Xin Liu, Yong Zhang, Baofeng Yang

    Diabetic cardiomyopathy (DCM) is a medical condition characterized by cardiac remodeling and dysfunction in individuals with diabetes mellitus. Sarcoplasmic reticulum (SR) and mitochondrial Ca2+ overload in cardiomyocytes have been recognized as biological hallmarks in DCM; however, the specific factors underlying these abnormalities remain largely unknown. In this study, we aimed to investigate the role of a cardiac-specific long noncoding RNA, D830005E20Rik (Trdn-as), in DCM. Our results revealed the remarkably upregulation of Trdn-as in the hearts of the DCM mice and cardiomyocytes treated with high glucose (HG). Knocking down Trdn-as in cardiac tissues significantly improved cardiac dysfunction and remodeling in the DCM mice. Conversely, Trdn-as overexpression resulted in cardiac damage resembling that observed in the DCM mice. At the cellular level, Trdn-as induced Ca2+ overload in the SR and mitochondria, leading to mitochondrial dysfunction. RNA-seq and bioinformatics analyses identified calsequestrin 2 (Casq2), a primary calcium-binding protein in the junctional SR, as a potential target of Trdn-as. Further investigations revealed that Trdn-as facilitated the recruitment of METTL14 to the Casq2 mRNA, thereby enhancing the m6A modification of Casq2. This modification increased the stability of Casq2 mRNA and subsequently led to increased protein expression. When Casq2 was knocked down, the promoting effects of Trdn-as on Ca2+ overload and mitochondrial damage were mitigated. These findings provide valuable insights into the pathogenesis of DCM and suggest Trdn-as as a potential therapeutic target for this condition.

  • REVIEW
    Ziyi Wang, Hongying Zhu, Wei Xiong

    The pursuit of healthy aging has long rendered aging and senescence captivating. Age-related ailments, such as cardiovascular diseases, diabetes, and neurodegenerative disorders, pose significant threats to individuals. Recent studies have shed light on the intricate mechanisms encompassing genetics, epigenetics, transcriptomics, and metabolomics in the processes of senescence and aging, as well as the establishment of age-related pathologies. Amidst these underlying mechanisms governing aging and related pathology metabolism assumes a pivotal role that holds promise for intervention and therapeutics. The advancements in metabolomics techniques and analysis methods have significantly propelled the study of senescence and aging, particularly with the aid of multiscale metabolomics which has facilitated the discovery of metabolic markers and therapeutic potentials. This review provides an overview of senescence and aging, emphasizing the crucial role metabolism plays in the aging process as well as age-related diseases.

  • REVIEW
    Xianzhe Huang, Wenwei Chen, Yanyan Wang, Dmytro Shytikov, Yanwen Wang, Wangyi Zhu, Ruyi Chen, Yuwei He, Yanjia Yang, Wei Guo

    Therapeutic resistance in cancer is responsible for numerous cancer deaths in clinical practice. While target mutations are well recognized as the basis of genetic resistance to targeted therapy, nontarget mutation resistance (or nongenetic resistance) remains poorly characterized. Despite its complex and unintegrated mechanisms in the literature, nongenetic resistance is considered from our perspective to be a collective response of innate or acquired resistant subpopulations in heterogeneous tumors to therapy. These subpopulations, e.g., cancer stem-like cells, cancer cells with epithelial-to-mesenchymal transition, and drug-tolerant persisters, are protected by their resistance traits at cellular and molecular levels. This review summarizes recent advances in the research on resistant populations and their resistance traits. NOTCH signaling, as a central regulator of nongenetic resistance, is discussed with a special focus on its canonical maintenance of resistant cancer cells and noncanonical regulation of their resistance traits. This novel view of canonical and noncanonical NOTCH signaling pathways is translated into our proposal of reshaping therapeutic strategies targeting NOTCH signaling in resistant cancer cells. We hope that this review will lead researchers to study the canonical and noncanonical arms of NOTCH signaling as an integrated resistant mechanism, thus promoting the development of innovative therapeutic strategies.

  • RESEARCH ARTICLE
    Yuanyue Zhu, Linhui Shen, Yanan Huo, Qin Wan, Yingfen Qin, Ruying Hu, Lixin Shi, Qing Su, Xuefeng Yu, Li Yan, Guijun Qin, Xulei Tang, Gang Chen, Yu Xu, Tiange Wang, Zhiyun Zhao, Zhengnan Gao, Guixia Wang, Feixia Shen, Xuejiang Gu, Zuojie Luo, Li Chen, Qiang Li, Zhen Ye, Yinfei Zhang, Chao Liu, Youmin Wang, Shengli Wu, Tao Yang, Huacong Deng, Lulu Chen, Tianshu Zeng, Jiajun Zhao, Yiming Mu, Weiqing Wang, Guang Ning, Jieli Lu, Min Xu, Yufang Bi, Weiguo Hu

    This study aimed to comprehensively examine the association of gallstones, cholecystectomy, and cancer risk. Multivariable logistic regressions were performed to estimate the observational associations of gallstones and cholecystectomy with cancer risk, using data from a nationwide cohort involving 239 799 participants. General and gender-specific two-sample Mendelian randomization (MR) analysis was further conducted to assess the causalities of the observed associations. Observationally, a history of gallstones without cholecystectomy was associated with a high risk of stomach cancer (adjusted odds ratio (aOR)=2.54, 95% confidence interval (CI) 1.50–4.28), liver and bile duct cancer (aOR=2.46, 95% CI 1.17–5.16), kidney cancer (aOR=2.04, 95% CI 1.05–3.94), and bladder cancer (aOR=2.23, 95% CI 1.01–5.13) in the general population, as well as cervical cancer (aOR=1.69, 95% CI 1.12–2.56) in women. Moreover, cholecystectomy was associated with high odds of stomach cancer (aOR=2.41, 95% CI 1.29–4.49), colorectal cancer (aOR=1.83, 95% CI 1.18–2.85), and cancer of liver and bile duct (aOR=2.58, 95% CI 1.11–6.02). MR analysis only supported the causal effect of gallstones on stomach, liver and bile duct, kidney, and bladder cancer. This study added evidence to the causal effect of gallstones on stomach, liver and bile duct, kidney, and bladder cancer, highlighting the importance of cancer screening in individuals with gallstones.