Update of cellular senescence in kidney fibrosis: from mechanism to potential interventions

Lina Yang , Liang Ma , Ping Fu , Jing Nie

Front. Med. ›› 2025, Vol. 19 ›› Issue (2) : 250 -264.

PDF (1362KB)
Front. Med. ›› 2025, Vol. 19 ›› Issue (2) : 250 -264. DOI: 10.1007/s11684-024-1117-z
REVIEW

Update of cellular senescence in kidney fibrosis: from mechanism to potential interventions

Author information +
History +
PDF (1362KB)

Abstract

Kidney fibrosis is the final common pathway of virtually all chronic kidney disease (CKD). However, despite great progress in recent years, no targeted antifibrotic therapies have been approved. Epidemiologic, clinical, and molecular evidence suggest that aging is a major contributor to the increasing incidence of CKD. Senescent renal tubular cells, fibroblasts, endothelial cells, and podocytes have been detected in the kidneys of patients with CKD and animal models. Nonetheless, although accumulated evidence supports the essential role of cellular senescence in CKD, the mechanisms that promote cell senescence and how senescent cells contribute to CKD remain largely unknown. In this review, we summarize the features of the cellular senescence of the kidney and discuss the possible functions of senescent cells in the pathogenesis of kidney fibrosis. We also address whether pharmacological approaches targeting senescent cells can be used to retard the the progression of kidney fibrosis.

Keywords

cellular senescence / kidney fibrosis / cell cycle arrest / SASP / senolytics / senomorphics

Cite this article

Download citation ▾
Lina Yang, Liang Ma, Ping Fu, Jing Nie. Update of cellular senescence in kidney fibrosis: from mechanism to potential interventions. Front. Med., 2025, 19(2): 250-264 DOI:10.1007/s11684-024-1117-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jadoul M, Aoun M, Imani MM. The major global burden of chronic kidney disease. Lancet Glob Health 2024; 12(3): e342–e343

[2]

Jankowski J, Floege J, Fliser D, Böhm M, Marx N. Cardiovascular disease in chronic kidney disease. Circulation 2021; 143(11): 1157–1172

[3]

Li Y, Lerman LO. Cellular senescence: a new player in kidney injury. Hypertension 2020; 76(4): 1069–1075

[4]

Lin X, Jin H, Chai Y, Shou S. Cellular senescence and acute kidney injury. Pediatr Nephrol 2022; 37(12): 3009–3018

[5]

Zhang JQ, Li YY, Zhang XY, Tian ZH, Liu C, Wang ST, Zhang FR. Cellular senescence of renal tubular epithelial cells in renal fibrosis. Front Endocrinol (Lausanne) 2023; 14: 1085605

[6]

Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 1961; 25(3): 585–621

[7]

Özcan S, Alessio N, Acar MB, Mert E, Omerli F, Peluso G, Galderisi U. Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging (Albany NY) 2016; 8(7): 1316–1329

[8]

Hu L, Li H, Zi M, Li W, Liu J, Yang Y, Zhou D, Kong QP, Zhang Y, He Y. Why senescent cells are resistant to apoptosis: an insight for senolytic development. Front Cell Dev Biol 2022; 10: 822816

[9]

Huang W, Hickson LJ, Eirin A, Kirkland JL, Lerman LO. Cellular senescence: the good, the bad and the unknown. Nat Rev Nephrol 2022; 18(10): 611–627

[10]

Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, Campisi J, Collado M, Evangelou K, Ferbeyre G, Gil J, Hara E, Krizhanovsky V, Jurk D, Maier AB, Narita M, Niedernhofer L, Passos JF, Robbins PD, Schmitt CA, Sedivy J, Vougas K, von Zglinicki T, Zhou D, Serrano M, Demaria M. Cellular senescence: defining a path forward. Cell 2019; 179(4): 813–827

[11]

Hall BM, Balan V, Gleiberman AS, Strom E, Krasnov P, Virtuoso LP, Rydkina E, Vujcic S, Balan K, Gitlin II, Leonova KI, Consiglio CR, Gollnick SO, Chernova OB, Gudkov AV. P16(ink4a) and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging (Albany NY) 2017; 9(8): 1867–1884

[12]

Sharpless NE, Sherr CJ. Forging a signature of in vivo senescence. Nat Rev Cancer 2015; 15(7): 397–408

[13]

Chandra T, Narita M. High-order chromatin structure and the epigenome in SAHFs. Nucleus 2013; 4(1): 23–28

[14]

Coppé JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 2010; 5(1): 99–118

[15]

Adams JM, Cory S. Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol 2007; 19(5): 488–496

[16]

McHugh D, Gil J. Senescence and aging: causes, consequences, and therapeutic avenues. J Cell Biol 2018; 217(1): 65–77

[17]

Liu X, Ding J, Meng L. Oncogene-induced senescence: a double edged sword in cancer. Acta Pharmacol Sin 2018; 39(10): 1553–1558

[18]

