Multifaceted function of B cells in tumorigenesis

Na Kang, Qinghui Duan, Xin Min, Tong Li, Yuxin Li, Ji Gao, Wanli Liu

Front. Med. ››

PDF(4211 KB)
Front. Med. All Journals
PDF(4211 KB)
Front. Med. ›› DOI: 10.1007/s11684-025-1127-5
REVIEW

Multifaceted function of B cells in tumorigenesis

Author information +
History +

Abstract

B lymphocytes (B cells) play a complex and paradoxical role in tumorigenesis. They can recognize tumor-associated antigens, present these antigens to T cells, and produce antibodies that directly target and eliminate tumor cells. This makes B cells a potentially powerful ally in combating cancer. However, B cells also exhibit immunosuppressive functions, secreting cytokines like IL-10 or generating tumor-promoting antibodies that dampen the anti-tumor immune response, and some tumor cells have even been shown to exploit B cells to promote their growth and metastasis. This dual nature of B cells presents both opportunities and challenges for tumor immunotherapy. In this review, we summarize the mechanisms underlying the multifaceted functions of B cells and their current applications in cancer immunotherapy. Furthermore, we also explore the key issues and future directions in this field, emphasizing the need for further research to fully harness the anti-tumor potential of B cells in the fight against cancer.

Keywords

B cells / anti-tumor / pro-tumor / B cell-targeted immunotherapy

Cite this article

Download citation ▾
Na Kang, Qinghui Duan, Xin Min, Tong Li, Yuxin Li, Ji Gao, Wanli Liu. Multifaceted function of B cells in tumorigenesis. Front. Med., https://doi.org/10.1007/s11684-025-1127-5
This is a preview of subscription content, contact us for subscripton.

