
Update of cellular senescence in kidney fibrosis: from mechanism to potential interventions
Lina Yang, Liang Ma, Ping Fu, Jing Nie
Front. Med. ››
Update of cellular senescence in kidney fibrosis: from mechanism to potential interventions
Kidney fibrosis is the final common pathway of virtually all chronic kidney disease (CKD). However, despite great progress in recent years, no targeted antifibrotic therapies have been approved. Epidemiologic, clinical, and molecular evidence suggest that aging is a major contributor to the increasing incidence of CKD. Senescent renal tubular cells, fibroblasts, endothelial cells, and podocytes have been detected in the kidneys of patients with CKD and animal models. Nonetheless, although accumulated evidence supports the essential role of cellular senescence in CKD, the mechanisms that promote cell senescence and how senescent cells contribute to CKD remain largely unknown. In this review, we summarize the features of the cellular senescence of the kidney and discuss the possible functions of senescent cells in the pathogenesis of kidney fibrosis. We also address whether pharmacological approaches targeting senescent cells can be used to retard the the progression of kidney fibrosis.
cellular senescence / kidney fibrosis / cell cycle arrest / SASP / senolytics / senomorphics
[1] |
Jadoul M , Aoun M , Imani MM . The major global burden of chronic kidney disease. Lancet Glob Health 2024; 12(3): e342–e343
CrossRef
Google scholar
|
[2] |
Jankowski J , Floege J , Fliser D , Böhm M , Marx N . Cardiovascular disease in chronic kidney disease. Circulation 2021; 143(11): 1157–1172
CrossRef
Google scholar
|
[3] |
Li Y , Lerman LO . Cellular senescence: a new player in kidney injury. Hypertension 2020; 76(4): 1069–1075
CrossRef
Google scholar
|
[4] |
Lin X , Jin H , Chai Y , Shou S . Cellular senescence and acute kidney injury. Pediatr Nephrol 2022; 37(12): 3009–3018
CrossRef
Google scholar
|
[5] |
Zhang JQ , Li YY , Zhang XY , Tian ZH , Liu C , Wang ST , Zhang FR . Cellular senescence of renal tubular epithelial cells in renal fibrosis. Front Endocrinol (Lausanne) 2023; 14: 1085605
CrossRef
Google scholar
|
[6] |
Hayflick L , Moorhead PS . The serial cultivation of human diploid cell strains. Exp Cell Res 1961; 25(3): 585–621
CrossRef
Google scholar
|
[7] |
Özcan S , Alessio N , Acar MB , Mert E , Omerli F , Peluso G , Galderisi U . Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging (Albany NY) 2016; 8(7): 1316–1329
CrossRef
Google scholar
|
[8] |
Hu L , Li H , Zi M , Li W , Liu J , Yang Y , Zhou D , Kong QP , Zhang Y , He Y . Why senescent cells are resistant to apoptosis: an insight for senolytic development. Front Cell Dev Biol 2022; 10: 822816
CrossRef
Google scholar
|
[9] |
Huang W , Hickson LJ , Eirin A , Kirkland JL , Lerman LO . Cellular senescence: the good, the bad and the unknown. Nat Rev Nephrol 2022; 18(10): 611–627
CrossRef
Google scholar
|
[10] |
Gorgoulis V , Adams PD , Alimonti A , Bennett DC , Bischof O , Bishop C , Campisi J , Collado M , Evangelou K , Ferbeyre G , Gil J , Hara E , Krizhanovsky V , Jurk D , Maier AB , Narita M , Niedernhofer L , Passos JF , Robbins PD , Schmitt CA , Sedivy J , Vougas K , von Zglinicki T , Zhou D , Serrano M , Demaria M . Cellular senescence: defining a path forward. Cell 2019; 179(4): 813–827
CrossRef
Google scholar
|
[11] |
Hall BM , Balan V , Gleiberman AS , Strom E , Krasnov P , Virtuoso LP , Rydkina E , Vujcic S , Balan K , Gitlin II , Leonova KI , Consiglio CR , Gollnick SO , Chernova OB , Gudkov AV . P16(ink4a) and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging (Albany NY) 2017; 9(8): 1867–1884
CrossRef
Google scholar
|
[12] |
Sharpless NE , Sherr CJ . Forging a signature of in vivo senescence. Nat Rev Cancer 2015; 15(7): 397–408
CrossRef
Google scholar
|
[13] |
Chandra T , Narita M . High-order chromatin structure and the epigenome in SAHFs. Nucleus 2013; 4(1): 23–28
CrossRef
Google scholar
|
[14] |
Coppé JP , Desprez PY , Krtolica A , Campisi J . The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 2010; 5(1): 99–118
CrossRef
Google scholar
|
[15] |
Adams JM , Cory S . Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol 2007; 19(5): 488–496
CrossRef
Google scholar
|
[16] |
McHugh D , Gil J . Senescence and aging: causes, consequences, and therapeutic avenues. J Cell Biol 2018; 217(1): 65–77
CrossRef
