
HOXB13 in cancer development: molecular mechanisms and clinical implications
Jian Zhang, Ying Ju Li, Bo Peng, Xuna Yang, Miao Chen, Yongxing Li, Hengbin Gao, Haitao Li, Ji Zheng
Front. Med. ›› 2025, Vol. 19 ›› Issue (3) : 439-455.
HOXB13 in cancer development: molecular mechanisms and clinical implications
The transcription factor HOXB13 plays crucial roles in cancer development. HOXB13 is abnormally expressed in most cancers, which makes it a valuable therapeutic target for cancer therapy. The level of HOXB13 differs significantly between healthy and cancer tissues, which indicates that the level of HOXB13 is closely related to carcinogenesis. The regulatory network mediated by HOXB13 in cancer proliferation, metastasis, and invasion has been systematically investigated. Moreover, HOXB13 variants play distinct roles in different cancers and populations. By understanding the molecular mechanisms and mutation features of HOXB13, we provide a comprehensive overview of carcinogenesis networks dependent on HOXB13. Finally, we discuss advancements in anticancer therapy targeting HOXB13 and the roles of HOXB13 in drug resistance to molecular-targeted therapies, which serves as a foundation for developing HOXB13-targeted drugs for clinical diagnosis and cancer therapies.
HOXB13 / carcinogenesis / epigenetic regulation / SNPs / clinical treatment
[1] |
Augello MA, Liu D, Deonarine LD, Robinson BD, Huang D, Stelloo S, Blattner M, Doane AS, Wong EWP, Chen Y, Rubin MA, Beltran H, Elemento O, Bergman AM, Zwart W, Sboner A, Dephoure N, Barbieri CE. CHD1 loss alters AR binding at lineage-specific enhancers and modulates distinct transcriptional programs to drive prostate Tumorigenesis. Cancer Cell 2019; 35(4): 603–617.e8
CrossRef
Google scholar
|
[2] |
Wei J, Shi Z, Na R, Wang CH, Resurreccion WK, Zheng SL, Hulick PJ, Cooney KA, Helfand BT, Isaacs WB, Xu J. Germline HOXB13 G84E mutation carriers and risk to twenty common types of cancer: results from the UK Biobank. Br J Cancer 2020; 123(9): 1356–1359
CrossRef
Google scholar
|
[3] |
Roudi R, Nemati H, Rastegar MM, Sotoudeh M, Narouie B, Shojaei A. Association of homeobox B13 (HOXB13) gene variants with prostate cancer risk in an Iranian population. Med J Islam Repub Iran 2018; 32(1): 561–565 97
CrossRef
Google scholar
|
[4] |
Morgunova E, Yin Y, Das PK, Jolma A, Zhu F, Popov A, Xu Y, Nilsson L, Taipale J. Two distinct DNA sequences recognized by transcription factors represent enthalpy and entropy optima. eLife 2018; 7: e32963
CrossRef
Google scholar
|
[5] |
Tong H, Ke JQ, Jiang FZ, Wang XJ, Wang FY, Li YR, Lu W, Wan XP. Tumor-associated macrophage-derived CXCL8 could induce ERα suppression via HOXB13 in endometrial cancer. Cancer Lett 2016; 376(1): 127–136
CrossRef
Google scholar
|
[6] |
Andus I, Prall F, Linnebacher M, Linnebacher CS. Establishment, characterization, and drug screening of low-passage patient individual non-small cell lung cancer in vitro models including the rare pleomorphic subentity. Front Oncol 2023; 13: 1089681
CrossRef
Google scholar
|
[7] |
Zhan J, Wang P, Li S, Song J, He H, Wang Y, Liu Z, Wang F, Bai H, Fang W, Du Q, Ye M, Chang Z, Wang J, Zhang H. HOXB13 networking with ABCG1/EZH2/Slug mediates metastasis and confers resistance to cisplatin in lung adenocarcinoma patients. Theranostics 2019; 9(7): 2084–2099
CrossRef
Google scholar
|
[8] |
Barton VN, Donson AM, Kleinschmidt-DeMasters BK, Birks DK, Handler MH, Foreman NK. Unique molecular characteristics of pediatric myxopapillary ependymoma. Brain Pathol 2010; 20(3): 560–570
CrossRef
Google scholar
|
[9] |
Xiong Y, Kuang W, Lu S, Guo H, Wu M, Ye M, Wu L. Long noncoding RNA HOXB13–AS1 regulates HOXB13 gene methylation by interacting with EZH2 in glioma. Cancer Med 2018; 7(9): 4718–4728
CrossRef
Google scholar
|
[10] |
Guo F, Chen D, Zong Z, Wu W, Mo C, Zheng Z, Li J, Zhang X, Xiong D. Comprehensive analysis of aberrantly expressed circRNAs, mRNAs and lncRNAs in patients with nasopharyngeal carcinoma. J Clin Lab Anal 2023; 37(2): e24836
CrossRef
Google scholar
|
[11] |
Poliani L, Greco L, Barile M, Dal Buono A, Bianchi P, Basso G, Giatti V, Genuardi M, Malesci A, Laghi L. Canonical and uncanonical pathogenic germline variants in colorectal cancer patients by next-generation sequencing in a European referral center. ESMO Open 2022; 7(6): 100607
CrossRef
Google scholar
|
[12] |
Sipeky C, Gao P, Zhang Q, Wang L, Ettala O, Talala KM, Tammela TLJ, Auvinen A, Wiklund F, Wei GH, Schleutker J. Synergistic interaction of HOXB13 and CIP2A predisposes to aggressive prostate cancer. Clin Cancer Res 2018; 24(24): 6265–6276
CrossRef
Google scholar
|
[13] |
Barresi V. HOXB13 is not expressed in pleomorphic giant cell carcinoma of the bladder. Virchows Arch 2018; 473(2): 259–260
CrossRef
Google scholar
|
[14] |
Decker B, Ostrander EA. Dysregulation of the homeobox transcription factor gene HOXB13: role in prostate cancer. Pharm Genomics Pers Med 2014; 7: 193–201
|
[15] |
Shi X, Day A, Bergom HE, Tape S, Baca SC, Sychev ZE, Larson G, Bozicevich A, Drake JM, Zorko N, Wang J, Ryan CJ, Antonarakis ES, Hwang J. Integrative molecular analyses define correlates of high B7–H3 expression in metastatic castrate-resistant prostate cancer. NPJ Precis Oncol 2022; 6(1): 80
CrossRef
Google scholar
|
[16] |
Wokołorczyk D, Kluźniak W, Huzarski T, Gronwald J, Szymiczek A, Rusak B, Stempa K, Gliniewicz K, Kashyap A, Morawska S, Dębniak T, Jakubowska A, Szwiec M, Domagała P, Lubiński J, Narod SA, Akbari MR, Cybulski C. Mutations in ATM, NBN and BRCA2 predispose to aggressive prostate cancer in Poland. Int J Cancer 2020; 147(10): 2793–2800
