
Advancements in the research of the structure, function, and disease-related roles of ARMC5
Yang Qu, Fan Yang, Yafang Deng, Haitao Li, Yidong Zhou, Xuebin Zhang
Front. Med. ››
Advancements in the research of the structure, function, and disease-related roles of ARMC5
The armadillo repeat containing 5 (ARMC5) gene is part of a family of protein-coding genes that are rich in armadillo repeat sequences, are ubiquitously present in eukaryotes, and mediate interactions between proteins, playing roles in various cellular processes. Current research has demonstrated that reduced expression or absence of the ARMC5 gene in various tumor tissues can lead to uncontrolled cell proliferation, thereby inducing a range of diseases. The ARMC5 gene was initially extensively studied in the context of bilateral macronodular adrenocortical disease (BMAD), with harmful pathogenic variants in ARMC5 identified in approximately 50% of BMAD patients. With advancing research, scientists have discovered that ARMC5 pathogenic variants may also have potential effects on other diseases and could be associated with increased susceptibility to certain cancers. This review aims to present the latest research progress on how the ARMC5 gene plays its role in tumors. It outlines the basic structure of ARMC5 and the regions where it functions, as well as the diseases currently proven to be associated with ARMC5. Moreover, some evidence suggests its relation to embryonic development and the regulation of immune system activity. In conclusion, the ARMC5 gene is a crucial focal point in genetic and medical research. Understanding its function and regulation is of great importance for the development of new therapeutic strategies related to diseases associated with its pathogenic variants.
ARMC5 gene / BMAD / meningioma / primary aldosteronism / renal cell carcinoma
[1] |
Hu Y, Lao L, Mao J, Jin W, Luo H, Charpentier T, Qi S, Peng J, Hu B, Marcinkiewicz MM, Lamarre A, Wu J. Armc5 deletion causes developmental defects and compromises T-cell immune responses. Nat Commun 2017; 8(1): 13834
CrossRef
Google scholar
|
[2] |
Peifer M, Berg S, Reynolds AB. A repeating amino acid motif shared by proteins with diverse cellular roles. Cell 1994; 76(5): 789–791
CrossRef
Google scholar
|
[3] |
Tewari R, Bailes E, Bunting KA, Coates JC. Armadillo-repeat protein functions: questions for little creatures. Trends Cell Biol 2010; 20(8): 470–481
CrossRef
Google scholar
|
[4] |
Assié G, Libé R, Espiard S, Rizk-Rabin M, Guimier A, Luscap W, Barreau O, Lefèvre L, Sibony M, Guignat L, Rodriguez S, Perlemoine K, René-Corail F, Letourneur F, Trabulsi B, Poussier A, Chabbert-Buffet N, Borson-Chazot F, Groussin L, Bertagna X, Stratakis CA, Ragazzon B, Bertherat J. ARMC5 mutations in macronodular adrenal hyperplasia with Cushing’s syndrome. N Engl J Med 2013; 369(22): 2105–2114
CrossRef
Google scholar
|
[5] |
Lodish M, Stratakis CA. A genetic and molecular update on adrenocortical causes of Cushing syndrome. Nat Rev Endocrinol 2016; 12(5): 255–262
CrossRef
Google scholar
|
[6] |
Espiard S, Drougat L, Libé R, Assié G, Perlemoine K, Guignat L, Barrande G, Brucker-Davis F, Doullay F, Lopez S, Sonnet E, Torremocha F, Pinsard D, Chabbert-Buffet N, Raffin-Sanson ML, Groussin L, Borson-Chazot F, Coste J, Bertagna X, Stratakis CA, Beuschlein F, Ragazzon B, Bertherat J. ARMC5 mutations in a large cohort of primary macronodular adrenal hyperplasia: clinical and functional consequences. J Clin Endocrinol Metab 2015; 100(6): E926–E935
CrossRef
Google scholar
|
[7] |