References

[1]
Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 2020; 20(11): 651–668
CrossRef Google scholar
[2]
de Miguel M, Calvo E. Clinical challenges of immune checkpoint inhibitors. Cancer Cell 2020; 38(3): 326–333
CrossRef Google scholar
[3]
Ye W, Olsson-Brown A, Watson RA, Cheung VTF, Morgan RD, Nassiri I, Cooper R, Taylor CA, Akbani U, Brain O, Matin RN, Coupe N, Middleton MR, Coles M, Sacco JJ, Payne MJ, Fairfax BP. Checkpoint-blocker-induced autoimmunity is associated with favourable outcome in metastatic melanoma and distinct T-cell expression profiles. Br J Cancer 2021; 124(10): 1661–1669
CrossRef Google scholar
[4]
Sautès-Fridman C, Petitprez F, Calderaro J, Fridman WH. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer 2019; 19(6): 307–325
CrossRef Google scholar
[5]
Yang B, Zhang Z, Chen X, Wang XY, Qin S, Du L, Yang C, Zhu L, Sun W, Zhu Y, Zheng Q, Zhao S, Wang Q, Zhao L, Lin Y, Huang J, Wu F, Lu L, Wang F, Zheng W, Zhou XH, Zhao X, Wang Z, Xiao-Lin S, Ye Y, Wang S, Li Z, Qi H, Zhang Z, Kuang DM, Zhang L, Shen Z, Liu W. An Asia-specific variant of human IgG1 represses colorectal tumorigenesis by shaping the tumor microenvironment. J Clin Invest 2022; 132(6): 132
CrossRef Google scholar
[6]
Chaudhry A, Shi R, Luciani DS. A pipeline for multidimensional confocal analysis of mitochondrial morphology, function, and dynamics in pancreatic beta-cells. Am J Physiol Endocrinol Metab 2020; 318(2): E87–E101
CrossRef Google scholar
[7]
Downs-Canner SM, Meier J, Vincent BG, Serody JS. B cell function in the tumor microenvironment. Annu Rev Immunol 2022; 40(1): 169–193
CrossRef Google scholar
[8]
Laumont CM, Nelson BH. B cells in the tumor microenvironment: multi-faceted organizers, regulators, and effectors of anti-tumor immunity. Cancer Cell 2023; 41(3): 466–489
CrossRef Google scholar
[9]
Helmink BA, Reddy SM, Gao J, Zhang S, Basar R, Thakur R, Yizhak K, Sade-Feldman M, Blando J, Han G, Gopalakrishnan V, Xi Y, Zhao H, Amaria RN, Tawbi HA, Cogdill AP, Liu W, LeBleu VS, Kugeratski FG, Patel S, Davies MA, Hwu P, Lee JE, Gershenwald JE, Lucci A, Arora R, Woodman S, Keung EZ, Gaudreau PO, Reuben A, Spencer CN, Burton EM, Haydu LE, Lazar AJ, Zapassodi R, Hudgens CW, Ledesma DA, Ong S, Bailey M, Warren S, Rao D, Krijgsman O, Rozeman EA, Peeper D, Blank CU, Schumacher TN, Butterfield LH, Zelazowska MA, McBride KM, Kalluri R, Allison J, Petitprez F, Fridman WH, Sautes-Fridman C, Hacohen N, Rezvani K, Sharma P, Tetzlaff MT, Wang L, Wargo JA. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 2020; 577(7791): 549–555
CrossRef Google scholar
[10]
Petitprez F, de Reynies A, Keung EZ, Chen TW, Sun CM, Calderaro J, Jeng YM, Hsiao LP, Lacroix L, Bougouin A, Moreira M, Lacroix G, Natario I, Adam J, Lucchesi C, Laizet YH, Toulmonde M, Burgess MA, Bolejack V, Reinke D, Wani KM, Wang WL, Lazar AJ, Roland CL, Wargo JA, Italiano A, Sautes-Fridman C, Tawbi HA, Fridman WH. B cells are associated with survival and immunotherapy response in sarcoma. Nature 2020; 577(7791): 556–560
CrossRef Google scholar
[11]
Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, Mitra S, Johansson I, Phung B, Harbst K, Vallon-Christersson J, van Schoiack A, Lovgren K, Warren S, Jirstrom K, Olsson H, Pietras K, Ingvar C, Isaksson K, Schadendorf D, Schmidt H, Bastholt L, Carneiro A, Wargo JA, Svane IM, Jonsson G. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 2020; 577(7791): 561–565
CrossRef Google scholar
[12]
Meylan M, Petitprez F, Becht E, Bougouin A, Pupier G, Calvez A, Giglioli I, Verkarre V, Lacroix G, Verneau J, Sun CM, Laurent-Puig P, Vano YA, Elaidi R, Mejean A, Sanchez-Salas R, Barret E, Cathelineau X, Oudard S, Reynaud CA, de Reynies A, Sautes-Fridman C, Fridman WH. Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. Immunity 2022; 55(3): 527–541.e5
CrossRef Google scholar
[13]
Ding GY, Ma JQ, Yun JP, Chen X, Ling Y, Zhang S, Shi JY, Chang YQ, Ji Y, Wang XY, Tan WM, Yuan KF, Yan B, Zhang XM, Liang F, Zhou J, Fan J, Zeng Y, Cai MY, Gao Q. Distribution and density of tertiary lymphoid structures predict clinical outcome in intrahepatic cholangiocarcinoma. J Hepatol 2022; 76(3): 608–618
CrossRef Google scholar
[14]
Liu H, Li Z, Han X, Li Z, Zhao Y, Liu F, Zhu Z, Lv Y, Liu Z, Zhang N. The prognostic impact of tumor-infiltrating B lymphocytes in patients with solid malignancies: a systematic review and meta-analysis. Crit Rev Oncol Hematol 2023; 181: 103893
CrossRef Google scholar
[15]
Wouters MCA, Nelson BH. Prognostic significance of tumor-infiltrating B cells and plasma cells in human cancer. Clin Cancer Res 2018; 24(24): 6125–6135
CrossRef Google scholar
[16]
Adam B, Calikoglu E. Serum interleukin-6, procalcitonin and C-reactive protein levels in subjects with active Behcet’s disease. J Eur Acad Dermatol Venereol 2004; 18(3): 318–320
CrossRef Google scholar
[17]
Berntsson J, Nodin B, Eberhard J, Micke P, Jirstrom K. Prognostic impact of tumour-infiltrating B cells and plasma cells in colorectal cancer. Int J Cancer 2016; 139(5): 1129–1139
CrossRef Google scholar
[18]
Wang Q, Sun K, Liu R, Song Y, Lv Y, Bi P, Yang F, Li S, Zhao J, Li X, Chen D, Mei J, Yang R, Chen K, Liu D, Tang S. Single-cell transcriptome sequencing of B-cell heterogeneity and tertiary lymphoid structure predicts breast cancer prognosis and neoadjuvant therapy efficacy. Clin Transl Med 2023; 13(8): e1346
CrossRef Google scholar
[19]
Ma J, Wu Y, Ma L, Yang X, Zhang T, Song G, Li T, Gao K, Shen X, Lin J, Chen Y, Liu X, Fu Y, Gu X, Chen Z, Jiang S, Rao D, Pan J, Zhang S, Zhou J, Huang C, Shi S, Fan J, Guo G, Zhang X, Gao Q. A blueprint for tumor-infiltrating B cells across human cancers. Science 2024; 384(6695): eadj4857
CrossRef Google scholar
[20]
Garnelo M, Tan A, Her Z, Yeong J, Lim CJ, Chen J, Lim KH, Weber A, Chow P, Chung A, Ooi LL, Toh HC, Heikenwalder M, Ng IO, Nardin A, Chen Q, Abastado JP, Chew V. Interaction between tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma. Gut 2017; 66(2): 342–351
CrossRef Google scholar
[21]
Laumont CM, Banville AC, Gilardi M, Hollern DP, Nelson BH. Tumour-infiltrating B cells: immunological mechanisms, clinical impact and therapeutic opportunities. Nat Rev Cancer 2022; 22(7): 414–430
CrossRef Google scholar
[22]
Sng J, Ayoglu B, Chen JW, Schickel JN, Ferre EMN, Glauzy S, Romberg N, Hoenig M, Cunningham-Rundles C, Utz PJ, Lionakis MS, Meffre E. AIRE expression controls the peripheral selection of autoreactive B cells. Sci Immunol 2019; 4(34): eaav6778
CrossRef Google scholar
[23]
Zaenker P, Gray ES, Ziman MR. Autoantibody production in cancer–the humoral immune response toward autologous antigens in cancer patients. Autoimmun Rev 2016; 15(5): 477–483
CrossRef Google scholar
[24]
Mazor RD, Nathan N, Gilboa A, Stoler-Barak L, Moss L, Solomonov I, Hanuna A, Divinsky Y, Shmueli MD, Hezroni H, Zaretsky I, Mor M, Golani O, Sabah G, Jakobson-Setton A, Yanichkin N, Feinmesser M, Tsoref D, Salman L, Yeoshoua E, Peretz E, Erlich I, Cohen NM, Gershoni JM, Freund N, Merbl Y, Yaari G, Eitan R, Sagi I, Shulman Z. Tumor-reactive antibodies evolve from non-binding and autoreactive precursors. Cell 2022; 185(7): 1208–1222.e21
CrossRef Google scholar
[25]
Gu Y, Liu Y, Fu L, Zhai L, Zhu J, Han Y, Jiang Y, Zhang Y, Zhang P, Jiang Z, Zhang X, Cao X. Tumor-educated B cells selectively promote breast cancer lymph node metastasis by HSPA4-targeting IgG. Nat Med 2019; 25(2): 312–322
CrossRef Google scholar
[26]
Sharonov GV, Serebrovskaya EO, Yuzhakova DV, Britanova OV, Chudakov DM. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat Rev Immunol 2020; 20(5): 294–307
CrossRef Google scholar
[27]
Yasuda M, Mizukami M, Hanagiri T, Shigematsu Y, Fukuyama T, Nagata Y, So T, Ichiki Y, Sugaya M, Takenoyama M, Sugio K, Yasumoto K. Antigens recognized by IgG derived from tumor-infiltrating B lymphocytes in human lung cancer. Anticancer Res 2006; 26: 3607–3611
[28]
Kotlan B, Simsa P, Teillaud JL, Fridman WH, Toth J, McKnight M, Glassy MC. Novel ganglioside antigen identified by B cells in human medullary breast carcinomas: the proof of principle concerning the tumor-infiltrating B lymphocytes. J Immunol 2005; 175(4): 2278–2285
CrossRef Google scholar
[29]
Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement system part I — molecular mechanisms of activation and regulation. Front Immunol 2015; 6: 262