Da Silva-Álvarez S, Picallos-Rabina P, Antelo-Iglesias L, Triana-Martínez F, Barreiro-Iglesias A, Sánchez L, Collado M. The development of cell senescence. Exp Gerontol 2019; 128: 110742

[19]

Ring NAR, Valdivieso K, Grillari J, Redl H, Ogrodnik M. The role of senescence in cellular plasticity: lessons from regeneration and development and implications for age-related diseases. Dev Cell 2022; 57(9): 1083–1101

[20]

Xu C, Shen WB, Reece EA, Hasuwa H, Harman C, Kaushal S, Yang P. Maternal diabetes induces senescence and neural tube defects sensitive to the senomorphic rapamycin. Sci Adv 2021; 7(27): eabf5089

[21]

Gibaja A, Aburto MR, Pulido S, Collado M, Hurle JM, Varela-Nieto I, Magariños M. TGF β2-induced senescence during early inner ear development. Sci Rep 2019; 9(1): 5912

[22]

Muñoz-Espín D, Cañamero M, Maraver A, Gómez-López G, Contreras J, Murillo-Cuesta S, Rodríguez-Baeza A, Varela-Nieto I, Ruberte J, Collado M, Serrano M. Programmed cell senescence during mammalian embryonic development. Cell 2013; 155(5): 1104–1118

[23]

Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V, Yosef R, Pilpel N, Krizhanovsky V, Sharpe J, Keyes WM. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 2013; 155(5): 1119–1130

[24]

Dodig S, Čepelak I, Pavić I. Hallmarks of senescence and aging. Biochem Med (Zagreb) 2019; 29(3): 030501

[25]

Wen X, Peng Z, Li Y, Wang H, Bishop JV, Chedwick LR, Singbartl K, Kellum JA. One dose of cyclosporine a is protective at initiation of folic acid-induced acute kidney injury in mice. Nephrol Dial Transplant 2012; 27(8): 3100–3109

[26]

Birch J, Gil J. Senescence and the SASP: many therapeutic avenues. Genes Dev 2020; 34(23-24): 1565–1576

[27]

Harris AS, Aratani S, Johmura Y, Suzuki N, Dan L, Nakanishi M. In vivo dynamics of senescence in rhabdomyolysis-induced acute kidney injury. Biochem Biophys Res Commun 2023; 673: 121–130

[28]

Li S, Livingston MJ, Ma Z, Hu X, Wen L, Ding HF, Zhou D, Dong Z. Tubular cell senescence promotes maladaptive kidney repair and chronic kidney disease after cisplatin nephrotoxicity. JCI Insight 2023; 8(8): e166643

[29]

Fang YP, Yang X, Zhang Y, Zhu XD, Wang XX, Liu Y, Shi W, Huang JY, Zhao Y, Zhang XL. LPS-induced senescence of macrophages aggravates calcification and senescence of vascular smooth muscle cells via IFITM3. Ren Fail 2024; 46(2): 2367708

[30]

Veloso Pereira BM, Zeng Y, Maggiore JC, Schweickart RA, Eng DG, Kaverina N, McKinzie SR, Chang A, Loretz CJ, Thieme K, Hukriede NA, Pippin JW, Wessely O, Shankland SJ. Podocyte injury at young age causes premature senescence and worsens glomerular aging. Am J Physiol Renal Physiol 2024; 326(1): F120–F134

[31]

Melk A, Schmidt BMW, Takeuchi O, Sawitzki B, Rayner DC, Halloran PF. Expression of p16ink4a and other cell cycle regulator and senescence associated genes in aging human kidney. Kidney Int 2004; 65(2): 510–520

[32]

Melk A. Senescence of renal cells: molecular basis and clinical implications. Nephrol Dial Transplant 2003; 18(12): 2474–2478

[33]

Yousefzadeh MJ, Zhao J, Bukata C, Wade EA, McGowan SJ, Angelini LA, Bank MP, Gurkar AU, McGuckian CA, Calubag MF, Kato JI, Burd CE, Robbins PD, Niedernhofer LJ. Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. Aging Cell 2020; 19(3): e13094

[34]

Jin H, Zhang Y, Ding Q, Wang SS, Rastogi P, Dai DF, Lu D, Purvis M, Cao C, Wang A, Liu D, Ren C, Elhadi S, Hu MC, Chai Y, Zepeda-Orozco D, Campisi J, Attanasio M. Epithelial innate immunity mediates tubular cell senescence after kidney injury. JCI Insight 2019; 4(2): e125490

[35]

Verzola D, Gandolfo MT, Gaetani G, Ferraris A, Mangerini R, Ferrario F, Villaggio B, Gianiorio F, Tosetti F, Weiss U, Traverso P, Mji M, Deferrari G, Garibotto G. Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. Am J Physiol Renal Physiol 2008; 295(5): F1563–F1573

[36]