Yu L, Zhang J, Guo X, Chen X, He Z, He Q. ARMC5 mutations in familial and sporadic primary bilateral macronodular adrenal hyperplasia. PLoS One 2018; 13(1): e0191602
CrossRef
Google scholar
|
[8] |
Berthon A, Faucz F, Bertherat J, Stratakis CA. Analysis of ARMC5 expression in human tissues. Mol Cell Endocrinol 2017; 441: 140–145
CrossRef
Google scholar
|
[9] |
Elbelt U, Trovato A, Kloth M, Gentz E, Finke R, Spranger J, Galas D, Weber S, Wolf C, König K, Arlt W, Büttner R, May P, Allolio B, Schneider JG. Molecular and clinical evidence for an ARMC5 tumor syndrome: concurrent inactivating germline and somatic mutations are associated with both primary macronodular adrenal hyperplasia and meningioma. J Clin Endocrinol Metab 2015; 100(1): E119–E128
CrossRef
Google scholar
|
[10] |
Drougat L, Espiard S, Bertherat J. Genetics of primary bilateral macronodular adrenal hyperplasia: a model for early diagnosis of Cushing’s syndrome. Eur J Endocrinol 2015; 173(4): M121–M131
CrossRef
Google scholar
|
[11] |
Huang Y, Jiang Z, Gao X, Luo P, Jiang X. ARMC subfamily: structures, functions, evolutions, interactions, and diseases. Front Mol Biosci 2021; 8: 791597
CrossRef
Google scholar
|
[12] |
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G, Yin G. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther 2022; 7(1): 3
CrossRef
Google scholar
|
[13] |
Xu W, Kimelman D. Mechanistic insights from structural studies of β-catenin and its binding partners. J Cell Sci 2007; 120(19): 3337–3344
CrossRef
Google scholar
|
[14] |
Stogios PJ, Downs GS, Jauhal JJ, Nandra SK, Privé GG. Sequence and structural analysis of BTB domain proteins. Genome Biol 2005; 6(10): R82
CrossRef
Google scholar
|
[15] |
Cheng J, Guo J, Wang Z, North BJ, Tao K, Dai X, Wei W. Functional analysis of Cullin 3 E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 2018; 1869: 11–28
CrossRef
Google scholar
|
[16] |
FieldsSSong O. A novel genetic system to detect protein-protein interactions. Nature 1989; 340(6230): 20; 245–246
|
[17] |
Yan G, Liu N, Tian J, Fu Y, Wei W, Zou J, Li S, Wang Q, Li K, Wang J. 1Deubiquitylation and stabilization of ARMC5 by ubiquitin-specific processing protease 7 (USP7) are critical for RCC proliferation. J Cell Mol Med 2021; 25(6): 3149–3159
CrossRef
Google scholar
|
[18] |
Iconomou M, Saunders DN. Systematic approaches to identify E3 ligase substrates. Biochem J 2016; 473(22): 4083–4101
CrossRef
Google scholar
|
[19] |
Andérica-Romero AC, González-Herrera IG, Santamaría A, Pedraza-Chaverri J. Cullin 3 as a novel target in diverse pathologies. Redox Biol 2013; 1(1): 366–372
CrossRef
Google scholar
|
[20] |
Bennett EJ, Rush J, Gygi SP, Harper JW. Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell 2010; 143(6): 951–965
CrossRef
Google scholar
|
[21] |
Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, Baltier K, Colby G, Gebreab F, Gygi MP, Parzen H, Szpyt J, Tam S, Zarraga G, Pontano-Vaites L, Swarup S, White AE, Schweppe DK, Rad R, Erickson BK, Obar RA, Guruharsha KG, Li K, Artavanis-Tsakonas S, Gygi SP, Harper JW. Architecture of the human interactome defines protein communities and disease networks. Nature 2017; 545(7655): 505–509
CrossRef
Google scholar
|
[22] |
Gagliardi L, Schreiber AW, Hahn CN, Feng J, Cranston T, Boon H, Hotu C, Oftedal BE, Cutfield R, Adelson DL, Braund WJ, Gordon RD, Rees DA, Grossman AB, Torpy DJ, Scott HS. ARMC5 mutations are common in familial bilateral macronodular adrenal hyperplasia. J Clin Endocrinol Metab 2014; 99(9): E1784–E1792
CrossRef
Google scholar
|
[23] |
Xu Y, Banerjee D, Huelsken J, Birchmeier W, Sen JM. Deletion of beta-catenin impairs T cell development. Nat Immunol 2003; 4(12): 1177–1182