CrossRef Google scholar
[30]
Melis JP, Strumane K, Ruuls SR, Beurskens FJ, Schuurman J, Parren PW. Complement in therapy and disease: Regulating the complement system with antibody-based therapeutics. Mol Immunol 2015; 67(2): 117–130
CrossRef Google scholar
[31]
Diebolder CA, Beurskens FJ, de Jong RN, Koning RI, Strumane K, Lindorfer MA, Voorhorst M, Ugurlar D, Rosati S, Heck AJ, van de Winkel JG, Wilson IA, Koster AJ, Taylor RP, Saphire EO, Burton DR, Schuurman J, Gros P, Parren PW. Complement is activated by IgG hexamers assembled at the cell surface. Science 2014; 343(6176): 1260–1263
CrossRef Google scholar
[32]
de Jong RN, Beurskens FJ, Verploegen S, Strumane K, van Kampen MD, Voorhorst M, Horstman W, Engelberts PJ, Oostindie SC, Wang G, Heck AJ, Schuurman J, Parren PW. A novel platform for the potentiation of therapeutic antibodies based on antigen-dependent formation of IgG hexamers at the cell surface. PLoS Biol 2016; 14(1): e1002344
CrossRef Google scholar
[33]
Oostindie SC, van der Horst HJ, Lindorfer MA, Cook EM, Tupitza JC, Zent CS, Burack R, VanDerMeid KR, Strumane K, Chamuleau MED, Mutis T, de Jong RN, Schuurman J, Breij ECW, Beurskens FJ, Parren P, Taylor RP. CD20 and CD37 antibodies synergize to activate complement by Fc-mediated clustering. Haematologica 2019; 104(9): 1841–1852
CrossRef Google scholar
[34]
Wang Q, Chung CY, Rosenberg JN, Yu G, Betenbaugh MJ. Application of the CRISPR/Cas9 gene editing method for modulating antibody fucosylation in CHO Cells. Methods Mol Biol 2018; 1850: 237–257
CrossRef Google scholar
[35]
Weiner AB, Vidotto T, Liu Y, Mendes AA, Salles DC, Faisal FA, Murali S, McFarlane M, Imada EL, Zhao X, Li Z, Davicioni E, Marchionni L, Chinnaiyan AM, Freedland SJ, Spratt DE, Wu JD, Lotan TL, Schaeffer EM. Plasma cells are enriched in localized prostate cancer in Black men and are associated with improved outcomes. Nat Commun 2021; 12(1): 935
CrossRef Google scholar
[36]
Mirlekar B, Wang Y, Li S, Zhou M, Entwistle S, De Buysscher T, Morrison A, Herrera G, Harris C, Vincent BG, Ting JP, Rashid N, Kim WY, Yeh JJ, Pylayeva-Gupta Y. Balance between immunoregulatory B cells and plasma cells drives pancreatic tumor immunity. Cell Rep Med 2022; 3(9): 100744
CrossRef Google scholar
[37]
Montfort A, Pearce O, Maniati E, Vincent BG, Bixby L, Bohm S, Dowe T, Wilkes EH, Chakravarty P, Thompson R, Topping J, Cutillas PR, Lockley M, Serody JS, Capasso M, Balkwill FR. A strong B-cell response is part of the immune landscape in human high-grade serous ovarian metastases. Clin Cancer Res 2017; 23(1): 250–262
CrossRef Google scholar
[38]
Griss J, Bauer W, Wagner C, Simon M, Chen M, Grabmeier-Pfistershammer K, Maurer-Granofszky M, Roka F, Penz T, Bock C, Zhang G, Herlyn M, Glatz K, Laubli H, Mertz KD, Petzelbauer P, Wiesner T, Hartl M, Pickl WF, Somasundaram R, Steinberger P, Wagner SN. B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. Nat Commun 2019; 10(1): 4186
CrossRef Google scholar
[39]
Cui C, Wang J, Fagerberg E, Chen PM, Connolly KA, Damo M, Cheung JF, Mao T, Askari AS, Chen S, Fitzgerald B, Foster GG, Eisenbarth SC, Zhao H, Craft J, Joshi NS. Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses. Cell 2021; 184(25): 6101–6118.e13
CrossRef Google scholar
[40]
Veatch JR, Lee SM, Shasha C, Singhi N, Szeto JL, Moshiri AS, Kim TS, Smythe K, Kong P, Fitzgibbon M, Jesernig B, Bhatia S, Tykodi SS, Hall ET, Byrd DR, Thompson JA, Pillarisetty VG, Duhen T, McGarry Houghton A, Newell E, Gottardo R, Riddell SR. Neoantigen-specific CD4+ T cells in human melanoma have diverse differentiation states and correlate with CD8+ T cell, macrophage, and B cell function. Cancer Cell 2022; 40(4): 393–409.e9
CrossRef Google scholar
[41]
Liu W, You W, Lan Z, Ren Y, Gao S, Li S, Chen WW, Huang C, Zeng Y, Xiao N, Wang Z, Xie H, Ma H, Chen Y, Wang G, Chen C, Li H. An immune cell map of human lung adenocarcinoma development reveals an anti-tumoral role of the Tfh-dependent tertiary lymphoid structure. Cell Rep Med 2024; 5(3): 101448
CrossRef Google scholar
[42]
Hladikova K, Koucky V, Boucek J, Laco J, Grega M, Hodek M, Zabrodsky M, Vosmik M, Rozkosova K, Vosmikova H, Celakovsky P, Chrobok V, Ryska A, Spisek R, Fialova A. Tumor-infiltrating B cells affect the progression of oropharyngeal squamous cell carcinoma via cell-to-cell interactions with CD8+ T cells. J Immunother Cancer 2019; 7(1): 261
CrossRef Google scholar
[43]
Regnault A, Lankar D, Lacabanne V, Rodriguez A, Thery C, Rescigno M, Saito T, Verbeek S, Bonnerot C, Ricciardi-Castagnoli P, Amigorena S. Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J Exp Med 1999; 189(2): 371–380
CrossRef Google scholar
[44]
Hagn M, Sontheimer K, Dahlke K, Brueggemann S, Kaltenmeier C, Beyer T, Hofmann S, Lunov O, Barth TF, Fabricius D, Tron K, Nienhaus GU, Simmet T, Schrezenmeier H, Jahrsdorfer B. Human B cells differentiate into granzyme B-secreting cytotoxic B lymphocytes upon incomplete T-cell help. Immunol Cell Biol 2012; 90(4): 457–467
CrossRef Google scholar
[45]
Tao H, Lu L, Xia Y, Dai F, Wang Y, Bao Y, Lundy SK, Ito F, Pan Q, Zhang X, Zheng F, Shu G, Fang B, Jiang J, Xia J, Huang S, Li Q, Chang AE. Antitumor effector B cells directly kill tumor cells via the Fas/FasL pathway and are regulated by IL-10. Eur J Immunol 2015; 45(4): 999–1009
CrossRef Google scholar
[46]
Yang Y, Chen X, Pan J, Ning H, Zhang Y, Bo Y, Ren X, Li J, Qin S, Wang D, Chen MM, Zhang Z. Pan-cancer single-cell dissection reveals phenotypically distinct B cell subtypes. Cell 2024; 187(17): 4790–4811.e22
CrossRef Google scholar
[47]
Wang WW, Yuan XL, Chen H, Xie GH, Ma YH, Zheng YX, Zhou YL, Shen LS. CD19+CD24hiCD38hiBregs involved in downregulate helper T cells and upregulate regulatory T cells in gastric cancer. Oncotarget 2015; 6(32): 33486–33499
CrossRef Google scholar
[48]
Mirlekar B, Michaud D, Searcy R, Greene K, Pylayeva-Gupta Y. IL35 hinders endogenous antitumor T-cell immunity and responsiveness to immunotherapy in pancreatic cancer. Cancer Immunol Res 2018; 6(9): 1014–1024
CrossRef Google scholar
[49]
Lechner A, Schlosser HA, Thelen M, Wennhold K, Rothschild SI, Gilles R, Quaas A, Siefer OG, Huebbers CU, Cukuroglu E, Goke J, Hillmer A, Gathof B, Meyer MF, Klussmann JP, Shimabukuro-Vornhagen A, Theurich S, Beutner D, von Bergwelt-Baildon M. Tumor-associated B cells and humoral immune response in head and neck squamous cell carcinoma. OncoImmunology 2019; 8(3): 1535293
CrossRef Google scholar
[50]
Chen Z, Zhu Y, Du R, Pang N, Zhang F, Dong D, Ding J, Ding Y. Role of regulatory B Cells in the progression of cervical cancer. Mediators Inflamm 2019; 2019: 6519427
CrossRef Google scholar
[51]
Bodogai M, Lee Chang C, Wejksza K, Lai J, Merino M, Wersto RP, Gress RE, Chan AC, Hesdorffer C, Biragyn A. Anti-CD20 antibody promotes cancer escape via enrichment of tumor-evoked regulatory B cells expressing low levels of CD20 and CD137L. Cancer Res 2013; 73(7): 2127–2138
CrossRef Google scholar
[52]
Wei Y, Lao XM, Xiao X, Wang XY, Wu ZJ, Zeng QH, Wu CY, Wu RQ, Chen ZX, Zheng L, Li B, Kuang DM. Plasma cell polarization to the immunoglobulin G phenotype in hepatocellular carcinomas involves epigenetic alterations and promotes hepatoma progression in mice. Gastroenterology 2019; 156(6): 1890–1904.e16
CrossRef Google scholar
[53]
Affara NI, Ruffell B, Medler TR, Gunderson AJ, Johansson M, Bornstein S, Bergsland E, Steinhoff M, Li Y, Gong Q, Ma Y, Wiesen JF, Wong MH, Kulesz-Martin M, Irving B, Coussens LM. B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas. Cancer Cell 2014; 25(6): 809–821
CrossRef Google scholar
[54]
Fridman WH, Meylan M, Petitprez F, Sun CM, Italiano A, Sautes-Fridman C. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat Rev Clin Oncol 2022; 19(7): 441–457
CrossRef Google scholar
[55]
Ouyang FZ, Wu RQ, Wei Y, Liu RX, Yang D, Xiao X, Zheng L, Li B, Lao XM, Kuang DM. Dendritic cell-elicited B-cell activation fosters immune privilege via IL-10 signals in hepatocellular carcinoma. Nat Commun 2016; 7(1): 13453
CrossRef Google scholar
[56]
Stanic B, van de Veen W, Wirz OF, Ruckert B, Morita H, Sollner S, Akdis CA, Akdis M. IL-10-overexpressing B cells regulate innate and adaptive immune responses. J Allergy Clin Immunol 2015; 135(3): 771–80.e8
CrossRef Google scholar
[57]