Google scholar
|
[17] |
Liu X , Ding J , Meng L . Oncogene-induced senescence: a double edged sword in cancer. Acta Pharmacol Sin 2018; 39(10): 1553–1558
CrossRef
Google scholar
|
[18] |
Da Silva-Álvarez S , Picallos-Rabina P , Antelo-Iglesias L , Triana-Martínez F , Barreiro-Iglesias A , Sánchez L , Collado M . The development of cell senescence. Exp Gerontol 2019; 128: 110742
CrossRef
Google scholar
|
[19] |
Ring NAR , Valdivieso K , Grillari J , Redl H , Ogrodnik M . The role of senescence in cellular plasticity: lessons from regeneration and development and implications for age-related diseases. Dev Cell 2022; 57(9): 1083–1101
CrossRef
Google scholar
|
[20] |
Xu C , Shen WB , Reece EA , Hasuwa H , Harman C , Kaushal S , Yang P . Maternal diabetes induces senescence and neural tube defects sensitive to the senomorphic rapamycin. Sci Adv 2021; 7(27): eabf5089
CrossRef
Google scholar
|
[21] |
Gibaja A , Aburto MR , Pulido S , Collado M , Hurle JM , Varela-Nieto I , Magariños M . TGF β2-induced senescence during early inner ear development. Sci Rep 2019; 9(1): 5912
CrossRef
Google scholar
|
[22] |
Muñoz-Espín D , Cañamero M , Maraver A , Gómez-López G , Contreras J , Murillo-Cuesta S , Rodríguez-Baeza A , Varela-Nieto I , Ruberte J , Collado M , Serrano M . Programmed cell senescence during mammalian embryonic development. Cell 2013; 155(5): 1104–1118
CrossRef
Google scholar
|
[23] |
Storer M , Mas A , Robert-Moreno A , Pecoraro M , Ortells MC , Di Giacomo V , Yosef R , Pilpel N , Krizhanovsky V , Sharpe J , Keyes WM . Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 2013; 155(5): 1119–1130
CrossRef
Google scholar
|
[24] |
Dodig S , Čepelak I , Pavić I . Hallmarks of senescence and aging. Biochem Med (Zagreb) 2019; 29(3): 030501
CrossRef
Google scholar
|
[25] |
Wen X , Peng Z , Li Y , Wang H , Bishop JV , Chedwick LR , Singbartl K , Kellum JA . One dose of cyclosporine a is protective at initiation of folic acid-induced acute kidney injury in mice. Nephrol Dial Transplant 2012; 27(8): 3100–3109
CrossRef
Google scholar
|
[26] |
Birch J , Gil J . Senescence and the SASP: many therapeutic avenues. Genes Dev 2020; 34(23-24): 1565–1576
CrossRef
Google scholar
|
[27] |
Harris AS , Aratani S , Johmura Y , Suzuki N , Dan L , Nakanishi M . In vivo dynamics of senescence in rhabdomyolysis-induced acute kidney injury. Biochem Biophys Res Commun 2023; 673: 121–130
CrossRef
Google scholar
|
[28] |
Li S , Livingston MJ , Ma Z , Hu X , Wen L , Ding HF , Zhou D , Dong Z . Tubular cell senescence promotes maladaptive kidney repair and chronic kidney disease after cisplatin nephrotoxicity. JCI Insight 2023; 8(8): e166643
CrossRef
Google scholar
|
[29] |
Fang YP , Yang X , Zhang Y , Zhu XD , Wang XX , Liu Y , Shi W , Huang JY , Zhao Y , Zhang XL . LPS-induced senescence of macrophages aggravates calcification and senescence of vascular smooth muscle cells via IFITM3. Ren Fail 2024; 46(2): 2367708
CrossRef
Google scholar
|
[30] |
Veloso Pereira BM , Zeng Y , Maggiore JC , Schweickart RA , Eng DG , Kaverina N , McKinzie SR , Chang A , Loretz CJ , Thieme K , Hukriede NA , Pippin JW , Wessely O , Shankland SJ . Podocyte injury at young age causes premature senescence and worsens glomerular aging. Am J Physiol Renal Physiol 2024; 326(1): F120–F134
CrossRef
Google scholar
|
[31] |
Melk A , Schmidt BMW , Takeuchi O , Sawitzki B , Rayner DC , Halloran PF . Expression of p16ink4a and other cell cycle regulator and senescence associated genes in aging human kidney. Kidney Int 2004; 65(2): 510–520
CrossRef
Google scholar
|
[32] |
Melk A . Senescence of renal cells: molecular basis and clinical implications. Nephrol Dial Transplant 2003; 18(12): 2474–2478
CrossRef
Google scholar
|
[33] |
Yousefzadeh MJ , Zhao J , Bukata C , Wade EA , McGowan SJ , Angelini LA , Bank MP , Gurkar AU , McGuckian CA , Calubag MF , Kato JI , Burd CE , Robbins PD , Niedernhofer LJ . Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. Aging Cell 2020; 19(3): e13094
CrossRef
Google scholar
|
[34] |
Jin H , Zhang Y , Ding Q , Wang SS , Rastogi P , Dai DF , Lu D , Purvis M , Cao C , Wang A , Liu D , Ren C , Elhadi S , Hu MC , Chai Y , Zepeda-Orozco D , Campisi J , Attanasio M . Epithelial innate immunity mediates tubular cell senescence after kidney injury. JCI Insight 2019; 4(2): e125490
CrossRef
Google scholar
|
[35] |