CrossRef
Google scholar
|
[24] |
Mucenski ML, Wert SE, Nation JM, Loudy DE, Huelsken J, Birchmeier W, Morrisey EE, Whitsett JA. β-catenin is required for specification of proximal/distal cell fate during lung morphogenesis. J Biol Chem 2003; 278(41): 40231–40238
CrossRef
Google scholar
|
[25] |
Zhao T, Gan Q, Stokes A, Lassiter RNT, Wang Y, Chan J, Han JX, Pleasure DE, Epstein JA, Zhou CJ. β-catenin regulates Pax3 and Cdx2 for caudal neural tube closure and elongation. Development 2014; 141(1): 148–157
CrossRef
Google scholar
|
[26] |
Dao DY, Jonason JH, Zhang Y, Hsu W, Chen D, Hilton MJ, O’Keefe RJ. Cartilage-specific β-catenin signaling regulates chondrocyte maturation, generation of ossification centers, and perichondrial bone formation during skeletal development. J Bone Miner Res 2012; 27(8): 1680–1694
CrossRef
Google scholar
|
[27] |
Kim AC, Reuter AL, Zubair M, Else T, Serecky K, Bingham NC, Lavery GG, Parker KL, Hammer GD. Targeted disruption of β-catenin in Sf1-expressing cells impairs development and maintenance of the adrenal cortex. Development 2008; 135(15): 2593–2602
CrossRef
Google scholar
|
[28] |
Simcha I, Geiger B, Yehuda-Levenberg S, Salomon D, Ben-Ze’ev A. Suppression of tumorigenicity by plakoglobin: an augmenting effect of N-cadherin. J Cell Biol 1996; 133(1): 199–209
CrossRef
Google scholar
|
[29] |
Chevalier B, Vantyghem MC, Espiard S. Bilateral adrenal hyperplasia: pathogenesis and treatment. Biomedicines 2021; 9(10): 1397
CrossRef
Google scholar
|
[30] |
Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971; 68(4): 820–823
CrossRef
Google scholar
|
[31] |
Lao L, Bourdeau I, Gagliardi L, He X, Shi W, Hao B, Tan M, Hu Y, Peng J, Coulombe B, Torpy DJ, Scott HS, Lacroix A, Luo H, Wu J. ARMC5 is part of an RPB1-specific ubiquitin ligase implicated in adrenal hyperplasia. Nucleic Acids Res 2022; 50(11): 6343–6367
CrossRef
Google scholar
|
[32] |
Cavalcante IP, Vaczlavik A, Drougat L, Lotfi CFP, Perlemoine K, Ribes C, Rizk-Rabin M, Clauser E, Fragoso MCBV, Bertherat J, Ragazzon B. Cullin 3 targets the tumor suppressor gene ARMC5 for ubiquitination and degradation. Endocr Relat Cancer 2020; 27(4): 221–230
CrossRef
Google scholar
|
[33] |
Cavalcante IP, Berthon A, Fragoso MC, Reincke M, Stratakis CA, Ragazzon B, Bertherat J. Primary bilateral macronodular adrenal hyperplasia: definitely a genetic disease. Nat Rev Endocrinol 2022; 18(11): 699–711
CrossRef
Google scholar
|
[34] |
Berthon A, Faucz FR, Espiard S, Drougat L, Bertherat J, Stratakis CA. Age-dependent effects of Armc5 haploinsufficiency on adrenocortical function. Hum Mol Genet 2017; 26(18): 3495–3507
CrossRef
Google scholar
|
[35] |
Lee S, Hwang R, Lee J, Rhee Y, Kim DJ, Chung UI, Lim SK. Ectopic expression of vasopressin V1b and V2 receptors in the adrenal glands of familial ACTH-independent macronodular adrenal hyperplasia. Clin Endocrinol (Oxf) 2005; 63(6): 625–630
CrossRef
Google scholar
|
[36] |
Lacroix A. ACTH-independent macronodular adrenal hyperplasia. Best Pract Res Clin Endocrinol Metab 2009; 23(2): 245–259
CrossRef
Google scholar
|
[37] |
Louiset E, Duparc C, Young J, Renouf S, Tetsi Nomigni M, Boutelet I, Libé R, Bram Z, Groussin L, Caron P, Tabarin A, Grunenberger F, Christin-Maitre S, Bertagna X, Kuhn JM, Anouar Y, Bertherat J, Lefebvre H. Intraadrenal corticotropin in bilateral macronodular adrenal hyperplasia. N Engl J Med 2013; 369(22): 2115–2125
CrossRef
Google scholar
|
[38] |