Xiao X, Lao XM, Chen MM, Liu RX, Wei Y, Ouyang FZ, Chen DP, Zhao XY, Zhao Q, Li XF, Liu CL, Zheng L, Kuang DM. PD-1hi identifies a novel regulatory B-cell population in human hepatoma that promotes disease progression. Cancer Discov 2016; 6(5): 546–559
CrossRef Google scholar
[58]
Hasan MM, Thompson-Snipes L, Klintmalm G, Demetris AJ, O’Leary J, Oh S, Joo H. CD24hiCD38hi and CD24hiCD27+ human regulatory B cells display common and distinct functional characteristics. J Immunol 2019; 203(8): 2110–2120
CrossRef Google scholar
[59]
Knippenberg S, Peelen E, Smolders J, Thewissen M, Menheere P, Cohen Tervaert JW, Hupperts R, Damoiseaux J. Reduction in IL-10 producing B cells (Breg) in multiple sclerosis is accompanied by a reduced naive/memory Breg ratio during a relapse but not in remission. J Neuroimmunol 2011; 239(1–2): 80–86
CrossRef Google scholar
[60]
Murakami Y, Saito H, Shimizu S, Kono Y, Shishido Y, Miyatani K, Matsunaga T, Fukumoto Y, Ashida K, Sakabe T, Nakayama Y, Fujiwara Y. Increased regulatory B cells are involved in immune evasion in patients with gastric cancer. Sci Rep 2019; 9(1): 13083
CrossRef Google scholar
[61]
Alhabbab RY, Nova-Lamperti E, Aravena O, Burton HM, Lechler RI, Dorling A, Lombardi G. Regulatory B cells: development, phenotypes, functions, and role in transplantation. Immunol Rev 2019; 292(1): 164–179
CrossRef Google scholar
[62]
Wang X, Li J, Lu C, Wang G, Wang Z, Liu X, Liu B, Wang G, Zhang Q, Yang Q. IL-10-producing B cells in differentiated thyroid cancer suppress the effector function of T cells but improve their survival upon activation. Exp Cell Res 2019; 376(2): 192–197
CrossRef Google scholar
[63]
Shen L, Li J, Liu Q, Das M, Song W, Zhang X, Tiruthani K, Dorosheva O, Hu H, Lai SK, Liu R, Huang L. Nano-trapping CXCL13 reduces regulatory B cells in tumor microenvironment and inhibits tumor growth. J Control Release 2022; 343: 303–313
CrossRef Google scholar
[64]
Ren J, Lan T, Liu T, Liu Y, Shao B, Men K, Ma Y, Liang X, Wei YQ, Luo M, Wei XW. CXCL13 as a novel immune checkpoint for regulatory B cells and its role in tumor metastasis. J Immunol 2022; 208(10): 2425–2435
CrossRef Google scholar
[65]
Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013; 19(11): 1423–1437
CrossRef Google scholar
[66]
Tousif S, Wang Y, Jackson J, Hough KP, Strenkowski JG, Athar M, Thannickal VJ, McCusker RH, Ponnazhagan S, Deshane JS. Indoleamine 2, 3-dioxygenase promotes aryl hydrocarbon receptor-dependent differentiation of regulatory B cells in lung cancer. Front Immunol 2021; 12: 747780
CrossRef Google scholar
[67]
Ragonnaud E, Moritoh K, Bodogai M, Gusev F, Garaud S, Chen C, Wang X, Baljinnyam T, Becker KG, Maul RW, Willard-Gallo K, Rogaev E, Biragyn A. Tumor-derived thymic stromal lymphopoietin expands bone marrow B-cell precursors in circulation to support metastasis. Cancer Res 2019; 79(22): 5826–5838
CrossRef Google scholar
[68]
Harris RJ, Willsmore Z, Laddach R, Crescioli S, Chauhan J, Cheung A, Black A, Geh JLC, MacKenzie Ross AD, Healy C, Tsoka S, Spicer J, Lacy KE, Karagiannis SN. Enriched circulating and tumor-resident TGF-β+ regulatory B cells in patients with melanoma promote FOXP3+ Tregs. OncoImmunology 2022; 11(1): 2104426
CrossRef Google scholar
[69]
So L, Obata-Ninomiya K, Hu A, Muir VS, Takamori A, Song J, Buckner JH, Savan R, Ziegler SF. Regulatory T cells suppress CD4+ effector T cell activation by controlling protein synthesis. J Exp Med 2023; 220(3): e20221676
CrossRef Google scholar
[70]
Wu RQ, Lao XM, Chen DP, Qin H, Mu M, Cao WJ, Deng J, Wan CC, Zhan WY, Wang JC, Xu L, Chen MS, Gao Q, Zheng L, Wei Y, Kuang DM. Immune checkpoint therapy-elicited sialylation of IgG antibodies impairs antitumorigenic type I interferon responses in hepatocellular carcinoma. Immunity 2023; 56(1): 180–192.e11
CrossRef Google scholar
[71]
Zhang B, Vogelzang A, Miyajima M, Sugiura Y, Wu Y, Chamoto K, Nakano R, Hatae R, Menzies RJ, Sonomura K, Hojo N, Ogawa T, Kobayashi W, Tsutsui Y, Yamamoto S, Maruya M, Narushima S, Suzuki K, Sugiya H, Murakami K, Hashimoto M, Ueno H, Kobayashi T, Ito K, Hirano T, Shiroguchi K, Matsuda F, Suematsu M, Honjo T, Fagarasan S. B cell-derived GABA elicits IL-10+ macrophages to limit anti-tumour immunity. Nature 2021; 599(7885): 471–476
CrossRef Google scholar
[72]
Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 2017; 14(7): 399–416
CrossRef Google scholar
[73]
Cerqueira C, Manfroi B, Fillatreau S. IL-10-producing regulatory B cells and plasmocytes: molecular mechanisms and disease relevance. Semin Immunol 2019; 44: 101323
CrossRef Google scholar
[74]
Shi Y, Liu Z, Wang H. Expression of PD-L1 on regulatory B cells in patients with acute myeloid leukaemia and its effect on prognosis. J Cell Mol Med 2022; 26(12): 3506–3512
CrossRef Google scholar
[75]
Zhao Y, Shen M, Feng Y, He R, Xu X, Xie Y, Shi X, Zhou M, Pan S, Wang M, Guo X, Qin R. Regulatory B cells induced by pancreatic cancer cell-derived interleukin-18 promote immune tolerance via the PD-1/PD-L1 pathway. Oncotarget 2018; 9(19): 14803–14814
CrossRef Google scholar
[76]
Shao Y, Lo CM, Ling CC, Liu XB, Ng KT, Chu AC, Ma YY, Li CX, Fan ST, Man K. Regulatory B cells accelerate hepatocellular carcinoma progression via CD40/CD154 signaling pathway. Cancer Lett 2014; 355(2): 264–272
CrossRef Google scholar
[77]
Zhou J, Zhou R, Zhu Y, Deng S, Muhuitijiang B, Li C, Shi X, Zhang L, Tan W. Investigating the impact of regulatory B cells and regulatory B cell-related genes on bladder cancer progression and immunotherapeutic sensitivity. J Exp Clin Cancer Res 2024; 43(1): 101
CrossRef Google scholar
[78]
Li S, Mirlekar B, Johnson BM, Brickey WJ, Wrobel JA, Yang N, Song D, Entwistle S, Tan X, Deng M, Cui Y, Li W, Vincent BG, Gale M Jr, Pylayeva-Gupta Y, Ting JP. STING-induced regulatory B cells compromise NK function in cancer immunity. Nature 2022; 610(7931): 373–380
CrossRef Google scholar
[79]
Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, Mitra S, Johansson I, Phung B, Harbst K, Vallon-Christersson J, van Schoiack A, Lovgren K, Warren S, Jirstrom K, Olsson H, Pietras K, Ingvar C, Isaksson K, Schadendorf D, Schmidt H, Bastholt L, Carneiro A, Wargo JA, Svane IM, Jonsson G. Author correction: Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 2020; 580(7801): E1
CrossRef Google scholar
[80]
Cottrell TR, Thompson ED, Forde PM, Stein JE, Duffield AS, Anagnostou V, Rekhtman N, Anders RA, Cuda JD, Illei PB, Gabrielson E, Askin FB, Niknafs N, Smith KN, Velez MJ, Sauter JL, Isbell JM, Jones DR, Battafarano RJ, Yang SC, Danilova L, Wolchok JD, Topalian SL, Velculescu VE, Pardoll DM, Brahmer JR, Hellmann MD, Chaft JE, Cimino-Mathews A, Taube JM. Pathologic features of response to neoadjuvant anti-PD-1 in resected non-small-cell lung carcinoma: a proposal for quantitative immune-related pathologic response criteria (irPRC). Ann Oncol 2018; 29(8): 1853–1860
CrossRef Google scholar
[81]
Hollern DP, Xu N, Thennavan A, Glodowski C, Garcia-Recio S, Mott KR, He X, Garay JP, Carey-Ewend K, Marron D, Ford J, Liu S, Vick SC, Martin M, Parker JS, Vincent BG, Serody JS, Perou CM. B cells and T follicular helper cells mediate response to checkpoint inhibitors in high mutation burden mouse models of breast cancer. Cell 2019; 179(5): 1191–1206.e21
CrossRef Google scholar
[82]
Jo A, Jeong D, Eum HH, Kim N, Na M, Kang H, Lee HO. CTLA-4 inhibition facilitates follicular T and B cell interaction and the production of tumor-specific antibodies. Int J Cancer 2023; 152(9): 1964–1976
CrossRef Google scholar
[83]
Sanchez-Alonso S, Setti-Jerez G, Arroyo M, Hernandez T, Martos MI, Sanchez-Torres JM, Colomer R, Ramiro AR, Alfranca A. A new role for circulating T follicular helper cells in humoral response to anti-PD-1 therapy. J Immunother Cancer 2020; 8(2): e001187
CrossRef Google scholar
[84]
Wang X, Wang G, Wang Z, Liu B, Han N, Li J, Lu C, Liu X, Zhang Q, Yang Q, Wang G. PD-1-expressing B cells suppress CD4+ and CD8+ T cells via PD-1/PD-L1-dependent pathway. Mol Immunol 2019; 109: 20–26
CrossRef Google scholar
[85]
Guan H, Lan Y, Wan Y, Wang Q, Wang C, Xu L, Chen Y, Liu W, Zhang X, Li Y, Gu Y, Wang Z, Xie F. PD-L1 mediated the differentiation of tumor-infiltrating CD19+ B lymphocytes and T cells in invasive breast cancer. OncoImmunology 2016; 5(2): e1075112
CrossRef Google scholar
[86]