CrossRef
Google scholar
|
[17] |
Geng H, Liu G, Hu J, Li J, Wang D, Zou S, Xu X. HOXB13 suppresses proliferation, migration and invasion, and promotes apoptosis of gastric cancer cells through transcriptional activation of VGLL4 to inhibit the involvement of TEAD4 in the Hippo signaling pathway. Mol Med Rep 2021; 24(4): 722
CrossRef
Google scholar
|
[18] |
Xie B, Bai B, Xu Y, Liu Y, Lv Y, Gao X, Wu F, Fang Z, Lou Y, Pan H, Han W. Tumor-suppressive function and mechanism of HOXB13 in right-sided colon cancer. Signal Transduct Target Ther 2019; 4(1): 51
CrossRef
Google scholar
|
[19] |
Liu B, Wang T, Wang H, Zhang L, Xu F, Fang R, Li L, Cai X, Wu Y, Zhang W, Ye L. Oncoprotein HBXIP enhances HOXB13 acetylation and co-activates HOXB13 to confer tamoxifen resistance in breast cancer. J Hematol Oncol 2018; 11(1): 26
CrossRef
Google scholar
|
[20] |
Shah N, Jin K, Cruz LA, Park S, Sadik H, Cho S, Goswami CP, Nakshatri H, Gupta R, Chang HY, Zhang Z, Cimino-Mathews A, Cope L, Umbricht C, Sukumar S. HOXB13 mediates Tamoxifen resistance and invasiveness in human breast cancer by suppressing ERα and inducing IL-6 expression. Cancer Res 2013; 73(17): 5449–5458
CrossRef
Google scholar
|
[21] |
Ahmed M, Sallari RC, Guo H, Moore JH, He HH, Lupien M. Variant Set Enrichment: an R package to identify disease-associated functional genomic regions. BioData Min 2017; 10(1): 9
CrossRef
Google scholar
|
[22] |
Chandrasekaran G, Hwang EC, Kang TW, Kwon DD, Park K, Lee JJ, Lakshmanan VK. Computational modeling of complete HOXB13 protein for predicting the functional effect of SNPs and the associated role in hereditary prostate cancer. Sci Rep 2017; 7(1): 43830
CrossRef
Google scholar
|
[23] |
Mazrooei P, Kron KJ, Zhu Y, Zhou S, Grillo G, Mehdi T, Ahmed M, Severson TM, Guilhamon P, Armstrong NS, Huang V, Yamaguchi TN, Fraser M, van der Kwast T, Boutros PC, He HH, Bergman AM, Bristow RG, Zwart W, Lupien M. Cistrome partitioning reveals convergence of somatic mutations and risk variants on master transcription regulators in primary prostate tumors. Cancer Cell 2019; 36(6): 674–689.e6
CrossRef
Google scholar
|
[24] |
Liu Z, Ren G, Shangguan C, Guo L, Dong Z, Li Y, Zhang W, Zhao L, Hou P, Zhang Y, Wang X, Lu J, Huang B. ATRA inhibits the proliferation of DU145 prostate cancer cells through reducing the methylation level of HOXB13 gene. PLoS One 2012; 7(7): e40943
CrossRef
Google scholar
|
[25] |
Lu X, Fong K, Gritsina G, Wang F, Baca SC, Brea LT, Berchuck JE, Spisak S, Ross J, Morrissey C, Corey E, Chandel NS, Catalona WJ, Yang X, Freedman ML, Zhao JC, Yu J. HOXB13 suppresses de novo lipogenesis through HDAC3-mediated epigenetic reprogramming in prostate cancer. Nat Genet 2022; 54(5): 670–683
CrossRef
Google scholar
|
[26] |
Rauch T, Li H, Wu X, Pfeifer GP. MIRA-assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain-containing genes in lung cancer cells. Cancer Res 2006; 66(16): 7939–7947
CrossRef
Google scholar
|
[27] |
Whitlock NC, Trostel SY, Wilkinson S, Terrigino NT, Hennigan ST, Lake R, Carrabba NV, Atway R, Walton ED, Gryder BE, Capaldo BJ, Ye H, Sowalsky AG. MEIS1 down-regulation by MYC mediates prostate cancer development through elevated HOXB13 expression and AR activity. Oncogene 2020; 39(34): 5663–5674
CrossRef
Google scholar
|
[28] |
Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund-Sayeed S, Das PK, Kivioja T, Dave K, Zhong F, Nitta KR, Taipale M, Popov A, Ginno PA, Domcke S, Yan J, Schübeler D, Vinson C, Taipale J. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 2017; 356(6337): eaaj2239
CrossRef
Google scholar
|
[29] |
Nerlakanti N, Yao J, Nguyen DT, Patel AK, Eroshkin AM, Lawrence HR, Ayaz M, Kuenzi BM, Agarwal N, Chen Y, Gunawan S, Karim RM, Berndt N, Puskas J, Magliocco AM, Coppola D, Dhillon J, Zhang J, Shymalagovindarajan S, Rix U, Kim Y, Perera R, Lawrence NJ, Schonbrunn E, Mahajan K. Targeting the BRD4-HOXB13 coregulated transcriptional networks with Bromodomain-kinase inhibitors to suppress metastatic castration-resistant prostate cancer. Mol Cancer Ther 2018; 17(12): 2796–2810
CrossRef
Google scholar
|
[30] |
Ren G, Zhang G, Dong Z, Liu Z, Li L, Feng Y, Su D, Zhang Y, Huang B, Lu J. Recruitment of HDAC4 by transcription factor YY1 represses HOXB13 to affect cell growth in AR-negative prostate cancers. Int J Biochem Cell Biol 2009; 41(5): 1094–1101
CrossRef
Google scholar
|
[31] |
Shen M, Demers LK, Bailey SD, Labbé DP. To bind or not to bind: cistromic reprogramming in prostate cancer. Front Oncol 2022; 12: 963007
CrossRef
Google scholar
|
[32] |
Chu Y, Chen Y, Guo H, Li M, Wang B, Shi D, Cheng X, Guan J, Wang X, Xue C, Cheng T, Shi J, Yuan W. SUV39H1 regulates the progression of MLL-AF9-induced acute myeloid leukemia. Oncogene 2020; 39(50): 7239–7252
CrossRef
Google scholar
|
[33] |
Guo C, Chu H, Gong Z, Zhang B, Li C, Chen J, Huang L. HOXB13 promotes gastric cancer cell migration and invasion via IGF-1R upregulation and subsequent activation of PI3K/AKT/mTOR signaling pathway. Life Sci 2021; 278: 119522
CrossRef
Google scholar
|
[34] |
Okuda H, Toyota M, Ishida W, Furihata M, Tsuchiya M, Kamada M, Tokino T, Shuin T. Epigenetic inactivation of the candidate tumor suppressor gene HOXB13 in human renal cell carcinoma. Oncogene 2006; 25(12): 1733–1742
CrossRef
Google scholar
|
[35] |
Kim EH, Cao D, Mahajan NP, Andriole GL, Mahajan K. ACK1-AR and AR-HOXB13 signaling axes: epigenetic regulation of lethal prostate cancers. NAR Cancer 2020; 2(3): zcaa018