Bertherat J, Bourdeau I, Bouys L, Chasseloup F, Kamenický P, Lacroix A. Clinical, pathophysiologic, genetic, and therapeutic progress in primary bilateral macronodular adrenal hyperplasia. Endocr Rev 2023; 44(4): 567–628
CrossRef
Google scholar
|
[39] |
Le Mestre J, Thomas M, Duparc C, Val P, Bures C, Tuech JJ, Sabourin JC, Baert-Desurmont S, Lefebvre H, Louiset E. β-catenin activation and illicit receptor expression in adrenocortical cells. Endocr Relat Cancer 2022; 29(3): 151–162
CrossRef
Google scholar
|
[40] |
Pawlikowski M. Direct actions of gonadotropins beyond the reproductive system and their role in human aging and neoplasia. Endokrynol Pol 2019; 70(5): 437–444
CrossRef
Google scholar
|
[41] |
Lecoq A-L, Stratakis CA, Viengchareun S, Chaligné R, Tosca L, Deméocq V, Hage M, Berthon A, Faucz FR, Hanna P, Boyer H-G, Servant N, Salenave S, Tachdjian G, Adam C, Benhamo V, Clauser E, Guiochon-Mantel A, Young J, Lombès M, Bourdeau I, Maiter D, Tabarin A, Bertherat J, Lefebvre H, de Herder W, Louiset E, Lacroix A, Chanson P, Bouligand J, Kamenický P. Adrenal GIPR expression and chromosome 19q13 microduplications in GIP-dependent Cushing’s syndrome. JCI Insight 2017; 2: e92184]
CrossRef
Google scholar
|
[42] |
Ghayee HK, Rege J, Watumull LM, Nwariaku FE, Carrick KS, Rainey WE, Miller WL, Auchus RJ. Clinical, biochemical, and molecular characterization of macronodular adrenocortical hyperplasia of the zona reticularis: a new syndrome. J Clin Endocrinol Metab 2011; 96(2): E243–E250
CrossRef
Google scholar
|
[43] |
Goodarzi MO, Dawson DW, Li X, Lei Z, Shintaku P, Rao CV, Van Herle AJ. Virilization in bilateral macronodular adrenal hyperplasia controlled by luteinizing hormone. J Clin Endocrinol Metab 2003; 88(1): 73–77
CrossRef
Google scholar
|
[44] |
Malchoff CD, Rosa J, DeBold CR, Kozol RA, Ramsby GR, Page DL, Malchoff DM, Orth DN. Adrenocorticotropin-independent bilateral macronodular adrenal hyperplasia: an unusual cause of Cushing’s syndrome. J Clin Endocrinol Metab 1989; 68(4): 855–860
CrossRef
Google scholar
|
[45] |
Espiard S, Drougat L, Libé R, Assié G, Perlemoine K, Guignat L, Barrande G, Brucker-Davis F, Doullay F, Lopez S, Sonnet E, Torremocha F, Pinsard D, Chabbert-Buffet N, Raffin-Sanson ML, Groussin L, Borson-Chazot F, Coste J, Bertagna X, Stratakis CA, Beuschlein F, Ragazzon B, Bertherat J. ARMC5 mutations in a large cohort of primary macronodular adrenal hyperplasia: clinical and functional consequences. J Clin Endocrinol Metab 2015; 100(6): E926–E935
CrossRef
Google scholar
|
[46] |
Ohashi A, Yamada Y, Sakaguchi K, Inoue T, Kubo M, Fushimi H. A natural history of adrenocorticotropin-independent bilateral adrenal macronodular hyperplasia (AIMAH) from preclinical to clinically overt Cushing’s syndrome. Endocr J 2001; 48(6): 677–683
CrossRef
Google scholar
|
[47] |
Findlay JC, Sheeler LR, Engeland WC, Aron DC. Familial adrenocorticotropin-independent Cushing’s syndrome with bilateral macronodular adrenal hyperplasia. J Clin Endocrinol Metab 1993; 76: 189–191
|
[48] |
Minami S, Sugihara H, Sato J, Tatsukuchi A, Sugisaki Y, Sasano H, Wakabayashi I. ACTH independent Cushing’s syndrome occurring in siblings. Clin Endocrinol (Oxf) 1996; 44(4): 483–488
CrossRef
Google scholar
|
[49] |
Imöhl M, Köditz R, Stachon A, Müller KM, Nicolas V, Pfeilschifter J, Krieg M. Catecholamine-dependent hereditary Cushing’s syndrome—follow-up after unilateral adrenalectomy. Med Klin (Munich) 2002; 97(12): 747–753
CrossRef
Google scholar
|
[50] |
Miyamura N, Taguchi T, Murata Y, Taketa K, Iwashita S, Matsumoto K, Nishikawa T, Toyonaga T, Sakakida M, Araki E. Inherited adrenocorticotropin-independent macronodular adrenal hyperplasia with abnormal cortisol secretion by vasopressin and catecholamines: detection of the aberrant hormone receptors on adrenal gland. Endocr J 2002; 19(3): 319–326