Mintz MA, Cyster JG. T follicular helper cells in germinal center B cell selection and lymphomagenesis. Immunol Rev 2020; 296(1): 48–61
CrossRef Google scholar
[87]
Thibult ML, Mamessier E, Gertner-Dardenne J, Pastor S, Just-Landi S, Xerri L, Chetaille B, Olive D. PD-1 is a novel regulator of human B-cell activation. Int Immunol 2013; 25(2): 129–137
CrossRef Google scholar
[88]
Khan AR, Hams E, Floudas A, Sparwasser T, Weaver CT, Fallon PG. PD-L1hi B cells are critical regulators of humoral immunity. Nat Commun 2015; 6(1): 5997
CrossRef Google scholar
[89]
Martins F, Sofiya L, Sykiotis GP, Lamine F, Maillard M, Fraga M, Shabafrouz K, Ribi C, Cairoli A, Guex-Crosier Y, Kuntzer T, Michielin O, Peters S, Coukos G, Spertini F, Thompson JA, Obeid M. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol 2019; 16(9): 563–580
CrossRef Google scholar
[90]
Wu Y, Wang Z, Bai H, Gao Y. Thyroid dysfunction during PD-1 inhibitor treatment in patients with cancer: Incidence and association with progression-free survival. Oncol Lett 2022; 24(3): 309
CrossRef Google scholar
[91]
Herati RS, Knorr DA, Vella LA, Silva LV, Chilukuri L, Apostolidis SA, Huang AC, Muselman A, Manne S, Kuthuru O, Staupe RP, Adamski SA, Kannan S, Kurupati RK, Ertl HCJ, Wong JL, Bournazos S, McGettigan S, Schuchter LM, Kotecha RR, Funt SA, Voss MH, Motzer RJ, Lee CH, Bajorin DF, Mitchell TC, Ravetch JV, Wherry EJ. PD-1 directed immunotherapy alters Tfh and humoral immune responses to seasonal influenza vaccine. Nat Immunol 2022; 23(8): 1183–1192
CrossRef Google scholar
[92]
Osorio JC, Ni A, Chaft JE, Pollina R, Kasler MK, Stephens D, Rodriguez C, Cambridge L, Rizvi H, Wolchok JD, Merghoub T, Rudin CM, Fish S, Hellmann MD. Antibody-mediated thyroid dysfunction during T-cell checkpoint blockade in patients with non-small-cell lung cancer. Ann Oncol 2017; 28(3): 583–589
CrossRef Google scholar
[93]
Wang CJ, Heuts F, Ovcinnikovs V, Wardzinski L, Bowers C, Schmidt EM, Kogimtzis A, Kenefeck R, Sansom DM, Walker LS. CTLA-4 controls follicular helper T-cell differentiation by regulating the strength of CD28 engagement. Proc Natl Acad Sci USA 2015; 112(2): 524–529
CrossRef Google scholar
[94]
HasanMM, Nair SS, O'Leary JG, Thompson-Snipes L, Nyarige V, Wang J, Park W, Stegall M, Heilman R, Klintmalm GB, Joo H, Oh S. Implication of TIGIT+ human memory B cells in immune regulation. Nat Commun 2021; 12(1): 1534
[95]
Lino AC, Dang VD, Lampropoulou V, Welle A, Joedicke J, Pohar J, Simon Q, Thalmensi J, Baures A, Fluhler V, Sakwa I, Stervbo U, Ries S, Jouneau L, Boudinot P, Tsubata T, Adachi T, Hutloff A, Dorner T, Zimber-Strobl U, de Vos AF, Dahlke K, Loh G, Korniotis S, Goosmann C, Weill JC, Reynaud CA, Kaufmann SHE, Walter J, Fillatreau S. LAG-3 inhibitory receptor expression identifies immunosuppressive natural regulatory plasma cells. Immunity 2018; 49(1): 120–133.e9
CrossRef Google scholar
[96]
Bod L, Kye YC, Shi J, Torlai Triglia E, Schnell A, Fessler J, Ostrowski SM, Von-Franque MY, Kuchroo JR, Barilla RM, Zaghouani S, Christian E, Delorey TM, Mohib K, Xiao S, Slingerland N, Giuliano CJ, Ashenberg O, Li Z, Rothstein DM, Fisher DE, Rozenblatt-Rosen O, Sharpe AH, Quintana FJ, Apetoh L, Regev A, Kuchroo VK. B-cell-specific checkpoint molecules that regulate anti-tumour immunity. Nature 2023; 619(7969): 348–356
CrossRef Google scholar
[97]
Aravena O, Ferrier A, Menon M, Mauri C, Aguillon JC, Soto L, Catalan D. TIM-1 defines a human regulatory B cell population that is altered in frequency and function in systemic sclerosis patients. Arthritis Res Ther 2017; 19(1): 8
CrossRef Google scholar
[98]
Shankar S, Stolp J, Juvet SC, Beckett J, Macklin PS, Issa F, Hester J, Wood KJ. Ex vivo-expanded human CD19+TIM-1+ regulatory B cells suppress immune responses in vivo and are dependent upon the TIM-1/STAT3 axis. Nat Commun 2022; 13(1): 3121
CrossRef Google scholar
[99]
Pedrioli A, Oxenius A. Single B cell technologies for monoclonal antibody discovery. Trends Immunol 2021; 42(12): 1143–1158
CrossRef Google scholar
[100]
Crescioli S, White AL, Karagiannis SN. Special issue “antibody engineering for cancer immunotherapy”. Antibodies (Basel) 2022; 11(2): 29
CrossRef Google scholar
[101]
Lo Russo G, Moro M, Sommariva M, Cancila V, Boeri M, Centonze G, Ferro S, Ganzinelli M, Gasparini P, Huber V, Milione M, Porcu L, Proto C, Pruneri G, Signorelli D, Sangaletti S, Sfondrini L, Storti C, Tassi E, Bardelli A, Marsoni S, Torri V, Tripodo C, Colombo MP, Anichini A, Rivoltini L, Balsari A, Sozzi G, Garassino MC. Antibody-Fc/FcR interaction on macrophages as a mechanism for hyperprogressive disease in non-small cell lung cancer subsequent to PD-1/PD-L1 blockade. Clin Cancer Res 2019; 25(3): 989–999
CrossRef Google scholar
[102]
Zhou Y. HER2/neu-based vaccination with li-Key hybrid, GM-CSF immunoadjuvant and trastuzumab as a potent triple-negative breast cancer treatment. J Cancer Res Clin Oncol 2023; 149(9): 6711–6718
CrossRef Google scholar
[103]
Wiedermann U, Garner-Spitzer E, Chao Y, Maglakelidze M, Bulat I, Dechaphunkul A, Arpornwirat W, Charoentum C, Yen CJ, Yau TC, Tanasanvimon S, Maneechavakajorn J, Sookprasert A, Bai LY, Chou WC, Ungtrakul T, Drinic M, Tobias J, Zielinski CC, Chong L, Ede NJ, Marino MT, Good AJ. Clinical and immunologic responses to a B-cell epitope vaccine in patients with HER2/neu-overexpressing advanced gastric cancer-results from phase Ib trial IMU. ACS. 001. Clin Cancer Res 2021; 27(13): 3649–3660
CrossRef Google scholar
[104]
Kanzler H, Barrat FJ, Hessel EM, Coffman RL. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 2007; 13(5): 552–559
CrossRef Google scholar
[105]
Smith AS, Knochelmann HM, Wyatt MM, Rangel Rivera GO, Rivera-Reyes AM, Dwyer CJ, Ware MB, Cole AC, Neskey DM, Rubinstein MP, Liu B, Thaxton JE, Bartee E, Paulos CM. B cells imprint adoptively transferred CD8+ T cells with enhanced tumor immunity. J Immunother Cancer 2022; 10(1): 10
CrossRef Google scholar
[106]
Sagiv-Barfi I, Czerwinski DK, Shree T, Lohmeyer JJK, Levy R. Intratumoral immunotherapy relies on B and T cell collaboration. Sci Immunol 2022; 7(71): eabn5859
CrossRef Google scholar
[107]
Steinhagen F, Kinjo T, Bode C, Klinman DM. TLR-based immune adjuvants. Vaccine 2011; 29(17): 3341–3355
CrossRef Google scholar
[108]
Lee-Chang C, Miska J, Hou D, Rashidi A, Zhang P, Burga RA, Jusue-Torres I, Xiao T, Arrieta VA, Zhang DY, Lopez-Rosas A, Han Y, Sonabend AM, Horbinski CM, Stupp R, Balyasnikova IV, Lesniak MS. Activation of 4–1BBL+ B cells with CD40 agonism and IFNgamma elicits potent immunity against glioblastoma. J Exp Med 2021; 218: 1–1
[109]
Jackaman C, Cornwall S, Graham PT, Nelson DJ. CD40-activated B cells contribute to mesothelioma tumor regression. Immunol Cell Biol 2011; 89(2): 255–267
CrossRef Google scholar
[110]
Winkler JK, Schiller M, Bender C, Enk AH, Hassel JC. Rituximab as a therapeutic option for patients with advanced melanoma. Cancer Immunol Immunother 2018; 67(6): 917–924
CrossRef Google scholar
[111]
Pinc A, Somasundaram R, Wagner C, Hormann M, Karanikas G, Jalili A, Bauer W, Brunner P, Grabmeier-Pfistershammer K, Gschaider M, Lai CY, Hsu MY, Herlyn M, Stingl G, Wagner SN. Targeting CD20 in melanoma patients at high risk of disease recurrence. Mol Ther 2012; 20(5): 1056–1062
CrossRef Google scholar
[112]
Barbera-Guillem E, Nelson MB, Barr B, Nyhus JK, May KF Jr, Feng L, Sampsel JW. B lymphocyte pathology in human colorectal cancer. Experimental and clinical therapeutic effects of partial B cell depletion. Cancer Immunol Immunother 2000; 48(10): 541–549
CrossRef Google scholar
[113]
Gunderson AJ, Kaneda MM, Tsujikawa T, Nguyen AV, Affara NI, Ruffell B, Gorjestani S, Liudahl SM, Truitt M, Olson P, Kim G, Hanahan D, Tempero MA, Sheppard B, Irving B, Chang BY, Varner JA, Coussens LM. Bruton tyrosine kinase-dependent immune cell cross-talk drives pancreas cancer. Cancer Discov 2016; 6(3): 270–285
CrossRef Google scholar
[114]
Lee KE, Spata M, Bayne LJ, Buza EL, Durham AC, Allman D, Vonderheide RH, Simon MC. Hif1a deletion reveals pro-neoplastic function of B cells in pancreatic neoplasia. Cancer Discov 2016; 6(3): 256–269
CrossRef Google scholar
[115]
Yarchoan M, Mohan AA, Dennison L, Vithayathil T, Ruggieri A, Lesinski GB, Armstrong TD, Azad NS, Jaffee EM. MEK inhibition suppresses B regulatory cells and augments anti-tumor immunity. PLoS One 2019; 14(10): e0224600