CrossRef
Google scholar
|
[36] |
Gui T, Liu M, Yao B, Jiang H, Yang D, Li Q, Zeng X, Wang Y, Cao J, Deng Y, Li X, Xu P, Zhou L, Li D, Wang Z, Zen K, Huang DCS, Chen B, Wan G, Zhao Q. TCF3 is epigenetically silenced by EZH2 and DNMT3B and functions as a tumor suppressor in endometrial cancer. Cell Death Differ 2021; 28(12): 3316–3328
CrossRef
Google scholar
|
[37] |
Zhu X, Xue C, Kang X, Jia X, Wang L, Younis MH, Liu D, Huo N, Han Y, Chen Z, Fu J, Zhou C, Yao X, Du Y, Cai W, Kang L, Lyu Z. DNMT3B-mediated FAM111B methylation promotes papillary thyroid tumor glycolysis, growth and metastasis. Int J Biol Sci 2022; 18(11): 4372–4387
CrossRef
Google scholar
|
[38] |
Wei JY, Li WM, Zhou LL, Lu QN, He W. Melatonin induces apoptosis of colorectal cancer cells through HDAC4 nuclear import mediated by CaMKII inactivation. J Pineal Res 2015; 58(4): 429–438
CrossRef
Google scholar
|
[39] |
Baietti MF, Zhao P, Crowther J, Sewduth RN, De Troyer L, Debiec-Rychter M, Sablina AA. Loss of 9p21 regulatory Hub promotes kidney cancer progression by upregulating HOXB13. Mol Cancer Res 2021; 19(6): 979–990
CrossRef
Google scholar
|
[40] |
Rodrigues M, Xavier F, Esteves CD, Nascimento RB, Nobile JS, Severino P, de Cicco R, Toporcov TN, Tajara EH, Nunes FD. Homeobox gene amplification and methylation in oral squamous cell carcinoma. Arch Oral Biol 2021; 129: 105195
CrossRef
Google scholar
|
[41] |
Pilato B, Pinto R, De Summa S, Lambo R, Paradiso A, Tommasi S. HOX gene methylation status analysis in patients with hereditary breast cancer. J Hum Genet 2013; 58(1): 51–53
CrossRef
Google scholar
|
[42] |
Tatangelo F, Di Mauro A, Scognamiglio G, Aquino G, Lettiero A, Delrio P, Avallone A, Cantile M, Botti G. Posterior HOX genes and HOTAIR expression in the proximal and distal colon cancer pathogenesis. J Transl Med 2018; 16(1): 350
CrossRef
Google scholar
|
[43] |
Zhang L, Wan Y, Zhang Z, Jiang Y, Lang J, Cheng W, Zhu L. FTO demethylates m6A modifications in HOXB13 mRNA and promotes endometrial cancer metastasis by activating the WNT signalling pathway. RNA Biol 2021; 18(9): 1265–1278
CrossRef
Google scholar
|
[44] |
Zhang E, Han L, Yin D, He X, Hong L, Si X, Qiu M, Xu T, De W, Xu L, Shu Y, Chen J. H3K27 acetylation activated-long non-coding RNA CCAT1 affects cell proliferation and migration by regulating SPRY4 and HOXB13 expression in esophageal squamous cell carcinoma. Nucleic Acids Res 2017; 45(6): 3086–3101
CrossRef
Google scholar
|
[45] |
Li RC, Ke S, Meng FK, Lu J, Zou X, He Z, Wang W, Fang M. CiRS-7 promotes growth and metastasis of esophageal squamous cell carcinoma via regulation of miR-7/HOXB13. Cell Death Dis 2018; 9(8): 838
CrossRef
Google scholar
|
[46] |
Huang Q, Whitington T, Gao P, Lindberg JF, Yang Y, Sun J, Väisänen MR, Szulkin R, Annala M, Yan J, Egevad LA, Zhang K, Lin R, Jolma A, Nykter M, Manninen A, Wiklund F, Vaarala MH, Visakorpi T, Xu J, Taipale J, Wei GH. A prostate cancer susceptibility allele at 6q22 increases RFX6 expression by modulating HOXB13 chromatin binding. Nat Genet 2014; 46(2): 126–135
CrossRef
Google scholar
|
[47] |
Chen Z, Wu D, Thomas-Ahner JM, Lu C, Zhao P, Zhang Q, Geraghty C, Yan PS, Hankey W, Sunkel B, Cheng X, Antonarakis ES, Wang QE, Liu Z, Huang THM, Jin VX, Clinton SK, Luo J, Huang J, Wang Q. Diverse AR-V7 cistromes in castration-resistant prostate cancer are governed by HoxB13. Proc Natl Acad Sci USA 2018; 115(26): 6810–6815
CrossRef
Google scholar
|
[48] |
Jung C, Kim RS, Zhang HJ, Lee SJ, Jeng MH. HOXB13 induces growth suppression of prostate cancer cells as a repressor of hormone-activated androgen receptor signaling. Cancer Res 2004; 64(24): 9185–9192
CrossRef
Google scholar
|
[49] |
Singh R, Meng H, Shen T, Lumahan LEV, Nguyen S, Shen H, Dasgupta S, Qin L, Karri D, Zhu B, Yang F, Coarfa C, O’Malley BW, Yi P. TRAF4-mediated nonproteolytic ubiquitination of androgen receptor promotes castration-resistant prostate cancer. Proc Natl Acad Sci USA 2023; 120(20): e2218229120
CrossRef
Google scholar
|
[50] |
Norris JD, Chang CY, Wittmann BM, Kunder RS, Cui H, Fan D, Joseph JD, McDonnell DP. The homeodomain protein HOXB13 regulates the cellular response to androgens. Mol Cell 2009; 36(3): 405–416
CrossRef
Google scholar
|
[51] |
Navarro HI, Goldstein AS. HoxB13 mediates AR-V7 activity in prostate cancer. Proc Natl Acad Sci USA 2018; 115(26): 6528–6529
CrossRef
Google scholar
|
[52] |
VanOpstall C, Perike S, Brechka H, Gillard M, Lamperis S, Zhu B, Brown R, Bhanvadia R, Vander Griend DJ. MEIS-mediated suppression of human prostate cancer growth and metastasis through HOXB13-dependent regulation of proteoglycans. eLife 2020; 9: e53600
CrossRef
Google scholar
|
[53] |
Bhanvadia RR, VanOpstall C, Brechka H, Barashi NS, Gillard M, McAuley EM, Vasquez JM, Paner G, Chan WC, Andrade J, De Marzo AM, Han M, Szmulewitz RZ, Vander Griend DJ. MEIS1 and MEIS2 expression and prostate cancer progression: a role for HOXB13 binding partners in metastatic disease. Clin Cancer Res 2018; 24(15): 3668–3680
CrossRef
Google scholar
|
[54] |
Alshalalfa M, Abou-Ouf H, Davicioni E, Karnes RJ, Alhajj R, Bismar TA. Expression of ISL1 and its partners in prostate cancer progression and neuroendocrine differentiation. J Cancer Res Clin Oncol 2021; 147(8): 2223–2231
CrossRef
Google scholar
|
[55] |
Han D, Li X, Cheng Y. Transcription factor ELF1 modulates cisplatin sensitivity in prostate cancer by targeting MEIS homeobox 2. Chem Res Toxicol 2023; 36(3): 360–368
CrossRef
Google scholar
|
[56] |