CrossRef
Google scholar
|
[51] |
Nies C, Bartsch DK, Ehlenz K, Wild A, Langer P, Fleischhacker S, Rothmund M. Familial ACTH-independent Cushing’s syndrome with bilateral macronodular adrenal hyperplasia clinically affecting only female family members. Exp Clin Endocrinol Diabetes 2002; 110(6): 277–283
CrossRef
Google scholar
|
[52] |
Watson TD, Patel SJ, Nardi PM. Case 121: familial adrenocorticotropin-independent macronodular adrenal hyperplasia causing Cushing syndrome. Radiology 2007; 244(3): 923–926
CrossRef
Google scholar
|
[53] |
Vezzosi D, Cartier D, Régnier C, Otal P, Bennet A, Parmentier F, Plantavid M, Lacroix A, Lefebvre H, Caron P. Familial adrenocorticotropin-independent macronodular adrenal hyperplasia with aberrant serotonin and vasopressin adrenal receptors. Eur J Endocrinol 2007; 156(1): 21–31
CrossRef
Google scholar
|
[54] |
Gagliardi L, Hotu C, Casey G, Braund WJ, Ling KH, Dodd T, Manavis J, Devitt PG, Cutfield R, Rudzki Z, Scott HS, Torpy DJ. Familial vasopressin-sensitive ACTH-independent macronodular adrenal hyperplasia (VPs-AIMAH): clinical studies of three kindreds. Clin Endocrinol (Oxf) 2009; 70(6): 883–891
CrossRef
Google scholar
|
[55] |
Alencar GA, Lerario AM, Nishi MY, Mariani BM de P, Almeida MQ, Tremblay J, Hamet P, Bourdeau I, Zerbini MCN, Pereira MAA, Gomes GC, Rocha M de S, Chambo JL, Lacroix A, Mendonca BB, Fragoso MCBV. ARMC5 mutations are a frequent cause of primary macronodular adrenal hyperplasia. J Clin Endocrinol Metab 2014; 99(8): E1501–E1509
CrossRef
Google scholar
|
[56] |
Faucz FR, Zilbermint M, Lodish MB, Szarek E, Trivellin G, Sinaii N, Berthon A, Libé R, Assié G, Espiard S, Drougat L, Ragazzon B, Bertherat J, Stratakis CA. Macronodular adrenal hyperplasia due to mutations in an armadillo repeat containing 5 (ARMC5) gene: a clinical and genetic investigation. J Clin Endocrinol Metab 2014; 99(6): E1113–E1119
CrossRef
Google scholar
|
[57] |
Cavalcante IP, Nishi M, Zerbini MCN, Almeida MQ, Brondani VB, Botelho MLA de A, Tanno FY, Srougi V, Chambo JL, Mendonca BB, Bertherat J, Lotfi CFP, Fragoso MCBV. The role of ARMC5 in human cell cultures from nodules of primary macronodular adrenocortical hyperplasia (PMAH). Mol Cell Endocrinol 2018; 460: 36–46
CrossRef
Google scholar
|
[58] |
Bourdeau I, Antonini SR, Lacroix A, Kirschner LS, Matyakhina L, Lorang D, Libutti SK, Stratakis CA. Gene array analysis of macronodular adrenal hyperplasia confirms clinical heterogeneity and identifies several candidate genes as molecular mediators. Oncogene 2004; 23(8): 1575–1585
CrossRef
Google scholar
|
[59] |
Assie G, Louiset E, Sturm N, René-Corail F, Groussin L, Bertherat J, Thomas M, Lefebvre H, Feige JJ, Clauser E, Chabre O, Cherradi N. Systematic analysis of G protein-coupled receptor gene expression in adrenocorticotropin-independent macronodular adrenocortical hyperplasia identifies novel targets for pharmacological control of adrenal Cushing’s syndrome. J Clin Endocrinol Metab 2010; 95(10): E253–E262
CrossRef
Google scholar
|
[60] |
Wurth R, Tirosh A, Kamilaris CDC, Camacho J, Faucz FR, Maria AG, Berthon A, Papadakis GZ, Nilubol N, Hamimi A, Gharib AM, Demidowich A, Zilbermint M, Eisenhofer G, Braun L, Reincke M, Stratakis CA, Hannah-Shmouni F. Volumetric modeling of adrenal gland size in primary bilateral macronodular adrenocortical hyperplasia. J Endocr Soc 2021; 5(1): bvaa162
CrossRef
Google scholar
|
[61] |