CrossRef Google scholar
[116]
Das S, Bar-Sagi D. BTK signaling drives CD1dhiCD5+ regulatory B-cell differentiation to promote pancreatic carcinogenesis. Oncogene 2019; 38(17): 3316–3324
CrossRef Google scholar
[117]
Lee-Chang C, Bodogai M, Martin-Montalvo A, Wejksza K, Sanghvi M, Moaddel R, de Cabo R, Biragyn A. Inhibition of breast cancer metastasis by resveratrol-mediated inactivation of tumor-evoked regulatory B cells. J Immunol 2013; 191(8): 4141–4151
CrossRef Google scholar
[118]
Kinoshita T, Muramatsu R, Fujita T, Nagumo H, Sakurai T, Noji S, Takahata E, Yaguchi T, Tsukamoto N, Kudo-Saito C, Hayashi Y, Kamiyama I, Ohtsuka T, Asamura H, Kawakami Y. Prognostic value of tumor-infiltrating lymphocytes differs depending on histological type and smoking habit in completely resected non-small-cell lung cancer. Ann Oncol 2016; 27(11): 2117–2123
CrossRef Google scholar
[119]
Kurebayashi Y, Emoto K, Hayashi Y, Kamiyama I, Ohtsuka T, Asamura H, Sakamoto M. Comprehensive immune profiling of lung adenocarcinomas reveals four immunosubtypes with plasma cell subtype a negative indicator. Cancer Immunol Res 2016; 4(3): 234–247
CrossRef Google scholar
[120]
Ho KH, Chang CJ, Huang TW, Shih CM, Liu AJ, Chen PH, Cheng KT, Chen KC. Gene landscape and correlation between B-cell infiltration and programmed death ligand 1 expression in lung adenocarcinoma patients from The Cancer Genome Atlas data set. PLoS One 2018; 13(12): e0208459
CrossRef Google scholar
[121]
Isaeva OI, Sharonov GV, Serebrovskaya EO, Turchaninova MA, Zaretsky AR, Shugay M, Chudakov DM. Intratumoral immunoglobulin isotypes predict survival in lung adenocarcinoma subtypes. J Immunother Cancer 2019; 7(1): 279
CrossRef Google scholar
[122]
Wei B, Kong W, Mou X, Wang S. Comprehensive analysis of tumor immune infiltration associated with endogenous competitive RNA networks in lung adenocarcinoma. Pathol Res Pract 2019; 215(1): 159–170
CrossRef Google scholar
[123]
Chen J, Tan Y, Sun F, Hou L, Zhang C, Ge T, Yu H, Wu C, Zhu Y, Duan L, Wu L, Song N, Zhang L, Zhang W, Wang D, Chen C, Wu C, Jiang G, Zhang P. Single-cell transcriptome and antigen-immunoglobin analysis reveals the diversity of B cells in non-small cell lung cancer. Genome Biol 2020; 21(1): 152
CrossRef Google scholar
[124]
Lee HE, Luo L, Kroneman T, Passow MR, Del Rosario KM, Christensen MR, Francis ME, O’Shaughnessy JW, Blahnik AJ, Yang P, Yi ES. Increased plasma cells and decreased B-cells in tumor infiltrating lymphocytes are associated with worse survival in lung adenocarcinomas. J Clin Cell Immunol 2020; 11(1): 584
[125]
Ma C, Luo H, Cao J, Gao C, Fa X, Wang G. Independent prognostic implications of RRM2 in lung adenocarcinoma. J Cancer 2020; 11(23): 7009–7022
CrossRef Google scholar
[126]
Ma C, Luo H, Cao J, Zheng X, Zhang J, Zhang Y, Fu Z. Identification of a novel tumor microenvironment-associated eight-gene signature for prognosis prediction in lung adenocarcinoma. Front Mol Biosci 2020; 7: 571641
CrossRef Google scholar
[127]
Wang Z, Chen X. Establishment and validation of an immune-associated signature in lung adenocarcinoma. Int Immunopharmacol 2020; 88: 106867
CrossRef Google scholar
[128]
Zheng X, Li Y, Ma C, Zhang J, Zhang Y, Fu Z, Luo H. Independent prognostic potential of GNPNAT1 in lung adenocarcinoma. BioMed Res Int 2020; 2020(1): 8851437
CrossRef Google scholar
[129]
Zhou H, He Y, Li L, Wu C, Hu G. Overexpression of P4HA1 is correlated with poor survival and immune infiltrates in lung adenocarcinoma. BioMed Res Int 2020; 2020(1): 8024138
CrossRef Google scholar
[130]
Huang H, Zhang D, Fu J, Zhao L, Li D, Sun H, Liu X, Xu J, Tian T, Zhang L, Liu Y, Zhang Y, Zhao Y. Tsukushi is a novel prognostic biomarker and correlates with tumor-infiltrating B cells in non-small cell lung cancer. Aging (Albany NY) 2021; 13(3): 4428–4451
CrossRef Google scholar
[131]
Liu X, Shang X, Li J, Zhang S. The prognosis and immune checkpoint blockade efficacy prediction of tumor-infiltrating immune cells in lung cancer. Front Cell Dev Biol 2021; 9: 707143
CrossRef Google scholar
[132]
Zhang M, Huo C, Jiang Y, Liu J, Yang Y, Yin Y, Qu Y. AURKA and FAM83A are prognostic biomarkers and correlated with tumor-infiltrating lymphocytes in smoking related lung adenocarcinoma. J Cancer 2021; 12(6): 1742–1754
CrossRef Google scholar
[133]
Zhou CS, Feng MT, Chen X, Gao Y, Chen L, Li LD, Li DH, Cao YQ. Exonuclease 1 (EXO1) is a potential prognostic biomarker and correlates with immune infiltrates in lung adenocarcinoma. OncoTargets Ther 2021; 14: 1033–1048
CrossRef Google scholar
[134]
Harris RJ, Cheung A, Ng JCF, Laddach R, Chenoweth AM, Crescioli S, Fittall M, Dominguez-Rodriguez D, Roberts J, Levi D, Liu F, Alberts E, Quist J, Santaolalla A, Pinder SE, Gillett C, Hammar N, Irshad S, Van Hemelrijck M, Dunn-Walters DK, Fraternali F, Spicer JF, Lacy KE, Tsoka S, Grigoriadis A, Tutt ANJ, Karagiannis SN, Tumor-Infiltrating B. Lymphocyte profiling identifies IgG-biased, clonally expanded prognostic phenotypes in triple-negative breast cancer. Cancer Res 2021; 81(16): 4290–4304
CrossRef Google scholar
[135]
Kuroda H, Jamiyan T, Yamaguchi R, Kakumoto A, Abe A, Harada O, Masunaga A. Tumor-infiltrating B cells and T cells correlate with postoperative prognosis in triple-negative carcinoma of the breast. BMC Cancer 2021; 21(1): 286
CrossRef Google scholar
[136]
Kuroda H, Jamiyan T, Yamaguchi R, Kakumoto A, Abe A, Harada O, Enkhbat B, Masunaga A. Prognostic value of tumor-infiltrating B lymphocytes and plasma cells in triple-negative breast cancer. Breast Cancer 2021; 28(4): 904–914
CrossRef Google scholar
[137]
Schnellhardt S, Erber R, Buttner-Herold M, Rosahl MC, Ott OJ, Strnad V, Beckmann MW, King L, Hartmann A, Fietkau R, Distel L. Tumour-infiltrating inflammatory cells in early breast cancer: an underrated prognostic and predictive factor. Int J Mol Sci 2020; 21(21): 8238
CrossRef Google scholar
[138]
Wu ZH, Zhang YJ, Yue JX, Zhou T. Comprehensive analysis of the expression and prognosis for SFRPs in breast carcinoma. Cell Transplant 2020; 29: 963689720962479
CrossRef Google scholar
[139]
Li Y, Chen Z, Wu L, Ye J, Tao W. Cellular heterogeneity map of diverse immune and stromal phenotypes within breast tumor microenvironment. PeerJ 2020; 8: e9478
CrossRef Google scholar
[140]
Jiang J, Pan W, Xu Y, Ni C, Xue D, Chen Z, Chen W, Huang J. Tumour-infiltrating immune cell-based subtyping and signature gene analysis in breast cancer based on gene expression profiles. J Cancer 2020; 11(6): 1568–1583
CrossRef Google scholar
[141]
Althobiti M, Aleskandarany MA, Joseph C, Toss M, Mongan N, Diez-Rodriguez M, Nolan CC, Ashankyty I, Ellis IO, Green AR, Rakha EA. Heterogeneity of tumour-infiltrating lymphocytes in breast cancer and its prognostic significance. Histopathology 2018; 73(6): 887–896
CrossRef Google scholar
[142]
Yeong J, Lim JCT, Lee B, Li H, Chia N, Ong CCH, Lye WK, Putti TC, Dent R, Lim E, Thike AA, Tan PH, Iqbal J. High densities of tumor-associated plasma cells predict improved prognosis in triple negative breast cancer. Front Immunol 2018; 9: 1209
CrossRef Google scholar
[143]
Arias-Pulido H, Cimino-Mathews A, Chaher N, Qualls C, Joste N, Colpaert C, Marotti JD, Foisey M, Prossnitz ER, Emens LA, Fiering S. The combined presence of CD20 + B cells and PD-L1 + tumor-infiltrating lymphocytes in inflammatory breast cancer is prognostic of improved patient outcome. Breast Cancer Res Treat 2018; 171(2): 273–282
CrossRef Google scholar
[144]
Xu Y, Lan S, Zheng Q. Prognostic significance of infiltrating immune cell subtypes in invasive ductal carcinoma of the breast. Tumori 2018; 104(3): 196–201
CrossRef Google scholar
[145]
Miligy I, Mohan P, Gaber A, Aleskandarany MA, Nolan CC, Diez-Rodriguez M, Mukherjee A, Chapman C, Ellis IO, Green AR, Rakha EA. Prognostic significance of tumour infiltrating B lymphocytes in breast ductal carcinoma in situ. Histopathology 2017; 71(2): 258–268
CrossRef Google scholar
[146]
Song IH, Heo SH, Bang WS, Park HS, Park IA, Kim YA, Park SY, Roh J, Gong G, Lee HJ. Predictive value of tertiary lymphoid structures assessed by high endothelial venule counts in the neoadjuvant setting of triple-negative breast cancer. Cancer Res Treat 2017; 49(2): 399–407
CrossRef Google scholar
[147]