Johng D, Torga G, Ewing CM, Jin K, Norris JD, McDonnell DP, Isaacs WB. HOXB13 interaction with MEIS1 modifies proliferation and gene expression in prostate cancer. Prostate 2019; 79(4): 414–424
CrossRef
Google scholar
|
[57] |
Weiner AB, Faisal FA, Davicioni E, Karnes RJ, Griend DJV, Lotan TL, Schaeffer EM. Somatic HOXB13 expression correlates with metastatic progression in men with localized prostate cancer following radical prostatectomy. Eur Urol Oncol 2021; 4(6): 955–962
CrossRef
Google scholar
|
[58] |
Girgin B, Kocabaş F. Newly developed MEIS inhibitor selectively blocks MEISHigh prostate cancer growth and induces apoptosis. Gene 2023; 871: 147425
CrossRef
Google scholar
|
[59] |
Ma XJ, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, Fuller A, Muir B, Mohapatra G, Salunga R, Tuggle JT, Tran Y, Tran D, Tassin A, Amon P, Wang W, Wang W, Enright E, Stecker K, Estepa-Sabal E, Smith B, Younger J, Balis U, Michaelson J, Bhan A, Habin K, Baer TM, Brugge J, Haber DA, Erlander MG, Sgroi DC. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 2004; 5(6): 607–616
CrossRef
Google scholar
|
[60] |
Yuan H, Kajiyama H, Ito S, Chen D, Shibata K, Hamaguchi M, Kikkawa F, Senga T. HOXB13 and ALX4 induce SLUG expression for the promotion of EMT and cell invasion in ovarian cancer cells. Oncotarget 2015; 6(15): 13359–13370
CrossRef
Google scholar
|
[61] |
Hamid SM, Cicek S, Karamil S, Ozturk MB, Debelec-Butuner B, Erbaykent-Tepedelen B, Varisli L, Gonen-Korkmaz C, Yorukoglu K, Korkmaz KS. HOXB13 contributes to G1/S and G2/M checkpoint controls in prostate. Mol Cell Endocrinol 2014; 383(1–2): 38–47
CrossRef
Google scholar
|
[62] |
Cussenot O, Cancel-Tassin G, Rao SR, Woodcock DJ, Lamb AD, Mills IG, Hamdy FC. Aligning germline and somatic mutations in prostate cancer. Are genetics changing practice. BJU Int 2023; 132(5): 472–484
CrossRef
Google scholar
|
[63] |
Wang X, Sun Y, Xu T, Qian K, Huang B, Zhang K, Song Z, Qian T, Shi J, Li L. HOXB13 promotes proliferation, migration, and invasion of glioblastoma through transcriptional upregulation of lncRNA HOXC-AS3. J Cell Biochem 2019; 120(9): 15527–15537
CrossRef
Google scholar
|
[64] |
Kim YR, Kang TW, To PK, Nguyen NTX, Cho YS, Jung C, Kim MS. HOXB13-mediated suppression of p21WAF1/CIP1 regulates JNK/c-Jun signaling in prostate cancer cells. Oncol Rep 2016; 35(4): 2011–2016
CrossRef
Google scholar
|
[65] |
Kim YR, Oh KJ, Park RY, Xuan NT, Kang TW, Kwon DD, Choi C, Kim MS, Nam KI, Ahn KY, Jung C. HOXB13 promotes androgen independent growth of LNCaP prostate cancer cells by the activation of E2F signaling. Mol Cancer 2010; 9(1): 124
CrossRef
Google scholar
|
[66] |
Kim IJ, Kang TW, Jeong T, Kim YR, Jung C. HOXB13 regulates the prostate-derived Ets factor: implications for prostate cancer cell invasion. Int J Oncol 2014; 45(2): 869–876
CrossRef
Google scholar
|
[67] |
Misawa A, Kondo Y, Takei H, Takizawa T. Long noncoding RNA HOXA11-AS and transcription factor HOXB13 modulate the expression of bone metastasis-related genes in prostate cancer. Genes (Basel) 2021; 12(2): 182
CrossRef
Google scholar
|
[68] |
Kim YR, Kim IJ, Kang TW, Choi C, Kim KK, Kim MS, Nam KI, Jung C. HOXB13 downregulates intracellular zinc and increases NF-κB signaling to promote prostate cancer metastasis. Oncogene 2014; 33(37): 4558–4567
CrossRef
Google scholar
|
[69] |
Saha SS, Chowdhury RR, Mondal NR, Roy S, Sengupta S. Expression signatures of HOX cluster genes in cervical cancer pathogenesis: impact of human papillomavirus type 16 oncoprotein E7. Oncotarget 2017; 8(22): 36591–36602
CrossRef
Google scholar
|
[70] |
Yuan S, He SH, Li LY, Xi S, Weng H, Zhang JH, Wang DQ, Guo MM, Zhang H, Wang SY, Ming DJ, Liu MY, Hu H, Zeng XT. A potassium-chloride co-transporter promotes tumor progression and castration resistance of prostate cancer through m6A reader YTHDC1. Cell Death Dis 2023; 14(1): 7
CrossRef
Google scholar
|
[71] |
Gen Y, Muramatsu T, Inoue J, Inazawa J. miR-766–5p targets super-enhancers by downregulating CBP and BRD4. Cancer Res 2021; 81(20): 5190–5201
CrossRef
Google scholar
|
[72] |
Nguyen DT, Yang W, Renganathan A, Weimholt C, Angappulige DH, Nguyen T, Sprung RW, Andriole GL, Kim EH, Mahajan NP, Mahajan K. Acetylated HOXB13 regulated super enhancer genes define therapeutic vulnerabilities of castration-resistant prostate cancer. Clin Cancer Res 2022; 28(18): 4131–4145
CrossRef
Google scholar
|
[73] |
Chen Y, Dufour CR, Han L, Li T, Xia H, Giguère V. Hierarchical phosphorylation of HOXB13 by mTOR dictates its activity and oncogenic function in prostate cancer. Mol Cancer Res 2023; 21(10): 1050–1063
CrossRef
Google scholar
|
[74] |
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7(4): 248–249
CrossRef
Google scholar
|
[75] |
Zhao Y, Wu L, Yue X, Zhang C, Wang J, Li J, Sun X, Zhu Y, Feng Z, Hu W. A polymorphism in the tumor suppressor p53 affects aging and longevity in mouse models. eLife 2018; 7: e34701 7
CrossRef
Google scholar
|
[76] |
Albitar F, Diep K, Ma W, Albitar M. Synonymous polymorphisms in HOXB13 as a protective factor for prostate cancer. J Cancer 2015; 6(5): 409–411
CrossRef
Google scholar
|
[77] |