Verzola D , Gandolfo MT , Gaetani G , Ferraris A , Mangerini R , Ferrario F , Villaggio B , Gianiorio F , Tosetti F , Weiss U , Traverso P , Mji M , Deferrari G , Garibotto G . Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. Am J Physiol Renal Physiol 2008; 295(5): F1563–F1573
CrossRef
Google scholar
|
[36] |
Al-Dabet MM , Shahzad K , Elwakiel A , Sulaj A , Kopf S , Bock F , Gadi I , Zimmermann S , Rana R , Krishnan S , Gupta D , Manoharan J , Fatima S , Nazir S , Schwab C , Baber R , Scholz M , Geffers R , Mertens PR , Nawroth PP , Griffin JH , Keller M , Dockendorff C , Kohli S , Isermann B . Reversal of the renal hyperglycemic memory in diabetic kidney disease by targeting sustained tubular p21 expression. Nat Commun 2022; 13(1): 5062
CrossRef
Google scholar
|
[37] |
Zhu K , Kakehi T , Matsumoto M , Iwata K , Ibi M , Ohshima Y , Zhang J , Liu J , Wen X , Taye A , Fan C , Katsuyama M , Sharma K , Yabe-Nishimura C . NADPH oxidase nox1 is involved in activation of protein kinase c and premature senescence in early stage diabetic kidney. Free Radic Biol Med 2015; 83: 21–30
CrossRef
Google scholar
|
[38] |
Vashistha H , Marrero L , Reiss K , Cohen AJ , Malhotra A , Javed T , Bradley A , Abbruscato F , Giusti S , Jimenez A , Mehra S , Kaushal D , Giorgio M , Pelicci PG , Kakoki M , Singhal PC , Bunnell B , Meggs LG . Aging phenotype(s) in kidneys of diabetic mice are p66shca dependent. Am J Physiol Renal Physiol 2018; 315(6): F1833–F1842
CrossRef
Google scholar
|
[39] |
Cohen C , Le Goff O , Soysouvanh F , Vasseur F , Tanou M , Nguyen C , Amrouche L , Le Guen J , Saltel-Fulero O , Meunier T , Nguyen-Khoa T , Rabant M , Nochy D , Legendre C , Friedlander G , Childs BG , Baker DJ , Knebelmann B , Anglicheau D , Milliat F , Terzi F . Glomerular endothelial cell senescence drives age-related kidney disease through PAI-1. EMBO Mol Med 2021; 13(11): e14146
CrossRef
Google scholar
|
[40] |
Sis B , Tasanarong A , Khoshjou F , Dadras F , Solez K , Halloran PF . Accelerated expression of senescence associated cell cycle inhibitor p16ink4a in kidneys with glomerular disease. Kidney Int 2007; 71(3): 218–226
CrossRef
Google scholar
|
[41] |
Liu J , Yang JR , He YN , Cai GY , Zhang JG , Lin LR , Zhan J , Zhang JH , Xiao HS . Accelerated senescence of renal tubular epithelial cells is associated with disease progression of patients with immunoglobulin a (IgA) nephropathy. Transl Res 2012; 159(6): 454–463
CrossRef
Google scholar
|
[42] |
Tilman G , Bouzin C , Aydin S , Tamirou F , Galant C , Coulie PG , Houssiau F , Lauwerys B , Limaye N . High p16ink4a, a marker of cellular senescence, is associated with renal injury, impairment and outcome in lupus nephritis. RMD Open 2021; 7(3): e001844
CrossRef
Google scholar
|
[43] |
Tilman G , Dupré E , Watteyne L , Baert CA , Nolf D , Benhaddi F , Lambert F , Daumerie A , Bouzin C , Lucas S , Limaye N . P16ink4a, a marker of cellular senescence, is associated with renal disease in the B6. NZM sle1/sle2/sle3 mouse model of lupus. Lupus Sci Med 2023; 10(2): e001010
CrossRef
Google scholar
|
[44] |
Li S , Livingston MJ , Ma Z , Hu X , Wen L , Ding HF , Zhou D , Dong Z . Tubular cell senescence promotes maladaptive kidney repair and chronic kidney disease after cisplatin nephrotoxicity. JCI Insight 2023; 8(8): e166643
CrossRef
Google scholar
|
[45] |
Fu S , Hu X , Ma Z , Wei Q , Xiang X , Li S , Wen L , Liang Y , Dong Z . P53 in proximal tubules mediates chronic kidney problems after cisplatin treatment. Cells 2022; 11(4): 712
CrossRef
Google scholar
|
[46] |
Zhang X , Li L , Tan H , Hong X , Yuan Q , Hou FF , Zhou L , Liu Y . Klotho-derived peptide 1 inhibits cellular senescence in the fibrotic kidney by restoring klotho expression via posttranscriptional regulation. Theranostics 2024; 14(1): 420–435
CrossRef
Google scholar
|
[47] |
Li L , Xiang T , Guo J , Guo F , Wu Y , Feng H , Liu J , Tao S , Fu P , Ma L . Inhibition of ACSS2-mediated histone crotonylation alleviates kidney fibrosis via IL-1β-dependent macrophage activation and tubular cell senescence. Nat Commun 2024; 15(1): 3200
CrossRef
Google scholar
|
[48] |
Westhoff JH , Hilgers KF , Steinbach MP , Hartner A , Klanke B , Amann K , Melk A . Hypertension induces somatic cellular senescence in rats and humans by induction of cell cycle inhibitor p16ink4a. Hypertens 2008; 52(1): 123–129
CrossRef
Google scholar
|
[49] |