Correa R, Zilbermint M, Berthon A, Espiard S, Batsis M, Papadakis GZ, Xekouki P, Lodish MB, Bertherat J, Faucz FR, Stratakis CA. The ARMC5 gene shows extensive genetic variance in primary macronodular adrenocortical hyperplasia. Eur J Endocrinol 2015; 173(4): 435–440
CrossRef
Google scholar
|
[62] |
Albiger NM, Regazzo D, Rubin B, Ferrara AM, Rizzati S, Taschin E, Ceccato F, Arnaldi G, Pecori Giraldi F, Stigliano A, Cerquetti L, Grimaldi F, De Menis E, Boscaro M, Iacobone M, Occhi G, Scaroni C. A multicenter experience on the prevalence of ARMC5 mutations in patients with primary bilateral macronodular adrenal hyperplasia: from genetic characterization to clinical phenotype. Endocrine 2017; 55(3): 959–968
CrossRef
Google scholar
|
[63] |
Bourdeau I, Oble S, Magne F, Lévesque I, Cáceres-Gorriti KY, Nolet S, Awadalla P, Tremblay J, Hamet P, Fragoso MCBV, Lacroix A. ARMC5 mutations in a large French-Canadian family with cortisol-secreting β-adrenergic/vasopressin responsive bilateral macronodular adrenal hyperplasia. Eur J Endocrinol 2016; 174(1): 85–96
CrossRef
Google scholar
|
[64] |
Rego T, Fonseca F, Espiard S, Perlemoine K, Bertherat J, Agapito A. ARMC5 mutation in a Portuguese family with primary bilateral macronodular adrenal hyperplasia (PBMAH). Endocrinol Diabetes Metab Case Rep 2017; 2017: 16–0135
CrossRef
Google scholar
|
[65] |
Suzuki S, Tatsuno I, Oohara E, Nakayama A, Komai E, Shiga A, Kono T, Takiguchi T, Higuchi S, Sakuma I, Nagano H, Hashimoto N, Mayama T, Koide H, Sasano H, Nakatani Y, Imamoto T, Ichikawa T, Yokote K, Tanaka T. Germline deletion of ARMC5 in familial primary macronodular adrenal hyperplasia. Endocr Pract 2015; 21(10): 1152–1160
CrossRef
Google scholar
|
[66] |
Stratakis CA, Berthon A. Molecular mechanisms of ARMC5 mutations in adrenal pathophysiology. Curr Opin Endocr Metab Res 2019; 8: 104–111
CrossRef
Google scholar
|
[67] |
Kyo C, Usui T, Kosugi R, Torii M, Yonemoto T, Ogawa T, Kotani M, Tamura N, Yamamoto Y, Katabami T, Kurihara I, Saito K, Kanamoto N, Fukuoka H, Wada N, Murabe H, Inoue T. ARMC5 alterations in primary macronodular adrenal hyperplasia (PMAH) and the clinical state of variant carriers. J Endocr Soc 2019; 3(10): 1837–1846
CrossRef
Google scholar
|
[68] |
Calhoun DA, Nishizaka MK, Zaman MA, Thakkar RB, Weissmann P. Hyperaldosteronism among black and white subjects with resistant hypertension. Hypertension 2002; 40(6): 892–896
CrossRef
Google scholar
|
[69] |
Bouys L, Vaczlavik A, Jouinot A, Vaduva P, Espiard S, Assié G, Libé R, Perlemoine K, Ragazzon B, Guignat L, Groussin L, Bricaire L, Cavalcante IP, Bonnet-Serrano F, Lefebvre H, Raffin-Sanson ML, Chevalier N, Touraine P, Jublanc C, Vatier C, Raverot G, Haissaguerre M, Maione L, Kroiss M, Fassnacht M, Christin-Maitre S, Pasmant E, Borson-Chazot F, Tabarin A, Vantyghem MC, Reincke M, Kamenicky P, North MO, Bertherat J. Identification of predictive criteria for pathogenic variants of primary bilateral macronodular adrenal hyperplasia (PBMAH) gene ARMC5 in 352 unselected patients. Eur J Endocrinol 2022; 187(1): 123–134
CrossRef
Google scholar
|
[70] |
SwainJMGrant CSSchlinkertRTThompsonGBvanHeerden JALloydRVYoungWF. Corticotropin-independent macronodular adrenal hyperplasia: a clinicopathologic correlation. Arch Surg 1998; 133(5): 541–545, discussion 541–545
|
[71] |
Eghbali M, Cheraghi S, Samanian S, Rad I, Meghdadi J, Akbari H, Honardoost M. A novel ARMC5 germline variant in primary macronodular adrenal hyperplasia using whole-exome sequencing. Diagnostics (Basel) 2022; 12(12): 3028
CrossRef
Google scholar
|
[72] |
Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 2016; 131(6): 803–820