Al-Dabet MM, Shahzad K, Elwakiel A, Sulaj A, Kopf S, Bock F, Gadi I, Zimmermann S, Rana R, Krishnan S, Gupta D, Manoharan J, Fatima S, Nazir S, Schwab C, Baber R, Scholz M, Geffers R, Mertens PR, Nawroth PP, Griffin JH, Keller M, Dockendorff C, Kohli S, Isermann B. Reversal of the renal hyperglycemic memory in diabetic kidney disease by targeting sustained tubular p21 expression. Nat Commun 2022; 13(1): 5062

[37]

Zhu K, Kakehi T, Matsumoto M, Iwata K, Ibi M, Ohshima Y, Zhang J, Liu J, Wen X, Taye A, Fan C, Katsuyama M, Sharma K, Yabe-Nishimura C. NADPH oxidase nox1 is involved in activation of protein kinase c and premature senescence in early stage diabetic kidney. Free Radic Biol Med 2015; 83: 21–30

[38]

Vashistha H, Marrero L, Reiss K, Cohen AJ, Malhotra A, Javed T, Bradley A, Abbruscato F, Giusti S, Jimenez A, Mehra S, Kaushal D, Giorgio M, Pelicci PG, Kakoki M, Singhal PC, Bunnell B, Meggs LG. Aging phenotype(s) in kidneys of diabetic mice are p66shca dependent. Am J Physiol Renal Physiol 2018; 315(6): F1833–F1842

[39]

Cohen C, Le Goff O, Soysouvanh F, Vasseur F, Tanou M, Nguyen C, Amrouche L, Le Guen J, Saltel-Fulero O, Meunier T, Nguyen-Khoa T, Rabant M, Nochy D, Legendre C, Friedlander G, Childs BG, Baker DJ, Knebelmann B, Anglicheau D, Milliat F, Terzi F. Glomerular endothelial cell senescence drives age-related kidney disease through PAI-1. EMBO Mol Med 2021; 13(11): e14146

[40]

Sis B, Tasanarong A, Khoshjou F, Dadras F, Solez K, Halloran PF. Accelerated expression of senescence associated cell cycle inhibitor p16ink4a in kidneys with glomerular disease. Kidney Int 2007; 71(3): 218–226

[41]

Liu J, Yang JR, He YN, Cai GY, Zhang JG, Lin LR, Zhan J, Zhang JH, Xiao HS. Accelerated senescence of renal tubular epithelial cells is associated with disease progression of patients with immunoglobulin a (IgA) nephropathy. Transl Res 2012; 159(6): 454–463

[42]

Tilman G, Bouzin C, Aydin S, Tamirou F, Galant C, Coulie PG, Houssiau F, Lauwerys B, Limaye N. High p16ink4a, a marker of cellular senescence, is associated with renal injury, impairment and outcome in lupus nephritis. RMD Open 2021; 7(3): e001844

[43]

Tilman G, Dupré E, Watteyne L, Baert CA, Nolf D, Benhaddi F, Lambert F, Daumerie A, Bouzin C, Lucas S, Limaye N. P16ink4a, a marker of cellular senescence, is associated with renal disease in the B6. NZM sle1/sle2/sle3 mouse model of lupus. Lupus Sci Med 2023; 10(2): e001010

[44]

Li S, Livingston MJ, Ma Z, Hu X, Wen L, Ding HF, Zhou D, Dong Z. Tubular cell senescence promotes maladaptive kidney repair and chronic kidney disease after cisplatin nephrotoxicity. JCI Insight 2023; 8(8): e166643

[45]

Fu S, Hu X, Ma Z, Wei Q, Xiang X, Li S, Wen L, Liang Y, Dong Z. P53 in proximal tubules mediates chronic kidney problems after cisplatin treatment. Cells 2022; 11(4): 712

[46]

Zhang X, Li L, Tan H, Hong X, Yuan Q, Hou FF, Zhou L, Liu Y. Klotho-derived peptide 1 inhibits cellular senescence in the fibrotic kidney by restoring klotho expression via posttranscriptional regulation. Theranostics 2024; 14(1): 420–435

[47]

Li L, Xiang T, Guo J, Guo F, Wu Y, Feng H, Liu J, Tao S, Fu P, Ma L. Inhibition of ACSS2-mediated histone crotonylation alleviates kidney fibrosis via IL-1β-dependent macrophage activation and tubular cell senescence. Nat Commun 2024; 15(1): 3200

[48]

Westhoff JH, Hilgers KF, Steinbach MP, Hartner A, Klanke B, Amann K, Melk A. Hypertension induces somatic cellular senescence in rats and humans by induction of cell cycle inhibitor p16ink4a. Hypertens 2008; 52(1): 123–129

[49]

Chkhotua AB, Gabusi E, Altimari A, D’Errico A, Yakubovich M, Vienken J, Stefoni S, Chieco P, Yussim A, Grigioni WF. Increased expression of p16ink4a and p27kip1 cyclin-dependent kinase inhibitor genes in aging human kidney and chronic allograft nephropathy. Am J Kidney Dis 2003; 41(6): 1303–1313

[50]