Chkhotua AB , Gabusi E , Altimari A , D’Errico A , Yakubovich M , Vienken J , Stefoni S , Chieco P , Yussim A , Grigioni WF . Increased expression of p16ink4a and p27kip1 cyclin-dependent kinase inhibitor genes in aging human kidney and chronic allograft nephropathy. Am J Kidney Dis 2003; 41(6): 1303–1313
CrossRef
Google scholar
|
[50] |
Jennings P , Koppelstaetter C , Aydin S , Abberger T , Wolf AM , Mayer G , Pfaller W . Cyclosporine a induces senescence in renal tubular epithelial cells. Am J Physiol Renal Physiol 2007; 293(3): F831–F838
CrossRef
Google scholar
|
[51] |
Shimizu H , Bolati D , Adijiang A , Enomoto A , Nishijima F , Dateki M , Niwa T . Senescence and dysfunction of proximal tubular cells are associated with activated p53 expression by indoxyl sulfate. Am J Physiol Cell Physiol 2010; 299(5): C1110–C1117
CrossRef
Google scholar
|
[52] |
Sulistiyowati I , Yunus J , Sari DCR , Arfian N . Upregulation of p16, Bax and Bcl-2 mRNA expression associated with epithelial apoptosis and myofibroblast proliferation in kidney fibrosis model in mice. Malays J Med Sci 2020; 27(2): 37–44
CrossRef
Google scholar
|
[53] |
Garrido AN , Kim YC , Oe Y , Zhang H , Crespo-Masip M , Goodluck HA , Kanoo S , Sanders PW , Broer S , Vallon V . Aristolochic acid-induced nephropathy is attenuated in mice lacking the neutral amino acid transporter B0AT1 (Slc6a19). Am J Physiol Renal Physiol 2022; 323(4): F455–F467
CrossRef
Google scholar
|
[54] |
Li S , Jiang S , Zhang Q , Jin B , Lv D , Li W , Zhao M , Jiang C , Dai C , Liu Z . Integrin B3 induction promotes tubular cell senescence and kidney fibrosis. Front Cell Dev Biol 2021; 9: 733831
CrossRef
Google scholar
|
[55] |
Nishimura K , Taguchi K , Kishi S , Brooks CR , Ochi A , Kadoya H , Ikeda Y , Miyoshi M , Tamaki M , Abe H , Aihara K , Kashihara N , Nagai K . Dual disruption of eNOS and aPOE gene accelerates kidney fibrosis and senescence after injury. Biochem Biophys Res Commun 2021; 556: 142–148
CrossRef
Google scholar
|
[56] |
Tsirpanlis G , Chatzipanagiotou S , Boufidou F , Kordinas V , Alevyzaki F , Zoga M , Kyritsis I , Stamatelou K , Triantafyllis G , Nicolaou C . Telomerase activity is decreased in peripheral blood mononuclear cells of hemodialysis patients. Am J Nephrol 2006; 26(1): 91–96
CrossRef
Google scholar
|
[57] |
Kronenberg F . Telomere length and chronic kidney disease: cause or consequence. Kidney Int 2021; 100(5): 980–983
CrossRef
Google scholar
|
[58] |
Saraswati S , Martínez P , Graña-Castro O , Blasco MA . Short and dysfunctional telomeres sensitize the kidneys to develop fibrosis. Nat Aging 2021; 1(3): 269–283
CrossRef
Google scholar
|
[59] |
Hirashio S , Nakashima A , Doi S , Anno K , Aoki E , Shimamoto A , Yorioka N , Kohno N , Masaki T , Tahara H . Telomeric G-tail length and hospitalization for cardiovascular events in hemodialysis patients. Clin J Am Soc Nephrol 2014; 9(12): 2117–2122
CrossRef
Google scholar
|
[60] |
Jaskelioff M , Muller FL , Paik JH , Thomas E , Jiang S , Adams A , Sahin E , Kost-Alimova M , Protopopov A , Cadiñanos J , Horner JW , Maratos-Flier E , DePinho RA . Telomerase reactivation reverses tissue degeneration in aged telomerase deficient mice. Nature 2011; 469(7328): 102–106
CrossRef
Google scholar
|
[61] |
Lee S , Schmitt CA . The dynamic nature of senescence in cancer. Nat Cell Biol 2019; 21(1): 94–101
CrossRef
Google scholar
|
[62] |
Yang L , Besschetnova TY , Brooks CR , Shah JV , Bonventre JV . Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 2010; 16(5): 535–543
CrossRef
Google scholar
|
[63] |
Liu J , Zhong Y , Liu G , Zhang X , Xiao B , Huang S , Liu H , He L . Role of STAT3 signaling in control of EMT of tubular epithelial cells during renal fibrosis. Cell Physiol Biochem 2017; 42(6): 2552–2558
CrossRef
Google scholar
|
[64] |
Piera-Velazquez S , Li Z , Jimenez SA . Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol 2011; 179(3): 1074–1080
CrossRef
Google scholar
|
[65] |
Fuhrmann-Stroissnigg H , Ling YY , Zhao J , McGowan SJ , Zhu Y , Brooks RW , Grassi D , Gregg SQ , Stripay JL , Dorronsoro A , Corbo L , Tang P , Bukata C , Ring N , Giacca M , Li X , Tchkonia T , Kirkland JL , Niedernhofer LJ , Robbins PD . Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun 2017; 8(1): 422
CrossRef
Google scholar
|
[66] |