Darst BF, Hughley R, Pfennig A, Hazra U, Fan C, Wan P, Sheng X, Xia L, Andrews C, Chen F, Berndt SI, Kote-Jarai Z, Govindasami K, Bensen JT, Ingles SA, Rybicki BA, Nemesure B, John EM, Fowke JH, Huff CD, Strom SS, Isaacs WB, Park JY, Zheng W, Ostrander EA, Walsh PC, Carpten J, Sellers TA, Yamoah K, Murphy AB, Sanderson M, Crawford DC, Gapstur SM, Bush WS, Aldrich MC, Cussenot O, Petrovics G, Cullen J, Neslund-Dudas C, Kittles RA, Xu J, Stern MC, Chokkalingam AP, Multigner L, Parent ME, Menegaux F, Cancel-Tassin G, Kibel AS, Klein EA, Goodman PJ, Stanford JL, Drake BF, Hu JJ, Clark PE, Blanchet P, Casey G, Hennis AJM, Lubwama A, Thompson IM Jr, Leach RJ, Gundell SM, Pooler L, Mohler JL, Fontham ETH, Smith GJ, Taylor JA, Brureau L, Blot WJ, Biritwum R, Tay E, Truelove A, Niwa S, Tettey Y, Varma R, McKean-Cowdin R, Torres M, Jalloh M, Magueye Gueye S, Niang L, Ogunbiyi O, Oladimeji Idowu M, Popoola O, Adebiyi AO, Aisuodionoe-Shadrach OI, Nwegbu M, Adusei B, Mante S, Darkwa-Abrahams A, Yeboah ED, Mensah JE, Anthony Adjei A, Diop H, Cook MB, Chanock SJ, Watya S, Eeles RA, Chiang CWK, Lachance J, Rebbeck TR, Conti DV, Haiman CA. A rare germline HOXB13 variant contributes to risk of prostate cancer in men of African ancestry. Eur Urol 2022; 81(5): 458–462
CrossRef
Google scholar
|
[78] |
Chandrasekaran G, Hwang EC, Kang TW, Kwon DD, Park K, Lee JJ, Lakshmanan VK. In silico analysis of the deleterious nsSNPs (missense) in the homeobox domain of human HOXB13 gene responsible for hereditary prostate cancer. Chem Biol Drug Des 2017; 90(2): 188–199
CrossRef
Google scholar
|
[79] |
Ewing CM, Ray AM, Lange EM, Zuhlke KA, Robbins CM, Tembe WD, Wiley KE, Isaacs SD, Johng D, Wang Y, Bizon C, Yan G, Gielzak M, Partin AW, Shanmugam V, Izatt T, Sinari S, Craig DW, Zheng SL, Walsh PC, Montie JE, Xu J, Carpten JD, Isaacs WB, Cooney KA. Germline mutations in HOXB13 and prostate-cancer risk. N Engl J Med 2012; 366(2): 141–149
CrossRef
Google scholar
|
[80] |
Liu J, Prager-van der Smissen W, Collée JM, Bolla MK, Wang Q, Michailidou K, Dennis J, Ahearn TU, Aittomäki K, Ambrosone CB, Andrulis IL, Anton-Culver H, Antonenkova NN, Arndt V, Arnold N, Aronson KJ, Augustinsson A, Auvinen P, Becher H, Beckmann MW, Behrens S, Bermisheva M, Bernstein L, Bogdanova NV, Bogdanova-Markov N, Bojesen SE, Brauch H, Brenner H, Briceno I, Brucker SY, Brüning T, Burwinkel B, Cai Q, Cai H, Campa D, Canzian F, Castelao JE, Chang-Claude J, Chanock SJ, Choi JY, Christiaens M, Clarke CL, Sahlberg KK, Børresen-Dale AL, Ottestad L, Kåresen R, Schlichting E, Holmen MM, Sauer T, Haakensen V, Engebråten O, Naume B, Fosså A, Kiserud CE, Reinertsen KV, Helland Å, Riis M, Geisler J, Bathen TF, Borgen E, Fritzman B, Garred Ø, Geitvik GA, Hofvind S, Langerød A, Lingjærde OC, Mælandsmo GM, Russnes HG, Skjerven HK, Sørlie T, Alnæs GIG, Couch FJ, Czene K, Daly MB, Devilee P, dos-Santos-Silva I, Dwek M, Eccles DM, Eliassen AH, Fasching PA, Figueroa J, Flyger H, Fritschi L, Gago-Dominguez M, Gapstur SM, García-Closas M, García-Sáenz JA, Gaudet MM, Giles GG, Goldberg MS, Goldgar DE, Guénel P, Haiman CA, Håkansson N, Hall P, Harrington PA, Hart SN, Hartman M, Hillemanns P, Hopper JL, Hou MF, Hunter DJ, Huo D, Clarke C, Marsh D, Scott R, Baxter R, Yip D, Carpenter J, Davis A, Pathmanathan N, Simpson P, Graham D, Sachchithananthan M, Ito H, Iwasaki M, Jakimovska M, Jakubowska A, John EM, Kaaks R, Kang D, Keeman R, Khusnutdinova E, Kim SW, Kraft P, Kristensen VN, Kurian AW, Le Marchand L, Li J, Lindblom A, Lophatananon A, Luben RN, Lubiński J, Mannermaa A, Manoochehri M, Manoukian S, Margolin S, Mariapun S, Matsuo K, Maurer T, Mavroudis D, Meindl A, Menon U, Milne RL, Muir K, Mulligan AM, Neuhausen SL, Nevanlinna H, Offit K, Olopade OI, Olson JE, Olsson H, Orr N, Park SK, Peterlongo P, Peto J, Plaseska-Karanfilska D, Presneau N, Rack B, Rau-Murthy R, Rennert G, Rennert HS, Rhenius V, Romero A, Ruebner M, Saloustros E, Schmutzler RK, Schneeweiss A, Scott C, Shah M, Shen CY, Shu XO, Simard J, Sohn C, Southey MC, Spinelli JJ, Tamimi RM, Tapper WJ, Teo SH, Terry MB, Torres D, Truong T, Untch M, Vachon CM, van Asperen CJ, Wolk A, Yamaji T, Zheng W, Ziogas A, Ziv E, Torres-Mejía G, Dörk T, Swerdlow AJ, Hamann U, Schmidt MK, Dunning AM, Pharoah PDP, Easton DF, Hooning MJ, Martens JWM, Hollestelle A. Germline HOXB13 mutations p. G84E and p. R217C do not confer an increased breast cancer risk. Sci Rep 2020; 10(1): 9688
CrossRef
Google scholar
|
[81] |
Akbari MR, Trachtenberg J, Lee J, Tam S, Bristow R, Loblaw A, Narod SA, Nam RK. Association between germline HOXB13 G84E mutation and risk of prostate cancer. J Natl Cancer Inst 2012; 104(16): 1260–1262
CrossRef
Google scholar
|
[82] |
Giri VN, Beebe-Dimmer JL. Familial prostate cancer. Semin Oncol 2016; 43(5): 560–565
CrossRef
Google scholar
|
[83] |
Rocca C, Rocca G, Zampieri P, Dell’Atti L, Bianchi N, Ippolito C, Aguiari G. Somatic and germline variants affect prognosis and susceptibility in prostate cancer. Anticancer Res 2023; 43(7): 2941–2949
CrossRef
Google scholar
|
[84] |
Song SH, Kim HM, Jung YJ, Kook HR, Jeon S, Bhak J, Kim JH, Lee H, Oh JJ, Lee S, Hong SK, Byun SS. Germline DNA-repair genes and HOXB13 mutations in Korean men with metastatic prostate cancer: data from a large Korean cohort. World J Mens Health 2023; 41(4): 960
CrossRef
Google scholar
|
[85] |
Akbari MR, Kluźniak W, Rodin R, Li S, Wokołorczyk D, Royer R, Kashyap A, Menkiszak J, Lubinski J, Narod SA, Cybulski C. The HOXB13 p. Gly84Glu mutation is not associated with the risk of breast cancer. Breast Cancer Res Treat 2012; 136(3): 907–909
CrossRef
Google scholar
|
[86] |
Alanee S, Couch F, Offit K. Association of a HOXB13 variant with breast cancer. N Engl J Med 2012; 367(5): 480–481
CrossRef
Google scholar
|
[87] |
Beebe-Dimmer JL, Hathcock M, Yee C, Okoth LA, Ewing CM, Isaacs WB, Cooney KA, Thibodeau SN. The HOXB13 G84E mutation is associated with an increased risk for prostate cancer and other malignancies. Cancer Epidemiol Biomarkers Prev 2015; 24(9): 1366–1372