Jennings P, Koppelstaetter C, Aydin S, Abberger T, Wolf AM, Mayer G, Pfaller W. Cyclosporine a induces senescence in renal tubular epithelial cells. Am J Physiol Renal Physiol 2007; 293(3): F831–F838

[51]

Shimizu H, Bolati D, Adijiang A, Enomoto A, Nishijima F, Dateki M, Niwa T. Senescence and dysfunction of proximal tubular cells are associated with activated p53 expression by indoxyl sulfate. Am J Physiol Cell Physiol 2010; 299(5): C1110–C1117

[52]

Sulistiyowati I, Yunus J, Sari DCR, Arfian N. Upregulation of p16, Bax and Bcl-2 mRNA expression associated with epithelial apoptosis and myofibroblast proliferation in kidney fibrosis model in mice. Malays J Med Sci 2020; 27(2): 37–44

[53]

Garrido AN, Kim YC, Oe Y, Zhang H, Crespo-Masip M, Goodluck HA, Kanoo S, Sanders PW, Broer S, Vallon V. Aristolochic acid-induced nephropathy is attenuated in mice lacking the neutral amino acid transporter B0AT1 (Slc6a19). Am J Physiol Renal Physiol 2022; 323(4): F455–F467

[54]

Li S, Jiang S, Zhang Q, Jin B, Lv D, Li W, Zhao M, Jiang C, Dai C, Liu Z. Integrin B3 induction promotes tubular cell senescence and kidney fibrosis. Front Cell Dev Biol 2021; 9: 733831

[55]

Nishimura K, Taguchi K, Kishi S, Brooks CR, Ochi A, Kadoya H, Ikeda Y, Miyoshi M, Tamaki M, Abe H, Aihara K, Kashihara N, Nagai K. Dual disruption of eNOS and aPOE gene accelerates kidney fibrosis and senescence after injury. Biochem Biophys Res Commun 2021; 556: 142–148

[56]

Tsirpanlis G, Chatzipanagiotou S, Boufidou F, Kordinas V, Alevyzaki F, Zoga M, Kyritsis I, Stamatelou K, Triantafyllis G, Nicolaou C. Telomerase activity is decreased in peripheral blood mononuclear cells of hemodialysis patients. Am J Nephrol 2006; 26(1): 91–96

[57]

Kronenberg F. Telomere length and chronic kidney disease: cause or consequence. Kidney Int 2021; 100(5): 980–983

[58]

Saraswati S, Martínez P, Graña-Castro O, Blasco MA. Short and dysfunctional telomeres sensitize the kidneys to develop fibrosis. Nat Aging 2021; 1(3): 269–283

[59]

Hirashio S, Nakashima A, Doi S, Anno K, Aoki E, Shimamoto A, Yorioka N, Kohno N, Masaki T, Tahara H. Telomeric G-tail length and hospitalization for cardiovascular events in hemodialysis patients. Clin J Am Soc Nephrol 2014; 9(12): 2117–2122

[60]

Jaskelioff M, Muller FL, Paik JH, Thomas E, Jiang S, Adams A, Sahin E, Kost-Alimova M, Protopopov A, Cadiñanos J, Horner JW, Maratos-Flier E, DePinho RA. Telomerase reactivation reverses tissue degeneration in aged telomerase deficient mice. Nature 2011; 469(7328): 102–106

[61]

Lee S, Schmitt CA. The dynamic nature of senescence in cancer. Nat Cell Biol 2019; 21(1): 94–101

[62]

Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 2010; 16(5): 535–543

[63]

Liu J, Zhong Y, Liu G, Zhang X, Xiao B, Huang S, Liu H, He L. Role of STAT3 signaling in control of EMT of tubular epithelial cells during renal fibrosis. Cell Physiol Biochem 2017; 42(6): 2552–2558

[64]

Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol 2011; 179(3): 1074–1080

[65]

Fuhrmann-Stroissnigg H, Ling YY, Zhao J, McGowan SJ, Zhu Y, Brooks RW, Grassi D, Gregg SQ, Stripay JL, Dorronsoro A, Corbo L, Tang P, Bukata C, Ring N, Giacca M, Li X, Tchkonia T, Kirkland JL, Niedernhofer LJ, Robbins PD. Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun 2017; 8(1): 422

[66]

Marquez-Exposito L, Tejedor-Santamaria L, Santos-Sanchez L, Valentijn FA, Cantero-Navarro E, Rayego-Mateos S, Rodrigues-Diez RR, Tejera-Muñoz A, Marchant V, Sanz AB, Ortiz A, Goldschmeding R, Ruiz-Ortega M. Acute kidney injury is aggravated in aged mice by the exacerbation of proinflammatory processes. Front Pharmacol 2021; 12: 662020

[67]

Chen J, Chen K, Wang L, Luo J, Zheng Q, He Y. Decoy receptor 2 mediates the apoptosis-resistant phenotype of senescent renal tubular cells and accelerates renal fibrosis in diabetic nephropathy. Cell Death Dis 2022; 13: 522