Marquez-Exposito L , Tejedor-Santamaria L , Santos-Sanchez L , Valentijn FA , Cantero-Navarro E , Rayego-Mateos S , Rodrigues-Diez RR , Tejera-Muñoz A , Marchant V , Sanz AB , Ortiz A , Goldschmeding R , Ruiz-Ortega M . Acute kidney injury is aggravated in aged mice by the exacerbation of proinflammatory processes. Front Pharmacol 2021; 12: 662020
CrossRef
Google scholar
|
[67] |
Chen J , Chen K , Wang L , Luo J , Zheng Q , He Y . Decoy receptor 2 mediates the apoptosis-resistant phenotype of senescent renal tubular cells and accelerates renal fibrosis in diabetic nephropathy. Cell Death Dis 2022; 13: 522
CrossRef
Google scholar
|
[68] |
Wang S , Liu A , Su Y , Dong Z . Deficiency of the planar cell polarity protein Intu delays kidney repair and suppresses renal fibrosis after acute kidney injury. Am J Pathol 2023; 193(3): 275–285
CrossRef
Google scholar
|
[69] |
Ucero AC , Benito-Martin A , Fuentes-Calvo I , Santamaria B , Blanco J , Lopez-Novoa JM , Ruiz-Ortega M , Egido J , Burkly LC , Martinez-Salgado C , Ortiz A . Tnf-related weak inducer of apoptosis (TWEAK) promotes kidney fibrosis and ras-dependent proliferation of cultured renal fibroblast. Biochim Biophys Acta Mol Basis Dis 2013; 1832(10): 1744–1755
CrossRef
Google scholar
|
[70] |
Docherty NG , O’Sullivan OE , Healy DA , Fitzpatrick JM , Watson RWG . Evidence that inhibition of tubular cell apoptosis protects against renal damage and development of fibrosis following ureteric obstruction. Am J Physiol Renal Physiol 2006; 290(1): F4–F13
CrossRef
Google scholar
|
[71] |
Hickson LJ , Prata LGP , Bobart SA , Evans TK , Giorgadze N , Hashmi SK , Herrmann SM , Jensen MD , Jia Q , Jordan KL , Kellogg TA , Khosla S , Koerber DM , Lagnado AB , Lawson DK , LeBrasseur NK , Lerman LO , McDonald KM , McKenzie TJ , Passos JF , Pignolo RJ , Pirtskhalava T , Saadiq IM , Schaefer KK , Textor SC , Victorelli SG , Volkman TL , Xue A , Wentworth MA , Wissler Gerdes EO , Zhu Y , Tchkonia T , Kirkland JL . Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine 2019; 47: 446–456
CrossRef
Google scholar
|
[72] |
Papageorgis P . Complex interplay between aging and cancer: role of TGF-β signaling. Crit Rev Oncog 2017; 22(3-4): 313–321
CrossRef
Google scholar
|
[73] |
Zhang Y , Alexander PB , Wang XF . TGF-β family signaling in the control of cell proliferation and survival. Cold Spring Harb Perspect Biol 2017; 9(4): a022145
CrossRef
Google scholar
|
[74] |
Chen BH , Lu XQ , Liang XH , Wang P . Serpin E1 mediates the induction of renal tubular degeneration and premature senescence upon diabetic insult. Sci Rep 2023; 13(1): 16210
CrossRef
Google scholar
|
[75] |
Ijima S , Saito Y , Nagaoka K , Yamamoto S , Sato T , Miura N , Iwamoto T , Miyajima M , Chikenji TS . Fisetin reduces the senescent tubular epithelial cell burden and also inhibits proliferative fibroblasts in murine lupus nephritis. Front Immunol 2022; 13: 960601
CrossRef
Google scholar
|
[76] |
Ni J , Wang X , Xie H , Yang N , Li J , Sun X , Guo H , Zhou L , Zhang W , Liu J , Lu L . Deubiquitinating enzyme usp11 promotes renal tubular cell senescence and fibrosis via inhibiting the ubiquitin degradation of TGF-β receptor II. Acta Pharmacol Sin 2023; 44(3): 584–595
CrossRef
Google scholar
|
[77] |
Yuan Q , Ren Q , Li L , Tan H , Lu M , Tian Y , Huang L , Zhao B , Fu H , Hou FF , Zhou L , Liu Y . A klotho-derived peptide protects against kidney fibrosis by targeting TGF-β signaling. Nat Commun 2022; 13(1): 438
CrossRef
Google scholar
|
[78] |
Lu J , Sun W , Liu B , Zhang J , Wang R , Goltzman D , Miao D . Chk2 modulates Bmi1-deficiency-induced renal aging and fibrosis via oxidative stress, DNA damage, and p53/TGFβ1-induced epithelial-mesenchymal transition. Int J Biol Sci 2024; 20(6): 2008–2026
CrossRef
Google scholar
|
[79] |
Vaughan DE , Rai R , Khan SS , Eren M , Ghosh AK . Plasminogen activator inhibitor-1 is a marker and a mediator of senescence. Arterioscler Thromb Vasc Biol 2017; 37(8): 1446–1452
CrossRef
Google scholar
|
[80] |
Rapisarda V , Borghesan M , Miguela V , Encheva V , Snijders AP , Lujambio A , O’Loghlen A . Integrin beta 3 regulates cellular senescence by activating the TGF-β pathway. Cell Rep 2017; 18(10): 2480–2493
CrossRef
Google scholar
|
[81] |
Sun H , Ke C , Zhang L , Tian C , Zhang Z , Wu S . Long non-coding RNA (LncRNA)-ATB promotes inflammation, cell apoptosis and senescence in transforming growth factor-β1 (TGF-β1) induced human kidney 2 (HK-2) cells via TGFβ/Smad2/3 signaling pathway. Med Sci Monit 2020; 26: e922029
CrossRef
Google scholar
|