CrossRef
Google scholar
|
[88] |
Laitinen VH, Wahlfors T, Saaristo L, Rantapero T, Pelttari LM, Kilpivaara O, Laasanen SL, Kallioniemi A, Nevanlinna H, Aaltonen L, Vessella RL, Auvinen A, Visakorpi T, Tammela TLJ, Schleutker J. HOXB13 G84E mutation in Finland: population-based analysis of prostate, breast, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 2013; 22(3): 452–460
CrossRef
Google scholar
|
[89] |
Kote-Jarai Z, Mikropoulos C, Leongamornlert DA, Dadaev T, Tymrakiewicz M, Saunders EJ, Jones M, Jugurnauth-Little S, Govindasami K, Guy M, Hamdy FC, Donovan JL, Neal DE, Lane JA, Dearnaley D, Wilkinson RA, Sawyer EJ, Morgan A, Antoniou AC, Eeles RA, Hall P, Berchuck A, Dennis J, Dunning AM, Lee A, Dicks E, Simard J, Tessier DC, Bacot F, Vincent D, LaBoissière S, Robidoux F, Bojesen SE, Nielsen SF, Nordestgaard BG. Prevalence of the HOXB13 G84E germline mutation in British men and correlation with prostate cancer risk, tumour characteristics and clinical outcomes. Ann Oncol 2015; 26(4): 756–761
CrossRef
Google scholar
|
[90] |
Hemminki K, Li X, Försti A, Eng C. Are population level familial risks and germline genetics meeting each other. Hered Cancer Clin Pract 2023; 21(1): 3
CrossRef
Google scholar
|
[91] |
Nyberg T, Govindasami K, Leslie G, Dadaev T, Bancroft E, Ni Raghallaigh H, Brook MN, Hussain N, Keating D, Lee A, McMahon R, Morgan A, Mullen A, Osborne A, Rageevakumar R, Kote-Jarai Z, Eeles R, Antoniou AC. Homeobox B13 G84E mutation and prostate cancer risk. Eur Urol 2019; 75(5): 834–845
CrossRef
Google scholar
|
[92] |
Chen H, Ewing CM, Zheng S, Grindedaal EM, Cooney KA, Wiley K, Djurovic S, Andreassen OA, Axcrona K, Mills IG, Xu J, Maehle L, Fosså SD, Isaacs WB. Genetic factors influencing prostate cancer risk in Norwegian men. Prostate 2018; 78(3): 186–192
CrossRef
Google scholar
|
[93] |
Karlsson R, Aly M, Clements M, Zheng L, Adolfsson J, Xu J, Grönberg H, Wiklund F. A population-based assessment of germline HOXB13 G84E mutation and prostate cancer risk. Eur Urol 2014; 65(1): 169–176
CrossRef
Google scholar
|
[94] |
Wei Y, Wu J, Gu W, Qin X, Dai B, Lin G, Gan H, Freedland SJ, Zhu Y, Ye D. Germline DNA repair gene mutation landscape in Chinese prostate cancer patients. Eur Urol 2019; 76(3): 280–283
CrossRef
Google scholar
|
[95] |
Coelho K, Squire JA, Duarte KG, Sares CTG, Moreda NA, Pereira JL, da Silva IT, Defelicibus A, Aoki MN, Rivas JDL, dos Reis RB, Zanette DL. Germline variants in early and late-onset Brazilian prostate cancer patients. Urol Oncol 2024; 42(3): 68.e11–68.e19
CrossRef
Google scholar
|
[96] |
Storebjerg TM, Høyer S, Kirkegaard P, Bro F, Ørntoft TF, Borre M, Sørensen KD. Prevalence of the HOXB13 G84E mutation in Danish men undergoing radical prostatectomy and its correlations with prostate cancer risk and aggressiveness. BJU Int 2016; 118(4): 646–653
CrossRef
Google scholar
|
[97] |
Chen Z, Greenwood C, Isaacs WB, Foulkes WD, Sun J, Zheng SL, Condreay LD, Xu J. The G84E mutation of HOXB13 is associated with increased risk for prostate cancer: results from the REDUCE trial. Carcinogenesis 2013; 34(6): 1260–1264
CrossRef
Google scholar
|
[98] |
Wallander K, Thonberg H, Nilsson D, Tham E. Massive parallel sequencing in individuals with multiple primary tumours reveals the benefit of re-analysis. Hered Cancer Clin Pract 2021; 19(1): 46
CrossRef
Google scholar
|
[99] |
Shang Z, Zhu S, Zhang H, Li L, Niu Y. Germline homeobox B13 (HOXB13) G84E mutation and prostate cancer risk in European descendants: a meta-analysis of 24 213 cases and 73 631 controls. Eur Urol 2013; 64(1): 173–176
CrossRef
Google scholar
|
[100] |
Darst BF, Sheng X, Eeles RA, Kote-Jarai Z, Conti DV, Haiman CA. Combined effect of a polygenic risk score and rare genetic variants on prostate cancer risk. Eur Urol 2021; 80(2): 134–138
CrossRef
Google scholar
|
[101] |
Lin X, Qu L, Chen Z, Xu C, Ye D, Shao Q, Wang X, Qi J, Chen Z, Zhou F, Wang M, Wang Z, He D, Wu D, Gao X, Yuan J, Wang G, Xu Y, Wang G, Dong P, Jiao Y, Yang J, Ou-Yang J, Jiang H, Zhu Y, Ren S, Zhang Z, Yin C, Wu Q, Zheng Y, Turner AR, Tao S, Na R, Ding Q, Lu D, Shi R, Sun J, Liu F, Zheng SL, Mo Z, Sun Y, Xu J. A novel germline mutation in HOXB13 is associated with prostate cancer risk in Chinese men. Prostate 2013; 73(2): 169–175
CrossRef
Google scholar
|
[102] |
Momozawa Y, Iwasaki Y, Hirata M, Liu X, Kamatani Y, Takahashi A, Sugano K, Yoshida T, Murakami Y, Matsuda K, Nakagawa H, Spurdle AB, Kubo M. Germline pathogenic variants in 7636 Japanese patients with prostate cancer and 12 366 controls. J Natl Cancer Inst 2020; 112(4): 369–376
CrossRef
Google scholar
|
[103] |
Momozawa Y, Iwasaki Y, Parsons MT, Kamatani Y, Takahashi A, Tamura C, Katagiri T, Yoshida T, Nakamura S, Sugano K, Miki Y, Hirata M, Matsuda K, Spurdle AB, Kubo M. Germline pathogenic variants of 11 breast cancer genes in 7051 Japanese patients and 11 241 controls. Nat Commun 2018; 9(1): 4083
CrossRef
Google scholar
|
[104] |
Cardoso M, Maia S, Paulo P, Teixeira MR. Oncogenic mechanisms of HOXB13 missense mutations in prostate carcinogenesis. Oncoscience 2016; 3(9–10): 288–296
CrossRef
Google scholar
|
[105] |
Marlin R, Créoff M, Merle S, Jean-Marie-Flore M, Rose M, Malsa S, Promeyrat X, Martin F, Comlan G, Rabia N, Taouil T, Issoufaly I, Escarmant P, Vinh-Hung V, Béra O. Mutation HOXB13 c. 853delT in Martinican prostate cancer patients. Prostate 2020; 80(6): 463–470
CrossRef
Google scholar
|
[106] |