[68]

Wang S, Liu A, Su Y, Dong Z. Deficiency of the planar cell polarity protein Intu delays kidney repair and suppresses renal fibrosis after acute kidney injury. Am J Pathol 2023; 193(3): 275–285

[69]

Ucero AC, Benito-Martin A, Fuentes-Calvo I, Santamaria B, Blanco J, Lopez-Novoa JM, Ruiz-Ortega M, Egido J, Burkly LC, Martinez-Salgado C, Ortiz A. Tnf-related weak inducer of apoptosis (TWEAK) promotes kidney fibrosis and ras-dependent proliferation of cultured renal fibroblast. Biochim Biophys Acta Mol Basis Dis 2013; 1832(10): 1744–1755

[70]

Docherty NG, O’Sullivan OE, Healy DA, Fitzpatrick JM, Watson RWG. Evidence that inhibition of tubular cell apoptosis protects against renal damage and development of fibrosis following ureteric obstruction. Am J Physiol Renal Physiol 2006; 290(1): F4–F13

[71]

Hickson LJ, Prata LGP, Bobart SA, Evans TK, Giorgadze N, Hashmi SK, Herrmann SM, Jensen MD, Jia Q, Jordan KL, Kellogg TA, Khosla S, Koerber DM, Lagnado AB, Lawson DK, LeBrasseur NK, Lerman LO, McDonald KM, McKenzie TJ, Passos JF, Pignolo RJ, Pirtskhalava T, Saadiq IM, Schaefer KK, Textor SC, Victorelli SG, Volkman TL, Xue A, Wentworth MA, Wissler Gerdes EO, Zhu Y, Tchkonia T, Kirkland JL. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine 2019; 47: 446–456

[72]

Papageorgis P. Complex interplay between aging and cancer: role of TGF-β signaling. Crit Rev Oncog 2017; 22(3-4): 313–321

[73]

Zhang Y, Alexander PB, Wang XF. TGF-β family signaling in the control of cell proliferation and survival. Cold Spring Harb Perspect Biol 2017; 9(4): a022145

[74]

Chen BH, Lu XQ, Liang XH, Wang P. Serpin E1 mediates the induction of renal tubular degeneration and premature senescence upon diabetic insult. Sci Rep 2023; 13(1): 16210

[75]

Ijima S, Saito Y, Nagaoka K, Yamamoto S, Sato T, Miura N, Iwamoto T, Miyajima M, Chikenji TS. Fisetin reduces the senescent tubular epithelial cell burden and also inhibits proliferative fibroblasts in murine lupus nephritis. Front Immunol 2022; 13: 960601

[76]

Ni J, Wang X, Xie H, Yang N, Li J, Sun X, Guo H, Zhou L, Zhang W, Liu J, Lu L. Deubiquitinating enzyme usp11 promotes renal tubular cell senescence and fibrosis via inhibiting the ubiquitin degradation of TGF-β receptor II. Acta Pharmacol Sin 2023; 44(3): 584–595

[77]

Yuan Q, Ren Q, Li L, Tan H, Lu M, Tian Y, Huang L, Zhao B, Fu H, Hou FF, Zhou L, Liu Y. A klotho-derived peptide protects against kidney fibrosis by targeting TGF-β signaling. Nat Commun 2022; 13(1): 438

[78]

Lu J, Sun W, Liu B, Zhang J, Wang R, Goltzman D, Miao D. Chk2 modulates Bmi1-deficiency-induced renal aging and fibrosis via oxidative stress, DNA damage, and p53/TGFβ1-induced epithelial-mesenchymal transition. Int J Biol Sci 2024; 20(6): 2008–2026

[79]

Vaughan DE, Rai R, Khan SS, Eren M, Ghosh AK. Plasminogen activator inhibitor-1 is a marker and a mediator of senescence. Arterioscler Thromb Vasc Biol 2017; 37(8): 1446–1452

[80]

Rapisarda V, Borghesan M, Miguela V, Encheva V, Snijders AP, Lujambio A, O’Loghlen A. Integrin beta 3 regulates cellular senescence by activating the TGF-β pathway. Cell Rep 2017; 18(10): 2480–2493

[81]

Sun H, Ke C, Zhang L, Tian C, Zhang Z, Wu S. Long non-coding RNA (LncRNA)-ATB promotes inflammation, cell apoptosis and senescence in transforming growth factor-β1 (TGF-β1) induced human kidney 2 (HK-2) cells via TGFβ/Smad2/3 signaling pathway. Med Sci Monit 2020; 26: e922029

[82]

Zhou L, Li Y, Hao S, Zhou D, Tan RJ, Nie J, Hou FF, Kahn M, Liu Y. Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling. J Am Soc Nephrol 2015; 26(1): 107–120

[83]

Cuevas CA, Gonzalez AA, Inestrosa NC, Vio CP, Prieto MC. Angiotensin II increases fibronectin and collagen I through the β-catenin-dependent signaling in mouse collecting duct cells. Am J Physiol Renal Physiol 2015; 308(4): F358–F365