[82] |
Zhou L , Li Y , Hao S , Zhou D , Tan RJ , Nie J , Hou FF , Kahn M , Liu Y . Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling. J Am Soc Nephrol 2015; 26(1): 107–120
CrossRef
Google scholar
|
[83] |
Cuevas CA , Gonzalez AA , Inestrosa NC , Vio CP , Prieto MC . Angiotensin II increases fibronectin and collagen I through the β-catenin-dependent signaling in mouse collecting duct cells. Am J Physiol Renal Physiol 2015; 308(4): F358–F365
CrossRef
Google scholar
|
[84] |
Zhou D , Tan RJ , Fu H , Liu Y . Wnt/β-catenin signaling in kidney injury and repair: a double-edged sword. Lab Invest 2016; 96(2): 156–167
CrossRef
Google scholar
|
[85] |
Tan RJ , Zhou D , Zhou L , Liu Y . Wnt/β-catenin signaling and kidney fibrosis. Kidney Int Suppl 2014; 4(1): 84–90
CrossRef
Google scholar
|
[86] |
Luo C , Zhou S , Zhou Z , Liu Y , Yang L , Liu J , Zhang Y , Li H , Liu Y , Hou FF , Zhou L . Wnt9a promotes renal fibrosis by accelerating cellular senescence in tubular epithelial cells. J Am Soc Nephrol 2018; 29(4): 1238–1256
CrossRef
Google scholar
|
[87] |
Meng P , Huang J , Ling X , Zhou S , Wei J , Zhu M , Miao J , Shen W , Li J , Ye H , Niu H , Zhang Y , Zhou L . Cxc chemokine receptor 2 accelerates tubular cell senescence and renal fibrosis via β-catenin-induced mitochondrial dysfunction. Front Cell Dev Biol 2022; 10: 862675
CrossRef
Google scholar
|
[88] |
Gong W , Luo C , Peng F , Xiao J , Zeng Y , Yin B , Chen X , Li S , He X , Liu Y , Cao H , Xu J , Long H . Brahma-related gene-1 promotes tubular senescence and renal fibrosis through Wnt/β-catenin/autophagy axis. Clin Sci (Lond) 2021; 135(15): 1873–1895
CrossRef
Google scholar
|
[89] |
Zhu M , Ling X , Zhou S , Meng P , Chen Q , Chen S , Shen K , Xie C , Kong Y , Wang M , Zhou L . KYA1797K, a novel small molecule destabilizing β-catenin, is superior to ICG-001 in protecting against kidney aging. Kidney Dis 2022; 8(5): 408–423
CrossRef
Google scholar
|
[90] |
Cao B , Zeng M , Si Y , Zhang B , Wang Y , Xu R , Huang Y , Feng W , Zheng X . Extract of Corallodiscus flabellata attenuates renal fibrosis in SAMP8 mice via the Wnt/β-catenin/RAS signaling pathway. BMC Complement Med Ther 2022; 22(1): 52
CrossRef
Google scholar
|
[91] |
Miao J , Liu J , Niu J , Zhang Y , Shen W , Luo C , Liu Y , Li C , Li H , Yang P , Liu Y , Hou FF , Zhou L . Wnt/β-catenin/RAS signaling mediates age-related renal fibrosis and is associated with mitochondrial dysfunction. Aging Cell 2019; 18(5): e13004
CrossRef
Google scholar
|
[92] |
Miao J , Huang J , Luo C , Ye H , Ling X , Wu Q , Shen W , Zhou L . Klotho retards renal fibrosis through targeting mitochondrial dysfunction and cellular senescence in renal tubular cells. Physiol Rep 2021; 9(2): e14696
CrossRef
Google scholar
|
[93] |
Zhang F , Wan X , Cao YZ , Sun D , Cao CC . Klotho gene-modified BMSCs showed elevated antifibrotic effects by inhibiting the Wnt/β-catenin pathway in kidneys after acute injury. Cell Biol Int 2018; 42(12): 1670–1679
CrossRef
Google scholar
|
[94] |
Jin Y , Kim EN , Lim JH , Kim HD , Ban TH , Yang CW , Park CW , Choi BS . Role of aberrantly activated lysophosphatidic acid receptor 1 signaling mediated inflammation in renal aging. Cells 2021; 10(10): 2580
CrossRef
Google scholar
|
[95] |
Jin H , Zhang Y , Liu D , Wang SS , Ding Q , Rastogi P , Purvis M , Wang A , Elhadi S , Ren C , Cao C , Chai Y , Igarashi P , Jetten AM , Lu D , Attanasio M . Innate immune signaling contributes to tubular cell senescence in the Glis2 knockout mouse model of nephronophthisis. Am J Pathol 2020; 190(1): 176–189
CrossRef
Google scholar
|
[96] |
Shimizu H , Bolati D , Adijiang A , Muteliefu G , Enomoto A , Nishijima F , Dateki M , Niwa T . NF-κB plays an important role in indoxyl sulfate-induced cellular senescence, fibrotic gene expression, and inhibition of proliferation in proximal tubular cells. Am J Physiol Cell Physiol 2011; 301(5): C1201–C1212
CrossRef
Google scholar
|
[97] |
He P , Guo Y , Wang S , Bu S . Innovative insights: Itln1 modulates renal injury in response to radiation. Int Immunopharmacol 2024; 133: 111987
CrossRef
Google scholar
|
[98] |
Chen M , Fang Y , Ge Y , Qiu S , Dworkin L , Gong R . The redox-sensitive GSK3β is a key regulator of glomerular podocyte injury in type 2 diabetic kidney disease. Redox Biol 2024; 72: 103127
CrossRef
Google scholar
|
[99] |