Asa SL, Mete O, Schüller U, Ramani B, Mirchia K, Perry A. Cauda equina neuroendocrine tumors: distinct epithelial neuroendocrine neoplasms of spinal origin. Am J Surg Pathol 2023; 47(4): 469–475
CrossRef
Google scholar
|
[107] |
Bockmayr M, Körner M, Schweizer L, Schüller U. Cauda equina paragangliomas express HOXB13. Neuropathol Appl Neurobiol 2021; 47(6): 889–890
CrossRef
Google scholar
|
[108] |
Gu S, Gu W, Shou J, Xiong J, Liu X, Sun B, Yang D, Xie R. The molecular feature of HOX gene family in the intramedullary spinal tumors. Spine 2017; 42(5): 291–297
CrossRef
Google scholar
|
[109] |
Saha SS, Chowdhury RR, Mondal NR, Roy S, Sengupta S. Expression signatures of HOX cluster genes in cervical cancer pathogenesis: impact of human papillomavirus type 16 oncoprotein E7. Oncotarget 2017; 8(22): 36591–36602
CrossRef
Google scholar
|
[110] |
Chong LY, Cheok PY, Tan WJ, Thike AA, Allen G, Ang MK, Ooi AS, Tan P, Teh BT, Tan PH. Keratin 15, transcobalamin I and homeobox gene Hox-B13 expression in breast phyllodes tumors: novel markers in biological classification. Breast Cancer Res Treat 2012; 132(1): 143–151
CrossRef
Google scholar
|
[111] |
Mo BY, Li GS, Huang SN, He WY, Xie LY, Wei ZX, Su YS, Liang Y, Yang L, Ye C, Dai WB, Ruan L. The underlying molecular mechanism and identification of transcription factor markers for laryngeal squamous cell carcinoma. Bioengineered 2021; 12(1): 208–224
CrossRef
Google scholar
|
[112] |
Kavalci E, Onder AU, Brusgaard K, Bostanci A, Selhanoglu MY, Serakinci N. Identification of genetic biomarkers in urine for early detection of prostate cancer. Curr Probl Cancer 2021; 45(1): 100616
CrossRef
Google scholar
|
[113] |
Tomalty D, Giovannetti O, Gaudet D, Clohosey D, Harvey MA, Johnston S, Komisaruk B, Hannan J, Goldstein S, Goldstein I, Adams MA. The prostate in women: an updated histological and immunohistochemical profile of the female periurethral glands and their relationship to an implanted midurethral sling. J Sex Med 2023; 20(5): 612–625
CrossRef
Google scholar
|
[114] |
Larnaudie L, Compérat E, Conort P, Varinot J. HOXB13 a useful marker in pleomorphic giant cell adenocarcinoma of the prostate: a case report and review of the literature. Virchows Arch 2017; 471(1): 133–136
CrossRef
Google scholar
|
[115] |
Abouhashem NS, Salah S. Differential expression of NKX 3.1 and HOXB 13 in bone metastases originating from prostatic carcinoma among the Egyptian males. Pathol Res Pract 2020; 216(10): 153221
CrossRef
Google scholar
|
[116] |
Alshenawy HA, Do Saied E. HOXB13 and P63 have a role in differentiating poorly differentiated prostatic carcinoma from urothelial high-grade carcinoma. Acta Pathol Microbiol Scand Suppl 2015; 123(9): 772–778
CrossRef
Google scholar
|
[117] |
Barresi V, Ieni A, Cardia R, Licata L, Vitarelli E, Reggiani Bonetti L, Tuccari G. HOXB13 as an immunohistochemical marker of prostatic origin in metastatic tumors. Acta Pathol Microbiol Scand Suppl 2016; 124(3): 188–193
CrossRef
Google scholar
|
[118] |
Timofte AD, Giuşcă SE, Lozneanu L, Manole MB, Prutianu I, Gafton B, Rusu A, Căruntu ID. HOXB13 and TFF3 can contribute to the prognostic stratification of prostate adenocarcinoma. Rom J Morphol Embryol 2021; 62(1): 41–52
CrossRef
Google scholar
|
[119] |
Yao J, Chen Y, Nguyen DT, Thompson ZJ, Eroshkin AM, Nerlakanti N, Patel AK, Agarwal N, Teer JK, Dhillon J, Coppola D, Zhang J, Perera R, Kim Y, Mahajan K. The Homeobox gene, HOXB13, regulates a mitotic protein-kinase interaction network in metastatic prostate cancers. Sci Rep 2019; 9(1): 9715
CrossRef
Google scholar
|
[120] |
Marra L, Cantile M, Scognamiglio G, Perdonà S, La Mantia E, Cerrone M, Gigantino V, Cillo C, Caraglia M, Pignata S, Facchini G, Botti G, Chieffi S, Chieffi P, Franco R. Deregulation of HOX B13 expression in urinary bladder cancer progression. Curr Med Chem 2013; 20(6): 833–839
CrossRef
Google scholar
|
[121] |
Sattari M, Kohvakka A, Moradi E, Rauhala H, Urhonen H, Isaacs WB, Nykter M, Murtola TJ, Tammela TLJ, Latonen L, Bova GS, Kesseli J, Visakorpi T. Identification of long noncoding RNAs with aberrant expression in prostate cancer metastases. Endocr Relat Cancer 2023; 30(8): e220247
CrossRef
Google scholar
|
[122] |
Xu L, Xu Y, Yang M, Li J, Xu F, Chen BL. LncRNA SNHG14 regulates the DDP-resistance of non-small cell lung cancer cell through miR-133a/HOXB13 pathway. BMC Pulm Med 2020; 20(1): 266
CrossRef
Google scholar
|
[123] |
Kwan EM, Fettke H, Docanto MM, To SQ, Bukczynska P, Mant A, Pook D, Ng N, Graham LJK, Mangiola S, Segelov E, Mahon K, Davis ID, Parente P, Pezaro C, Todenhöfer T, Horvath LG, Azad AA. Prognostic utility of a whole-blood androgen receptor-based gene signature in metastatic castration-resistant prostate cancer. Eur Urol Focus 2021; 7(1): 63–70
CrossRef
Google scholar
|
[124] |
Zabalza CV, Adam M, Burdelski C, Wilczak W, Wittmer C, Kraft S, Krech T, Steurer S, Koop C, Hube-Magg C, Graefen M, Heinzer H, Minner S, Simon R, Sauter G, Schlomm T, Tsourlakis MC. HOXB13 overexpression is an independent predictor of early PSA recurrence in prostate cancer treated by radical prostatectomy. Oncotarget 2015; 6(14): 12822–12834
CrossRef
Google scholar
|
[125] |
Kristiansen I, Stephan C, Jung K, Dietel M, Rieger A, Tolkach Y, Kristiansen G. Sensitivity of HOXB13 as a diagnostic immunohistochemical marker of prostatic origin in prostate cancer metastases: comparison to PSA, prostein, androgen receptor, ERG, NKX3.1, PSAP, and PSMA. Int J Mol Sci 2017; 18(6): 1151
CrossRef
Google scholar
|
[126] |