[84]

Zhou D, Tan RJ, Fu H, Liu Y. Wnt/β-catenin signaling in kidney injury and repair: a double-edged sword. Lab Invest 2016; 96(2): 156–167

[85]

Tan RJ, Zhou D, Zhou L, Liu Y. Wnt/β-catenin signaling and kidney fibrosis. Kidney Int Suppl 2014; 4(1): 84–90

[86]

Luo C, Zhou S, Zhou Z, Liu Y, Yang L, Liu J, Zhang Y, Li H, Liu Y, Hou FF, Zhou L. Wnt9a promotes renal fibrosis by accelerating cellular senescence in tubular epithelial cells. J Am Soc Nephrol 2018; 29(4): 1238–1256

[87]

Meng P, Huang J, Ling X, Zhou S, Wei J, Zhu M, Miao J, Shen W, Li J, Ye H, Niu H, Zhang Y, Zhou L. Cxc chemokine receptor 2 accelerates tubular cell senescence and renal fibrosis via β-catenin-induced mitochondrial dysfunction. Front Cell Dev Biol 2022; 10: 862675

[88]

Gong W, Luo C, Peng F, Xiao J, Zeng Y, Yin B, Chen X, Li S, He X, Liu Y, Cao H, Xu J, Long H. Brahma-related gene-1 promotes tubular senescence and renal fibrosis through Wnt/β-catenin/autophagy axis. Clin Sci (Lond) 2021; 135(15): 1873–1895

[89]

Zhu M, Ling X, Zhou S, Meng P, Chen Q, Chen S, Shen K, Xie C, Kong Y, Wang M, Zhou L. KYA1797K, a novel small molecule destabilizing β-catenin, is superior to ICG-001 in protecting against kidney aging. Kidney Dis 2022; 8(5): 408–423

[90]

Cao B, Zeng M, Si Y, Zhang B, Wang Y, Xu R, Huang Y, Feng W, Zheng X. Extract of Corallodiscus flabellata attenuates renal fibrosis in SAMP8 mice via the Wnt/β-catenin/RAS signaling pathway. BMC Complement Med Ther 2022; 22(1): 52

[91]

Miao J, Liu J, Niu J, Zhang Y, Shen W, Luo C, Liu Y, Li C, Li H, Yang P, Liu Y, Hou FF, Zhou L. Wnt/β-catenin/RAS signaling mediates age-related renal fibrosis and is associated with mitochondrial dysfunction. Aging Cell 2019; 18(5): e13004

[92]

Miao J, Huang J, Luo C, Ye H, Ling X, Wu Q, Shen W, Zhou L. Klotho retards renal fibrosis through targeting mitochondrial dysfunction and cellular senescence in renal tubular cells. Physiol Rep 2021; 9(2): e14696

[93]

Zhang F, Wan X, Cao YZ, Sun D, Cao CC. Klotho gene-modified BMSCs showed elevated antifibrotic effects by inhibiting the Wnt/β-catenin pathway in kidneys after acute injury. Cell Biol Int 2018; 42(12): 1670–1679

[94]

Jin Y, Kim EN, Lim JH, Kim HD, Ban TH, Yang CW, Park CW, Choi BS. Role of aberrantly activated lysophosphatidic acid receptor 1 signaling mediated inflammation in renal aging. Cells 2021; 10(10): 2580

[95]

Jin H, Zhang Y, Liu D, Wang SS, Ding Q, Rastogi P, Purvis M, Wang A, Elhadi S, Ren C, Cao C, Chai Y, Igarashi P, Jetten AM, Lu D, Attanasio M. Innate immune signaling contributes to tubular cell senescence in the Glis2 knockout mouse model of nephronophthisis. Am J Pathol 2020; 190(1): 176–189

[96]

Shimizu H, Bolati D, Adijiang A, Muteliefu G, Enomoto A, Nishijima F, Dateki M, Niwa T. NF-κB plays an important role in indoxyl sulfate-induced cellular senescence, fibrotic gene expression, and inhibition of proliferation in proximal tubular cells. Am J Physiol Cell Physiol 2011; 301(5): C1201–C1212

[97]

He P, Guo Y, Wang S, Bu S. Innovative insights: Itln1 modulates renal injury in response to radiation. Int Immunopharmacol 2024; 133: 111987

[98]

Chen M, Fang Y, Ge Y, Qiu S, Dworkin L, Gong R. The redox-sensitive GSK3β is a key regulator of glomerular podocyte injury in type 2 diabetic kidney disease. Redox Biol 2024; 72: 103127

[99]

Valentijn FA, Knoppert SN, Pissas G, Rodrigues-Diez RR, Marquez-Exposito L, Broekhuizen R, Mokry M, Kester LA, Falke LL, Goldschmeding R, Ruiz-Ortega M, Eleftheriadis T, Nguyen TQ. Ccn2 aggravates the immediate oxidative stress–DNA damage response following renal ischemia–reperfusion injury. Antioxidants 2021; 10(12): 2020