Valentijn FA , Knoppert SN , Pissas G , Rodrigues-Diez RR , Marquez-Exposito L , Broekhuizen R , Mokry M , Kester LA , Falke LL , Goldschmeding R , Ruiz-Ortega M , Eleftheriadis T , Nguyen TQ . Ccn2 aggravates the immediate oxidative stress–DNA damage response following renal ischemia–reperfusion injury. Antioxidants 2021; 10(12): 2020
CrossRef
Google scholar
|
[100] |
Weichhart T . m-TOR as regulator of lifespan, aging, and cellular senescence: a mini-review. Gerontology 2018; 64(2): 127–134
CrossRef
Google scholar
|
[101] |
Hoff U , Markmann D , Thurn-Valassina D , Nieminen-Kelhae M , Erlangga Z , Schmitz J , Braesen JH , Budde K , Melk A , Hegner B . The mTOR inhibitor rapamycin protects from premature cellular senescence early after experimental kidney transplantation. PLoS One 2022; 17(4): e0266319
CrossRef
Google scholar
|
[102] |
Ning YC , Cai GY , Zhuo L , Gao JJ , Dong D , Cui S , Feng Z , Shi SZ , Bai XY , Sun XF , Chen XM . Short-term calorie restriction protects against renal senescence of aged rats by increasing autophagic activity and reducing oxidative damage. Mech Ageing Dev 2013; 134(11-12): 570–579
CrossRef
Google scholar
|
[103] |
Dong D , Cai G , Ning Y , Wang J , Lv Y , Hong Q , Cui S , Fu B , Guo Y , Chen X . Alleviation of senescence and epithelial-mesenchymal transition in aging kidney by short-term caloric restriction and caloric restriction mimetics via modulation of AMPK/mTOR signaling. Oncotarget 2017; 8(10): 16109–16121
CrossRef
Google scholar
|
[104] |
Bach LA , Hale LJ . Insulin-like growth factors and kidney disease. Am J Kidney Dis 2015; 65(2): 327–336
CrossRef
Google scholar
|
[105] |
Sureshbabu A , Okajima H , Yamanaka D , Shastri S , Tonner E , Rae C , Szymanowska M , Shand JH , Takahashi SI , Beattie J , Allan GJ , Flint DJ . IGFBP-5 induces epithelial and fibroblast responses consistent with the fibrotic response. Biochem Soc Trans 2009; 37(4): 882–885
CrossRef
Google scholar
|
[106] |
Li Y , Luo C , Cai Y , Wu Y , Shu T , Wei J , Wang H , Niu H . IGF2BP3/NCBP1 complex inhibits renal tubular senescence through regulation of CDK6 mRNA stability. Transl Res 2024; 273: 1–15
CrossRef
Google scholar
|
[107] |
Zhu Y , Yang B , Chen S , Chen G , Zeng X , Min H . M6A RNA methylation-mediated Tug1 stability maintains mitochondrial homeostasis during kidney aging by epigenetically regulating PGC1-α expression. Antioxid Redox Signal 2024; 41(16–18): 993–1013
CrossRef
Google scholar
|
[108] |
Jin J , Tao J , Gu X , Yu Z , Wang R , Zuo G , Li Q , Lv X , Miao D . P16ink4a deletion ameliorated renal tubulointerstitial injury in a stress-induced premature senescence model of Bmi-1 deficiency. Sci Rep 2017; 7(1): 7502
CrossRef
Google scholar
|
[109] |
Megyesi J , Tarcsafalvi A , Li S , Hodeify R , Seng NSHL , Portilla D , Price PM . Increased expression of p21WAF1/CIP1 in kidney proximal tubules mediates fibrosis. Am J Physiol Renal Physiol 2015; 308(2): F122–F130
CrossRef
Google scholar
|
[110] |
Mylonas KJ , O’Sullivan ED , Humphries D , Baird DP , Docherty MH , Neely SA , Krimpenfort PJ , Melk A , Schmitt R , Ferreira-Gonzalez S , Forbes SJ , Hughes J , Ferenbach DA . Cellular senescence inhibits renal regeneration after injury in mice, with senolytic treatment promoting repair. Sci Transl Med 2021; 13(594): eabb0203
CrossRef
Google scholar
|
[111] |
Li C , Shen Y , Huang L , Liu C , Wang J . Senolytic therapy ameliorates renal fibrosis postacute kidney injury by alleviating renal senescence. FASEB J 2021; 35(1): e21229–1
CrossRef
Google scholar
|
[112] |
Choudhury D , Rong N , Ikhapoh I , Rajabian N , Tseropoulos G , Wu Y , Mehrotra P , Thiyagarajan R , Shahini A , Seldeen KL , Troen BR , Lei P , Andreadis ST . Inhibition of glutaminolysis restores mitochondrial function in senescent stem cells. Cell Rep 2022; 41(9): 111744
CrossRef
Google scholar
|
[113] |
Johmura Y , Yamanaka T , Omori S , Wang TW , Sugiura Y , Matsumoto M , Suzuki N , Kumamoto S , Yamaguchi K , Hatakeyama S , Takami T , Yamaguchi R , Shimizu E , Ikeda K , Okahashi N , Mikawa R , Suematsu M , Arita M , Sugimoto M , Nakayama KI , Furukawa Y , Imoto S , Nakanishi M . Senolysis by glutaminolysis inhibition ameliorates various age-associated disorders. Science 2021; 371(6526): 265–270
CrossRef
Google scholar
|
[114] |
Tamada S , Nakatani T , Asai T , Tashiro K , Komiya T , Sumi T , Okamura M , Kim S , Iwao H , Kishimoto T , Yamanaka S , Miura K . Inhibition of nuclear factor-κB activation by pyrrolidine dithiocarbamate prevents chronic FK506 nephropathy. Kidney Int 2003; 63(1): 306–314