Mohammed ZM, Going JJ, Edwards J, Elsberger B, McMillan DC. The relationship between lymphocyte subsets and clinico-pathological determinants of survival in patients with primary operable invasive ductal breast cancer. Br J Cancer 2013; 109(6): 1676–1684
CrossRef Google scholar
[148]
Mahmoud SM, Lee AH, Paish EC, Macmillan RD, Ellis IO, Green AR. The prognostic significance of B lymphocytes in invasive carcinoma of the breast. Breast Cancer Res Treat 2012; 132(2): 545–553
CrossRef Google scholar
[149]
Ding G, Guo M, Yang Y, Sun C, Wu S, Liu X, Wang J, Jiang H, Liu Y, Zheng J. Large-section histopathology can better indicate the immune microenvironment and predict the prognosis of pancreatic ductal adenocarcinoma than small-section histopathology. Front Oncol 2021; 11: 694933
CrossRef Google scholar
[150]
Tang R, Liu X, Liang C, Hua J, Xu J, Wang W, Meng Q, Liu J, Zhang B, Yu X, Shi S. Deciphering the prognostic implications of the components and signatures in the immune microenvironment of pancreatic ductal adenocarcinoma. Front Immunol 2021; 12: 648917
CrossRef Google scholar
[151]
Lundgren S, Elebro J, Heby M, Nodin B, Leandersson K, Micke P, Jirstrom K, Mezheyeuski A. Quantitative, qualitative and spatial analysis of lymphocyte infiltration in periampullary and pancreatic adenocarcinoma. Int J Cancer 2020; 146(12): 3461–3473
CrossRef Google scholar
[152]
Miksch RC, Schoenberg MB, Weniger M, Bosch F, Ormanns S, Mayer B, Werner J, Bazhin AV, D’Haese JG. Prognostic impact of tumor-infiltrating lymphocytes and neutrophils on survival of patients with upfront resection of pancreatic cancer. Cancers (Basel) 2019; 11(1): 39
CrossRef Google scholar
[153]
Castino GF, Cortese N, Capretti G, Serio S, Di Caro G, Mineri R, Magrini E, Grizzi F, Cappello P, Novelli F, Spaggiari P, Roncalli M, Ridolfi C, Gavazzi F, Zerbi A, Allavena P, Marchesi F. Spatial distribution of B cells predicts prognosis in human pancreatic adenocarcinoma. OncoImmunology 2016; 5(4): e1085147
CrossRef Google scholar
[154]
Tewari N, Zaitoun AM, Arora A, Madhusudan S, Ilyas M, Lobo DN. The presence of tumour-associated lymphocytes confers a good prognosis in pancreatic ductal adenocarcinoma: an immunohistochemical study of tissue microarrays. BMC Cancer 2013; 13(1): 436
CrossRef Google scholar
[155]
Biswas S, Mandal G, Payne KK, Anadon CM, Gatenbee CD, Chaurio RA, Costich TL, Moran C, Harro CM, Rigolizzo KE, Mine JA, Trillo-Tinoco J, Sasamoto N, Terry KL, Marchion D, Buras A, Wenham RM, Yu X, Townsend MK, Tworoger SS, Rodriguez PC, Anderson AR, Conejo-Garcia JR. IgA transcytosis and antigen recognition govern ovarian cancer immunity. Nature 2021; 591(7850): 464–470
CrossRef Google scholar
[156]
Fucikova J, Rakova J, Hensler M, Kasikova L, Belicova L, Hladikova K, Truxova I, Skapa P, Laco J, Pecen L, Praznovec I, Halaska MJ, Brtnicky T, Kodet R, Fialova A, Pineau J, Gey A, Tartour E, Ryska A, Galluzzi L, Spisek R. TIM-3 dictates functional orientation of the immune infiltrate in ovarian cancer. Clin Cancer Res 2019; 25(15): 4820–4831
CrossRef Google scholar
[157]
Truxova I, Kasikova L, Hensler M, Skapa P, Laco J, Pecen L, Belicova L, Praznovec I, Halaska MJ, Brtnicky T, Salkova E, Rob L, Kodet R, Goc J, Sautes-Fridman C, Fridman WH, Ryska A, Galluzzi L, Spisek R, Fucikova J. Mature dendritic cells correlate with favorable immune infiltrate and improved prognosis in ovarian carcinoma patients. J Immunother Cancer 2018; 6(1): 139
CrossRef Google scholar
[158]
Lundgren S, Berntsson J, Nodin B, Micke P, Jirstrom K. Prognostic impact of tumour-associated B cells and plasma cells in epithelial ovarian cancer. J Ovarian Res 2016; 9(1): 21
CrossRef Google scholar
[159]
Milne K, Kobel M, Kalloger SE, Barnes RO, Gao D, Gilks CB, Watson PH, Nelson BH. Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FoxP3 and TIA-1 as positive prognostic factors. PLoS One 2009; 4(7): e6412
CrossRef Google scholar
[160]
Zeng F, Zhang Y, Han X, Zeng M, Gao Y, Weng J. Employing hypoxia characterization to predict tumour immune microenvironment, treatment sensitivity and prognosis in hepatocellular carcinoma. Comput Struct Biotechnol J 2021; 19: 2775–2789
CrossRef Google scholar
[161]
Liu S, Tang Q, Huang J, Zhan M, Zhao W, Yang X, Li Y, Qiu L, Zhang F, Lu L, He X. Prognostic analysis of tumor mutation burden and immune infiltration in hepatocellular carcinoma based on TCGA data. Aging (Albany NY) 2021; 13(8): 11257–11280
CrossRef Google scholar
[162]
Yin L, Chen L, Qi Z, Li J, Wang X, Ma K, Liu X. Gene expression-based immune infiltration analyses of liver cancer and their associations with survival outcomes. Cancer Genet 2021; 254–255: 75–81
CrossRef Google scholar
[163]
Tao P, Hong L, Tang W, Lu Q, Zhao Y, Zhang S, Ma L, Xue R. Comprehensive characterization of immunological profiles and clinical significance in hepatocellular carcinoma. Front Oncol 2020; 10: 574778
CrossRef Google scholar
[164]
Chen QF, Shi F, Huang T, Huang C, Shen L, Wu P, Li W. ASTN1 is associated with immune infiltrates in hepatocellular carcinoma, and inhibits the migratory and invasive capacity of liver cancer via the Wnt/beta-catenin signaling pathway. Oncol Rep 2020; 44: 1425–1440
CrossRef Google scholar
[165]
Zhang Z, Ma L, Goswami S, Ma J, Zheng B, Duan M, Liu L, Zhang L, Shi J, Dong L, Sun Y, Tian L, Gao Q, Zhang X. Landscape of infiltrating B cells and their clinical significance in human hepatocellular carcinoma. OncoImmunology 2019; 8(4): e1571388
CrossRef Google scholar
[166]
Brunner SM, Itzel T, Rubner C, Kesselring R, Griesshammer E, Evert M, Teufel A, Schlitt HJ, Fichtner-Feigl S. Tumor-infiltrating B cells producing antitumor active immunoglobulins in resected HCC prolong patient survival. Oncotarget 2017; 8(41): 71002–71011
CrossRef Google scholar
[167]
Shi JY, Gao Q, Wang ZC, Zhou J, Wang XY, Min ZH, Shi YH, Shi GM, Ding ZB, Ke AW, Dai Z, Qiu SJ, Song K, Fan J. Margin-infiltrating CD20+ B cells display an atypical memory phenotype and correlate with favorable prognosis in hepatocellular carcinoma. Clin Cancer Res 2013; 19(21): 5994–6005
CrossRef Google scholar
[168]
Liu W, Sun L, Zhang J, Song W, Li M, Wang H. The landscape and prognostic value of immune characteristics in uterine corpus endometrial cancer. Biosci Rep 2021; 41(4): 41
CrossRef Google scholar
[169]
Zhao L, Fu X, Han X, Yu Y, Ye Y, Gao J. Tumor mutation burden in connection with immune-related survival in uterine corpus endometrial carcinoma. Cancer Cell Int 2021; 21(1): 80
CrossRef Google scholar
[170]
Zou R, Zheng M, Tan M, Xu H, Luan N, Zhu L. Decreased PTGDS expression predicting poor survival of endometrial cancer by integrating weighted gene co-expression network analysis and immunohistochemical validation. Cancer Manag Res 2020; 12: 5057–5075
CrossRef Google scholar
[171]
Zhao Y, Chen C, Xu X, Ge X, Ding K, Zheng S, Wang J, Sun L. An efficient prognostic immune scoring system for colorectal cancer patients with peritoneal metastasis. OncoImmunology 2021; 10(1): 1901464
CrossRef Google scholar
[172]
Wang W, Zhong Y, Zhuang Z, Xie J, Lu Y, Huang C, Sun Y, Wu L, Yin J, Yu H, Jiang Z, Wang S, Wang C, Zhang Y, Huang Y, Han C, Zhong Z, Hu J, Ouyang Y, Liu H, Yu M, Wei X, Chen D, Huang L, Hou Y, Lin Z, Liu S, Ling F, Yao X. Multiregion single-cell sequencing reveals the transcriptional landscape of the immune microenvironment of colorectal cancer. Clin Transl Med 2021; 11(1): e253
CrossRef Google scholar
[173]
Wu D, Ding Y, Wang T, Cui P, Huang L, Min Z, Xu M. Significance of tumor-infiltrating immune cells in the prognosis of colon cancer. OncoTargets Ther 2020; 13: 4581–4589
CrossRef Google scholar
[174]
Mlecnik B, Van den Eynde M, Bindea G, Church SE, Vasaturo A, Fredriksen T, Lafontaine L, Haicheur N, Marliot F, Debetancourt D, Pairet G, Jouret-Mourin A, Gigot JF, Hubert C, Danse E, Dragean C, Carrasco J, Humblet Y, Valge-Archer V, Berger A, Pages F, Machiels JP, Galon J. Comprehensive intrametastatic immune quantification and major impact of immunoscore on survival. J Natl Cancer Inst 2018; 110(4): 438
CrossRef Google scholar
[175]
Phanthunane C, Wijers R, de Herdt M, Langeveld TPM, Koljenovic S, Dasgupta S, Sleijfer S, Baatenburg de Jong RJ, Hardillo J, Balcioglu HE, Debets R. B-cell clusters at the invasive margin associate with longer survival in early-stage oral-tongue cancer patients. OncoImmunology 2021; 10(1): 1882743