CrossRef
Google scholar
|
[73] |
ClausEBBondy MLSchildkrautJMWiemelsJLWrenschM BlackPM. Epidemiology of intracranial meningioma. Neurosurgery 2005; 57(6): 1088–1095
|
[74] |
Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro-oncol 2017; 19(suppl_5): v1–v88
CrossRef
Google scholar
|
[75] |
Wiemels J, Wrensch M, Claus EB. Epidemiology and etiology of meningioma. J Neurooncol 2010; 99(3): 307–314
CrossRef
Google scholar
|
[76] |
Vernooij MW, Ikram MA, Tanghe HL, Vincent AJPE, Hofman A, Krestin GP, Niessen WJ, Breteler MMB, van der Lugt A. Incidental findings on brain MRI in the general population. N Engl J Med 2007; 357(18): 1821–1828
CrossRef
Google scholar
|
[77] |
Hage M, Plesa O, Lemaire I, Raffin Sanson ML. Estrogen and progesterone therapy and meningiomas. Endocrinology 2022; 163(2): bqab259
CrossRef
Google scholar
|
[78] |
Donnell MS, Meyer GA, Donegan WL. Estrogen-receptor protein in intracranial meningiomas. J Neurosurg 1979; 50(4): 499–502
CrossRef
Google scholar
|
[79] |
Du Z, Santagata S. Uncovering the links between systemic hormones and oncogenic signaling in the pathogenesis of meningioma. Ann Oncol 2018; 29(3): 537–540
CrossRef
Google scholar
|
[80] |
Peyre M, Gaillard S, de Marcellus C, Giry M, Bielle F, Villa C, Boch AL, Loiseau H, Baussart B, Cazabat L, Raffin-Sanson ML, Sanson M, Kalamarides M. Progestin-associated shift of meningioma mutational landscape. Ann Oncol 2018; 29(3): 681–686
CrossRef
Google scholar
|
[81] |
Portet S, Naoufal R, Tachon G, Simonneau A, Chalant A, Naar A, Milin S, Bataille B, Karayan-Tapon L. Histomolecular characterization of intracranial meningiomas developed in patients exposed to high-dose cyproterone acetate: an antiandrogen treatment. Neurooncol Adv 2019; 1(1): vdz003
CrossRef
Google scholar
|
[82] |
De Menis E, Tulipano G, Villa S, Billeci D, Bonfanti C, Pollara P, Pauletto P, Giustina A. Development of a meningioma in a patient with acromegaly during octreotide treatment: are there any causal relationships. J Endocrinol Invest 2003; 26(4): 359–363
CrossRef
Google scholar
|
[83] |
Frara S, Allora A, di Filippo L, Formenti AM, Loli P, Polizzi E, Tradati D, Ulivieri FM, Giustina A. Osteopathy in mild adrenal Cushing’s syndrome and Cushing disease. Best Pract Res Clin Endocrinol Metab 2021; 35(2): 101515
CrossRef
Google scholar
|
[84] |
Rodrigues MO, Moraes AB, de Paula MP, Pereira VA, Leão ATT, Vieira Neto L. Adrenal incidentaloma as a novel independent predictive factor for periodontitis. J Endocrinol Invest 2021; 44(11): 2455–2463
CrossRef
Google scholar
|
[85] |
Jojima T, Kogai T, Iijima T, Kato K, Sagara M, Kezuka A, Kase M, Sakurai S, Akimoto K, Sakumoto J, Namatame T, Ueki K, Hishinuma A, Kamai T, Usui I, Aso Y. Genetic alteration of ARMC5 in a patient diagnosed with meningioma and primary macronodular adrenal hyperplasia: a case report. Eur J Endocrinol 2020; 183(6): K7–K12
CrossRef
Google scholar
|
[86] |
Young WF. Primary aldosteronism: renaissance of a syndrome. Clin Endocrinol (Oxf) 2007; 66(5): 607–618
CrossRef
Google scholar
|
[87] |
Monticone S, Burrello J, Tizzani D, Bertello C, Viola A, Buffolo F, Gabetti L, Mengozzi G, Williams TA, Rabbia F, Veglio F, Mulatero P. Prevalence and clinical manifestations of primary aldosteronism encountered in primary care practice. J Am Coll Cardiol 2017; 69(14): 1811–1820
CrossRef
Google scholar
|
[88] |
Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, Stowasser M, Young WF Jr. The management of primary aldosteronism: case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2016; 101(5): 1889–1916