CrossRef
Google scholar
|
[115] |
Albalawi RS , Binmahfouz LS , Hareeri RH , Shaik RA , Bagher AM . Parthenolide phytosomes attenuated gentamicin-induced nephrotoxicity in rats via activation of Sirt-1, Nrf2, OH-1, and Nqo1 axis. Molecules 2023; 28(6): 2741
CrossRef
Google scholar
|
[116] |
Shavlakadze T , Zhu J , Wang S , Zhou W , Morin B , Egerman MA , Fan L , Wang Y , Iartchouk O , Meyer A , Valdez RA , Mannick JB , Klickstein LB , Glass DJ . Short-term low-dose Mtorc1 inhibition in aged rats counter-regulates age-related gene changes and blocks age-related kidney pathology. J Gerontol A Biol Sci Med Sci 2018; 73(7): 845–852
CrossRef
Google scholar
|
[117] |
Andrikopoulos P , Kieswich J , Pacheco S , Nadarajah L , Harwood SM , O’Riordan CE , Thiemermann C , Yaqoob MM . The MEK inhibitor trametinib ameliorates kidney fibrosis by suppressing ERK1/2 and MTORC1 signaling. J Am Soc Nephrol 2019; 30(1): 33–49
CrossRef
Google scholar
|
[118] |
Novelle MG , Ali A , Diéguez C , Bernier M , de Cabo R . Metformin: a hopeful promise in aging research. Cold Spring Harb Perspect Med 2016; 6(3): a025932
CrossRef
Google scholar
|
[119] |
Kim H , Yu MR , Lee H , Kwon SH , Jeon JS , Han DC , Noh H . Metformin inhibits chronic kidney disease-induced DNA damage and senescence of mesenchymal stem cells. Aging Cell 2021; 20(2): e13317
CrossRef
Google scholar
|
[120] |
Liang D , Li Z , Feng Z , Yuan Z , Dai Y , Wu X , Zhang F , Wang Y , Zhou Y , Liu L , Shi M , Xiao Y , Guo B . Metformin improves the senescence of renal tubular epithelial cells in a high-glucose state through E2F1. Front Pharmacol 2022; 13: 926211
CrossRef
Google scholar
|
[121] |
Jiang X , Ruan X , Xue Y , Yang S , Shi M , Wang L . Metformin reduces the senescence of renal tubular epithelial cells in diabetic nephropathy via the MBNL1/mir-130a-3p/STAT3 pathway. Oxid Med Cell Longev 2020; 2020(1): 8708236
CrossRef
Google scholar
|
[122] |
Adijiang A , Shimizu H , Higuchi Y , Nishijima F , Niwa T . Indoxyl sulfate reduces klotho expression and promotes senescence in the kidneys of hypertensive rats. J Ren Nutr 2011; 21(1): 105–109
CrossRef
Google scholar
|
[123] |
Urate S , Wakui H , Azushima K , Yamaji T , Suzuki T , Abe E , Tanaka S , Taguchi S , Tsukamoto S , Kinguchi S , Uneda K , Kanaoka T , Atobe Y , Funakoshi K , Yamashita A , Tamura K . Aristolochic acid induces renal fibrosis and senescence in mice. Int J Mol Sci 2021; 22(22): 12432
CrossRef
Google scholar
|
[124] |
Isakova T , Yanucil C , Faul C . A klotho-derived peptide as a possible novel drug to prevent kidney fibrosis. Am J Kidney Dis 2022; 80(2): 285–288
CrossRef
Google scholar
|
[125] |
Maique J , Flores B , Shi M , Shepard S , Zhou Z , Yan S , Moe OW , Hu MC . High phosphate induces and klotho attenuates kidney epithelial senescence and fibrosis. Front Pharmacol 2020; 11: 1273
CrossRef
Google scholar
|
[126] |
Wang SY , Cai GY , Chen XM . Energy restriction in renal protection. Br J Nutr 2018; 120(10): 1149–1158
CrossRef
Google scholar
|
[127] |
Kim EN , Lim JH , Kim MY , Ban TH , Jang IA , Yoon HE , Park CW , Chang YS , Choi BS . Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury. Aging (Albany NY) 2018; 10(1): 83–99
CrossRef
Google scholar
|
[128] |
Gurkar AU , Gerencser AA , Mora AL , Nelson AC , Zhang AR , Lagnado AB , Enninful A , Benz C , Furman D , Beaulieu D , Jurk D , Thompson EL , Wu F , Rodriguez F , Barthel G , Chen H , Phatnani H , Heckenbach I , Chuang JH , Horrell J , Petrescu J , Alder JK , Lee JH , Niedernhofer LJ , Kumar M , Königshoff M , Bueno M , Sokka M , Scheibye-Knudsen M , Neretti N , Eickelberg O , Adams PD , Hu Q , Zhu Q , Porritt RA , Dong R , Peters S , Victorelli S , Pengo T , Khaliullin T , Suryadevara V , Fu X , Bar-Joseph Z , Ji Z , Passos JF . Spatial mapping of cellular senescence: emerging challenges and opportunities. Nat Aging 2023; 3(7): 776–790
CrossRef
Google scholar
|
[129] |
Shao X , Xu H , Kim H , ljaz S , Beier F , Jankowski V , Lellig M , Vankann L , Werner JN , Chen L , Ziegler S , Kuppe C , Zenke M , Schneider RK , Hayat S , Saritas T , Kramann R . Generation of a conditional cellular senescence model using proximal tubule cells and fibroblasts from human kidneys. Cell Death Discov 2024; 10(1): 364
CrossRef
Google scholar
|
/
〈 |
|
〉 |