CrossRef Google scholar
[176]
Zhang L, Li B, Peng Y, Wu F, Li Q, Lin Z, Xie S, Xiao L, Lin X, Ou Z, Cai T, Rong H, Fan S, Li J. The prognostic value of TMB and the relationship between TMB and immune infiltration in head and neck squamous cell carcinoma: a gene expression-based study. Oral Oncol 2020; 110: 104943
CrossRef Google scholar
[177]
Kim SS, Shen S, Miyauchi S, Sanders PD, Franiak-Pietryga I, Mell L, Gutkind JS, Cohen EEW, Califano JA, Sharabi AB. B cells improve overall survival in HPV-associated squamous cell carcinomas and are activated by radiation and PD-1 blockade. Clin Cancer Res 2020; 26(13): 3345–3359
CrossRef Google scholar
[178]
Liang B, Tao Y, Wang T. Profiles of immune cell infiltration in head and neck squamous carcinoma. Biosci Rep 2020; 40(2): 40
CrossRef Google scholar
[179]
Song J, Deng Z, Su J, Yuan D, Liu J, Zhu J. Patterns of immune infiltration in HNC and their clinical implications: a gene expression-based study. Front Oncol 2019; 9: 1285
CrossRef Google scholar
[180]
Carrero I, Liu HC, Sikora AG, Milosavljevic A. Histoepigenetic analysis of HPV- and tobacco-associated head and neck cancer identifies both subtype-specific and common therapeutic targets despite divergent microenvironments. Oncogene 2019; 38(19): 3551–3568
CrossRef Google scholar
[181]
Schneider K, Marbaix E, Bouzin C, Hamoir M, Mahy P, Bol V, Gregoire V. Immune cell infiltration in head and neck squamous cell carcinoma and patient outcome: a retrospective study. Acta Oncol 2018; 57(9): 1165–1172
CrossRef Google scholar
[182]
Wirsing AM, Ervik IK, Seppola M, Uhlin-Hansen L, Steigen SE, Hadler-Olsen E. Presence of high-endothelial venules correlates with a favorable immune microenvironment in oral squamous cell carcinoma. Mod Pathol 2018; 31(6): 910–922
CrossRef Google scholar
[183]
Lao XM, Liang YJ, Su YX, Zhang SE, Zhou XI, Liao GQ. Distribution and significance of interstitial fibrosis and stroma-infiltrating B cells in tongue squamous cell carcinoma. Oncol Lett 2016; 11(3): 2027–2034
CrossRef Google scholar
[184]
Wang X, Xiong H, Liang D, Chen Z, Li X, Zhang K. The role of SRGN in the survival and immune infiltrates of skin cutaneous melanoma (SKCM) and SKCM-metastasis patients. BMC Cancer 2020; 20(1): 378
CrossRef Google scholar
[185]
Garg K, Maurer M, Griss J, Bruggen MC, Wolf IH, Wagner C, Willi N, Mertz KD, Wagner SN. Tumor-associated B cells in cutaneous primary melanoma and improved clinical outcome. Hum Pathol 2016; 54: 157–164
CrossRef Google scholar
[186]
Erdag G, Schaefer JT, Smolkin ME, Deacon DH, Shea SM, Dengel LT, Patterson JW, Slingluff CL Jr. Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma. Cancer Res 2012; 72(5): 1070–1080
CrossRef Google scholar
[187]
Ladanyi A, Kiss J, Mohos A, Somlai B, Liszkay G, Gilde K, Fejos Z, Gaudi I, Dobos J, Timar J. Prognostic impact of B-cell density in cutaneous melanoma. Cancer Immunol Immunother 2011; 60(12): 1729–1738
CrossRef Google scholar
[188]
Zhang Y, Wang F, Sun HR, Huang YK, Gao JP, Huang H. Apatinib combined with PD-L1 blockade synergistically enhances antitumor immune responses and promotes HEV formation in gastric cancer. J Cancer Res Clin Oncol 2021; 147(8): 2209–2222
CrossRef Google scholar
[189]
Yang KS, Xu CQ, Lv J. Identification and validation of the prognostic value of cyclic GMP-AMP synthase-stimulator of interferon (cGAS-STING) related genes in gastric cancer. Bioengineered 2021; 12(1): 1238–1250
CrossRef Google scholar
[190]
Yang Y, He W, Wang ZR, Wang YJ, Li LL, Lu JZ, Tao Y, Zhang J, Fu SJ, Wang ZP, Liu SH. Immune cell landscape in gastric cancer. BioMed Res Int 2021; 2021(1): 1930706
CrossRef Google scholar
[191]
Ni Z, Xing D, Zhang T, Ding N, Xiang D, Zhao Z, Qu J, Hu C, Shen X, Xue X, Zhou J. Tumor-infiltrating B cell is associated with the control of progression of gastric cancer. Immunol Res 2021; 69(1): 43–52
CrossRef Google scholar
[192]
Hennequin A, Derangere V, Boidot R, Apetoh L, Vincent J, Orry D, Fraisse J, Causeret S, Martin F, Arnould L, Beltjens F, Ghiringhelli F, Ladoire S. Tumor infiltration by Tbet+ effector T cells and CD20+ B cells is associated with survival in gastric cancer patients. OncoImmunology 2016; 5(2): e1054598
CrossRef Google scholar
[193]
Dong J, Li J, Liu SM, Feng XY, Chen S, Chen YB, Zhang XS. CD33+/p-STAT1+ double-positive cell as a prognostic factor for stage IIIa gastric cancer. Med Oncol 2013; 30(1): 442
CrossRef Google scholar
[194]
Haas M, Dimmler A, Hohenberger W, Grabenbauer GG, Niedobitek G, Distel LV. Stromal regulatory T-cells are associated with a favourable prognosis in gastric cancer of the cardia. BMC Gastroenterol 2009; 9(1): 65
CrossRef Google scholar
[195]
Zinovkin D, Pranjol MZ. Tumor-infiltrated lymphocytes, macrophages, and dendritic cells in endometrioid adenocarcinoma of corpus uteri as potential prognostic factors: an immunohistochemical study. Int J Gynecol Cancer 2016; 26(7): 1207–1212
CrossRef Google scholar
[196]
Pan Q, Wang L, Chai S, Zhang H, Li B. The immune infiltration in clear cell renal cell carcinoma and their clinical implications: a study based on TCGA and GEO databases. J Cancer 2020; 11(11): 3207–3215
CrossRef Google scholar
[197]
Stenzel PJ, Schindeldecker M, Tagscherer KE, Foersch S, Herpel E, Hohenfellner M, Hatiboglu G, Alt J, Thomas C, Haferkamp A, Roth W, Macher-Goeppinger S. Prognostic and predictive value of tumor-infiltrating leukocytes and of immune checkpoint molecules PD1 and PDL1 in clear cell renal cell carcinoma. Transl Oncol 2020; 13(2): 336–345
CrossRef Google scholar
[198]
Sjoberg E, Frodin M, Lovrot J, Mezheyeuski A, Johansson M, Harmenberg U, Egevad L, Sandstrom P, Ostman A. A minority-group of renal cell cancer patients with high infiltration of CD20+ B-cells is associated with poor prognosis. Br J Cancer 2018; 119(7): 840–846
CrossRef Google scholar
[199]
Xu X, Zhong Z, Shao Y, Yi Y. Prognostic value of MEG3 and its correlation with immune infiltrates in gliomas. Front Genet 2021; 12: 679097
CrossRef Google scholar
[200]
Yin W, Jiang X, Tan J, Xin Z, Zhou Q, Zhan C, Fu X, Wu Z, Guo Y, Jiang Z, Ren C, Tang G. Development and validation of a tumor mutation burden-related immune prognostic model for lower-grade glioma. Front Oncol 2020; 10: 1409
CrossRef Google scholar
[201]
Chen J, Wang Z, Wang W, Ren S, Xue J, Zhong L, Jiang T, Wei H, Zhang C. SYT16 is a prognostic biomarker and correlated with immune infiltrates in glioma: a study based on TCGA data. Int Immunopharmacol 2020; 84: 106490
CrossRef Google scholar
[202]
Zhou H, Ma Y, Liu F, Li B, Qiao D, Ren P, Wang M. Current advances in cancer vaccines targeting NY-ESO-1 for solid cancer treatment. Front Immunol 2023; 14: 1255799
CrossRef Google scholar
[203]
van Herpen CM, van der Voort R, van der Laak JA, Klasen IS, de Graaf AO, van Kempen LC, de Vries IJ, Boer TD, Dolstra H, Torensma R, van Krieken JH, Adema GJ, De Mulder PH. Intratumoral rhIL-12 administration in head and neck squamous cell carcinoma patients induces B cell activation. Int J Cancer 2008; 123(10): 2354–2361
CrossRef Google scholar
[204]
Somasundaram R, Zhang G, Fukunaga-Kalabis M, Perego M, Krepler C, Xu X, Wagner C, Hristova D, Zhang J, Tian T, Wei Z, Liu Q, Garg K, Griss J, Hards R, Maurer M, Hafner C, Mayerhofer M, Karanikas G, Jalili A, Bauer-Pohl V, Weihsengruber F, Rappersberger K, Koller J, Lang R, Hudgens C, Chen G, Tetzlaff M, Wu L, Frederick DT, Scolyer RA, Long GV, Damle M, Ellingsworth C, Grinman L, Choi H, Gavin BJ, Dunagin M, Raj A, Scholler N, Gross L, Beqiri M, Bennett K, Watson I, Schaider H, Davies MA, Wargo J, Czerniecki BJ, Schuchter L, Herlyn D, Flaherty K, Herlyn M, Wagner SN. Tumor-associated B-cells induce tumor heterogeneity and therapy resistance. Nat Commun 2017; 8(1): 607
CrossRef Google scholar

Acknowledgments

This work was supported by funds from the National Natural Science Foundation of China (Nos. 32141004, 81825010 and 82302036),and the Ministry of Science and Technology of China (Nos. 2021YFC2300500 and 2021YFC2302403).

Compliance with ethics guidelines

Conflicts of interest Na Kang, Qinghui Duan, Xin Min, Tong Li, Yuxin Li, Ji Gao and Wanli Liu have declared that no conflict of interest exists.
This is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(4211 KB)

93

Accesses

0

Citations

Detail

Sections
Recommended

/