Ylitalo EB, Thysell E, Jernberg E, Lundholm M, Crnalic S, Egevad L, Stattin P, Widmark A, Bergh A, Wikström P. Subgroups of castration-resistant prostate cancer bone metastases defined through an inverse relationship between androgen receptor activity and immune response. Eur Urol 2017; 71(5): 776–787
CrossRef
Google scholar
|
[127] |
Sui BQ, Zhang CD, Liu JC, Wang L, Dai DQ. HOXB13 expression and promoter methylation as a candidate biomarker in gastric cancer. Oncol Lett 2018; 15(6): 8833–8840
CrossRef
Google scholar
|
[128] |
Zhu JY, Sun QK, Wang W, Jia WD. High-level expression of HOXB13 is closely associated with tumor angiogenesis and poor prognosis of hepatocellular carcinoma. Int J Clin Exp Pathol 2014; 7(6): 2925–2933
|
[129] |
Jerevall PL, Jansson A, Fornander T, Skoog L, Nordenskjöld B, Stål O. Predictive relevance of HOXB13 protein expression for tamoxifen benefit in breast cancer. Breast Cancer Res 2010; 12(4): R53
CrossRef
Google scholar
|
[130] |
Zhao L, Zhu S, Gao Y, Wang Y. Two-gene expression ratio as predictor for breast cancer treated with tamoxifen: evidence from meta-analysis. Tumour Biol 2014; 35(4): 3113–3117
CrossRef
Google scholar
|
[131] |
Miao J, Wang Z, Provencher H, Muir B, Dahiya S, Carney E, Leong CO, Sgroi DC, Orsulic S. HOXB13 promotes ovarian cancer progression. Proc Natl Acad Sci USA 2007; 104(43): 17093–17098
CrossRef
Google scholar
|
[132] |
Ye L, Lin C, Wang X, Li Q, Li Y, Wang M, Zhao Z, Wu X, Shi D, Xiao Y, Ren L, Jian Y, Yang M, Ou R, Deng G, Ouyang Y, Chen X, Li J, Song L. Epigenetic silencing of SALL2 confers tamoxifen resistance in breast cancer. EMBO Mol Med 2022; 14(3): e15618
CrossRef
Google scholar
|
[133] |
Bartlett J, Sgroi DC, Treuner K, Zhang Y, Piper T, Salunga RC, Ahmed I, Doos L, Thornber S, Taylor KJ, Brachtel EF, Pirrie SJ, Schnabel CA, Rea DW. Breast cancer index is a predictive biomarker of treatment benefit and outcome from extended tamoxifen therapy: final analysis of the trans-aTTom study. Clin Cancer Res 2022; 28(9): 1871–1880
CrossRef
Google scholar
|
[134] |
Habel LA, Sakoda LC, Achacoso N, Ma XJ, Erlander MG, Sgroi DC, Fehrenbacher L, Greenberg D, Quesenberry CP Jr. HOXB13: IL17BR and molecular grade index and risk of breast cancer death among patients with lymph node-negative invasive disease. Breast Cancer Res 2013; 15(2): R24
CrossRef
Google scholar
|
[135] |
Sgroi DC, Treuner K, Zhang Y, Piper T, Salunga R, Ahmed I, Doos L, Thornber S, Taylor KJ, Brachtel E, Pirrie S, Schnabel CA, Rea D, Bartlett JMS. Correlative studies of the breast cancer index (HOXB13/IL17BR) and ER, PR, AR, AR/ER ratio and Ki67 for prediction of extended endocrine therapy benefit: a trans-aTTom study. Breast Cancer Res 2022; 24(1): 90
CrossRef
Google scholar
|
[136] |
Bartlett J, Sgroi DC, Treuner K, Zhang Y, Ahmed I, Piper T, Salunga R, Brachtel EF, Pirrie SJ, Schnabel CA, Rea DW. Breast cancer index and prediction of benefit from extended endocrine therapy in breast cancer patients treated in the Adjuvant Tamoxifen-To Offer More? (aTTom) trial. Ann Oncol 2019; 30(11): 1776–1783
CrossRef
Google scholar
|
[137] |
Noordhoek I, Treuner K, Putter H, Zhang Y, Wong J, Meershoek-Klein Kranenbarg E, Duijm-de Carpentier M, van de Velde CJH, Schnabel CA, Liefers GJ. Breast cancer index predicts extended endocrine benefit to individualize selection of patients with HR+ early-stage breast cancer for 10 years of endocrine therapy. Clin Cancer Res 2021; 27(1): 311–319
CrossRef
Google scholar
|
[138] |
Goetz MP, Suman VJ, Couch FJ, Ames MM, Rae JM, Erlander MG, Ma XJ, Sgroi DC, Reynolds CA, Lingle WL, Weinshilboum RM, Flockhart DA, Desta Z, Perez EA, Ingle JN. Cytochrome P450 2D6 and homeobox 13/interleukin-17B receptor: combining inherited and tumor gene markers for prediction of tamoxifen resistance. Clin Cancer Res 2008; 14(18): 5864–5868
CrossRef
Google scholar
|
[139] |
De Sarkar N, Patton RD, Doebley AL, Hanratty B, Adil M, Kreitzman AJ, Sarthy JF, Ko M, Brahma S, Meers MP, Janssens DH, Ang LS, Coleman IM, Bose A, Dumpit RF, Lucas JM, Nunez TA, Nguyen HM, McClure HM, Pritchard CC, Schweizer MT, Morrissey C, Choudhury AD, Baca SC, Berchuck JE, Freedman ML, Ahmad K, Haffner MC, Montgomery RB, Corey E, Henikoff S, Nelson PS, Ha G. Nucleosome patterns in circulating tumor DNA reveal transcriptional regulation of advanced prostate cancer phenotypes. Cancer Discov 2023; 13(3): 632–653
CrossRef
Google scholar
|
[140] |
Nyberg T, Brook MN, Ficorella L, Lee A, Dennis J, Yang X, Wilcox N, Dadaev T, Govindasami K, Lush M, Leslie G, Lophatananon A, Muir K, Bancroft E, Easton DF, Tischkowitz M, Kote-Jarai Z, Eeles R, Antoniou AC. CanRisk-prostate: a comprehensive, externally validated risk model for the prediction of future prostate cancer. J Clin Oncol 2023; 41(5): 1092–1104
CrossRef
Google scholar
|
[141] |
Truong H, Breen K, Nandakumar S, Sjoberg DD, Kemel Y, Mehta N, Lenis AT, Reisz PA, Carruthers J, Benfante N, Joseph V, Khurram A, Gopalan A, Fine SW, Reuter VE, Vickers AJ, Birsoy O, Liu Y, Walsh M, Latham A, Mandelker D, Stadler ZK, Pietzak E, Ehdaie B, Touijer KA, Laudone VP, Slovin SF, Autio KA, Danila DC, Rathkopf DE, Eastham JA, Chen Y, Morris MJ, Offit K, Solit DB, Scher HI, Abida W, Robson ME, Carlo MI. Gene-based confirmatory germline testing following tumor-only sequencing of prostate cancer. Eur Urol 2023; 83(1): 29–38
CrossRef
Google scholar
|
[142] |
Ellatif MA, Gamal BE, Musaam AO, Malik A, Tarique M. An update on genetic predisposition for prostate cancer: perspectives and prospects. Cell Mol Biol 2023; 69(2): 1–7
CrossRef
Google scholar
|
/
〈 |
|
〉 |