[100]

Weichhart T. m-TOR as regulator of lifespan, aging, and cellular senescence: a mini-review. Gerontology 2018; 64(2): 127–134

[101]

Hoff U, Markmann D, Thurn-Valassina D, Nieminen-Kelhae M, Erlangga Z, Schmitz J, Braesen JH, Budde K, Melk A, Hegner B. The mTOR inhibitor rapamycin protects from premature cellular senescence early after experimental kidney transplantation. PLoS One 2022; 17(4): e0266319

[102]

Ning YC, Cai GY, Zhuo L, Gao JJ, Dong D, Cui S, Feng Z, Shi SZ, Bai XY, Sun XF, Chen XM. Short-term calorie restriction protects against renal senescence of aged rats by increasing autophagic activity and reducing oxidative damage. Mech Ageing Dev 2013; 134(11-12): 570–579

[103]

Dong D, Cai G, Ning Y, Wang J, Lv Y, Hong Q, Cui S, Fu B, Guo Y, Chen X. Alleviation of senescence and epithelial-mesenchymal transition in aging kidney by short-term caloric restriction and caloric restriction mimetics via modulation of AMPK/mTOR signaling. Oncotarget 2017; 8(10): 16109–16121

[104]

Bach LA, Hale LJ. Insulin-like growth factors and kidney disease. Am J Kidney Dis 2015; 65(2): 327–336

[105]

Sureshbabu A, Okajima H, Yamanaka D, Shastri S, Tonner E, Rae C, Szymanowska M, Shand JH, Takahashi SI, Beattie J, Allan GJ, Flint DJ. IGFBP-5 induces epithelial and fibroblast responses consistent with the fibrotic response. Biochem Soc Trans 2009; 37(4): 882–885

[106]

Li Y, Luo C, Cai Y, Wu Y, Shu T, Wei J, Wang H, Niu H. IGF2BP3/NCBP1 complex inhibits renal tubular senescence through regulation of CDK6 mRNA stability. Transl Res 2024; 273: 1–15

[107]

Zhu Y, Yang B, Chen S, Chen G, Zeng X, Min H. M6A RNA methylation-mediated Tug1 stability maintains mitochondrial homeostasis during kidney aging by epigenetically regulating PGC1-α expression. Antioxid Redox Signal 2024; 41(16–18): 993–1013

[108]

Jin J, Tao J, Gu X, Yu Z, Wang R, Zuo G, Li Q, Lv X, Miao D. P16ink4a deletion ameliorated renal tubulointerstitial injury in a stress-induced premature senescence model of Bmi-1 deficiency. Sci Rep 2017; 7(1): 7502

[109]

Megyesi J, Tarcsafalvi A, Li S, Hodeify R, Seng NSHL, Portilla D, Price PM. Increased expression of p21WAF1/CIP1 in kidney proximal tubules mediates fibrosis. Am J Physiol Renal Physiol 2015; 308(2): F122–F130

[110]

Mylonas KJ, O’Sullivan ED, Humphries D, Baird DP, Docherty MH, Neely SA, Krimpenfort PJ, Melk A, Schmitt R, Ferreira-Gonzalez S, Forbes SJ, Hughes J, Ferenbach DA. Cellular senescence inhibits renal regeneration after injury in mice, with senolytic treatment promoting repair. Sci Transl Med 2021; 13(594): eabb0203

[111]

Li C, Shen Y, Huang L, Liu C, Wang J. Senolytic therapy ameliorates renal fibrosis postacute kidney injury by alleviating renal senescence. FASEB J 2021; 35(1): e21229–1

[112]

Choudhury D, Rong N, Ikhapoh I, Rajabian N, Tseropoulos G, Wu Y, Mehrotra P, Thiyagarajan R, Shahini A, Seldeen KL, Troen BR, Lei P, Andreadis ST. Inhibition of glutaminolysis restores mitochondrial function in senescent stem cells. Cell Rep 2022; 41(9): 111744

[113]

Johmura Y, Yamanaka T, Omori S, Wang TW, Sugiura Y, Matsumoto M, Suzuki N, Kumamoto S, Yamaguchi K, Hatakeyama S, Takami T, Yamaguchi R, Shimizu E, Ikeda K, Okahashi N, Mikawa R, Suematsu M, Arita M, Sugimoto M, Nakayama KI, Furukawa Y, Imoto S, Nakanishi M. Senolysis by glutaminolysis inhibition ameliorates various age-associated disorders. Science 2021; 371(6526): 265–270

[114]

Tamada S, Nakatani T, Asai T, Tashiro K, Komiya T, Sumi T, Okamura M, Kim S, Iwao H, Kishimoto T, Yamanaka S, Miura K. Inhibition of nuclear factor-κB activation by pyrrolidine dithiocarbamate prevents chronic FK506 nephropathy. Kidney Int 2003; 63(1): 306–314

[115]

Albalawi RS, Binmahfouz LS, Hareeri RH, Shaik RA, Bagher AM. Parthenolide phytosomes attenuated gentamicin-induced nephrotoxicity in rats via activation of Sirt-1, Nrf2, OH-1, and Nqo1 axis. Molecules 2023; 28(6): 2741

[116]

Shavlakadze T, Zhu J, Wang S, Zhou W, Morin B, Egerman MA, Fan L, Wang Y, Iartchouk O, Meyer A, Valdez RA, Mannick JB, Klickstein LB, Glass DJ. Short-term low-dose Mtorc1 inhibition in aged rats counter-regulates age-related gene changes and blocks age-related kidney pathology. J Gerontol A Biol Sci Med Sci 2018; 73(7): 845–852

[117]

Andrikopoulos P, Kieswich J, Pacheco S, Nadarajah L, Harwood SM, O’Riordan CE, Thiemermann C, Yaqoob MM. The MEK inhibitor trametinib ameliorates kidney fibrosis by suppressing ERK1/2 and MTORC1 signaling. J Am Soc Nephrol 2019; 30(1): 33–49

[118]

Novelle MG, Ali A, Diéguez C, Bernier M, de Cabo R. Metformin: a hopeful promise in aging research. Cold Spring Harb Perspect Med 2016; 6(3): a025932

[119]

Kim H, Yu MR, Lee H, Kwon SH, Jeon JS, Han DC, Noh H. Metformin inhibits chronic kidney disease-induced DNA damage and senescence of mesenchymal stem cells. Aging Cell 2021; 20(2): e13317

[120]

Liang D, Li Z, Feng Z, Yuan Z, Dai Y, Wu X, Zhang F, Wang Y, Zhou Y, Liu L, Shi M, Xiao Y, Guo B. Metformin improves the senescence of renal tubular epithelial cells in a high-glucose state through E2F1. Front Pharmacol 2022; 13: 926211

[121]

Jiang X, Ruan X, Xue Y, Yang S, Shi M, Wang L. Metformin reduces the senescence of renal tubular epithelial cells in diabetic nephropathy via the MBNL1/mir-130a-3p/STAT3 pathway. Oxid Med Cell Longev 2020; 2020(1): 8708236

[122]

Adijiang A, Shimizu H, Higuchi Y, Nishijima F, Niwa T. Indoxyl sulfate reduces klotho expression and promotes senescence in the kidneys of hypertensive rats. J Ren Nutr 2011; 21(1): 105–109

[123]

Urate S, Wakui H, Azushima K, Yamaji T, Suzuki T, Abe E, Tanaka S, Taguchi S, Tsukamoto S, Kinguchi S, Uneda K, Kanaoka T, Atobe Y, Funakoshi K, Yamashita A, Tamura K. Aristolochic acid induces renal fibrosis and senescence in mice. Int J Mol Sci 2021; 22(22): 12432

[124]

Isakova T, Yanucil C, Faul C. A klotho-derived peptide as a possible novel drug to prevent kidney fibrosis. Am J Kidney Dis 2022; 80(2): 285–288

[125]

Maique J, Flores B, Shi M, Shepard S, Zhou Z, Yan S, Moe OW, Hu MC. High phosphate induces and klotho attenuates kidney epithelial senescence and fibrosis. Front Pharmacol 2020; 11: 1273

[126]

Wang SY, Cai GY, Chen XM. Energy restriction in renal protection. Br J Nutr 2018; 120(10): 1149–1158

[127]

Kim EN, Lim JH, Kim MY, Ban TH, Jang IA, Yoon HE, Park CW, Chang YS, Choi BS. Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury. Aging (Albany NY) 2018; 10(1): 83–99

[128]

Gurkar AU, Gerencser AA, Mora AL, Nelson AC, Zhang AR, Lagnado AB, Enninful A, Benz C, Furman D, Beaulieu D, Jurk D, Thompson EL, Wu F, Rodriguez F, Barthel G, Chen H, Phatnani H, Heckenbach I, Chuang JH, Horrell J, Petrescu J, Alder JK, Lee JH, Niedernhofer LJ, Kumar M, Königshoff M, Bueno M, Sokka M, Scheibye-Knudsen M, Neretti N, Eickelberg O, Adams PD, Hu Q, Zhu Q, Porritt RA, Dong R, Peters S, Victorelli S, Pengo T, Khaliullin T, Suryadevara V, Fu X, Bar-Joseph Z, Ji Z, Passos JF. Spatial mapping of cellular senescence: emerging challenges and opportunities. Nat Aging 2023; 3(7): 776–790

[129]

Shao X, Xu H, Kim H, ljaz S, Beier F, Jankowski V, Lellig M, Vankann L, Werner JN, Chen L, Ziegler S, Kuppe C, Zenke M, Schneider RK, Hayat S, Saritas T, Kramann R. Generation of a conditional cellular senescence model using proximal tubule cells and fibroblasts from human kidneys. Cell Death Discov 2024; 10(1): 364

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1362KB)

1608

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/