CrossRef
Google scholar
|
[89] |
Milliez P, Girerd X, Plouin PF, Blacher J, Safar ME, Mourad JJ. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol 2005; 45(8): 1243–1248
CrossRef
Google scholar
|
[90] |
Stowasser M, Sharman J, Leano R, Gordon RD, Ward G, Cowley D, Marwick TH. Evidence for abnormal left ventricular structure and function in normotensive individuals with familial hyperaldosteronism type I. J Clin Endocrinol Metab 2005; 90(9): 5070–5076
CrossRef
Google scholar
|
[91] |
Tu W, Eckert GJ, Hannon TS, Liu H, Pratt LM, Wagner MA, Dimeglio LA, Jung J, Pratt JH. Racial differences in sensitivity of blood pressure to aldosterone. Hypertension 2014; 63(6): 1212–1218
CrossRef
Google scholar
|
[92] |
Spence JD. Lessons from Africa: the importance of measuring plasma renin and aldosterone in resistant hypertension. Can J Cardiol 2012; 28(3): 254–257
CrossRef
Google scholar
|
[93] |
Kidambi S, Kotchen JM, Grim CE, Raff H, Mao J, Singh RJ, Kotchen TA. Association of adrenal steroids with hypertension and the metabolic syndrome in blacks. Hypertension 2007; 49(3): 704–711
CrossRef
Google scholar
|
[94] |
Spence JD, Rayner BL. Hypertension in blacks: individualized therapy based on renin/aldosterone phenotyping. hypertension 2018; 72(2): 263–269
CrossRef
Google scholar
|
[95] |
Zilbermint M, Xekouki P, Faucz FR, Berthon A, Gkourogianni A, Schernthaner-Reiter MH, Batsis M, Sinaii N, Quezado MM, Merino M, Hodes A, Abraham SB, Libé R, Assié G, Espiard S, Drougat L, Ragazzon B, Davis A, Gebreab SY, Neff R, Kebebew E, Bertherat J, Lodish MB, Stratakis CA. Primary aldosteronism and ARMC5 variants. J Clin Endocrinol Metab 2015; 100(6): E900–E909
CrossRef
Google scholar
|
[96] |
Zilbermint M, Gaye A, Berthon A, Hannah-Shmouni F, Faucz FR, Lodish MB, Davis AR, Gibbons GH, Stratakis CA. ARMC 5 variants and risk of hypertension in blacks: MH-GRID study. J Am Heart Assoc 2019; 8(14): e012508
CrossRef
Google scholar
|
[97] |
Joseph JJ, Zhou X, Zilbermint M, Stratakis CA, Faucz FR, Lodish MB, Berthon A, Wilson JG, Hsueh WA, Golden SH, Lin S. The association of ARMC5 with the renin-angiotensin-aldosterone system, blood pressure, and glycemia in African Americans. J Clin Endocrinol Metab 2020; 105(8): 2625–2633
CrossRef
Google scholar
|
[98] |
Berthon A, Drelon C, Ragazzon B, Boulkroun S, Tissier F, Amar L, Samson-Couterie B, Zennaro MC, Plouin PF, Skah S, Plateroti M, Lefèbvre H, Sahut-Barnola I, Batisse-Lignier M, Assié G, Lefrançois-Martinez AM, Bertherat J, Martinez A, Val P. WNT/β-catenin signalling is activated in aldosterone-producing adenomas and controls aldosterone production. Hum Mol Genet 2014; 23(4): 889–905
CrossRef
Google scholar
|
[99] |
Nishimoto K, Tomlins SA, Kuick R, Cani AK, Giordano TJ, Hovelson DH, Liu CJ, Sanjanwala AR, Edwards MA, Gomez-Sanchez CE, Nanba K, Rainey WE. Aldosterone-stimulating somatic gene mutations are common in normal adrenal glands. Proc Natl Acad Sci USA 2015; 112(33): E4591–E4599
CrossRef
Google scholar
|
[100] |
Chow WH, Dong LM, Devesa SS. Epidemiology and risk factors for kidney cancer. Nat Rev Urol 2010; 7(5): 245–257
CrossRef
Google scholar
|
[101] |
Ljungberg B, Campbell SC, Choi HY, Jacqmin D, Lee JE, Weikert S, Kiemeney LA. The epidemiology of renal cell carcinoma. Eur Urol 2011; 60(4): 615–621
CrossRef
Google scholar
|
[102] |
Gupta K, Miller JD, Li JZ, Russell MW, Charbonneau C. Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): a literature review. Cancer Treat Rev 2008; 34(3): 193–205
CrossRef
Google scholar
|
[103] |
Muglia VF, Prando A. Renal cell carcinoma: histological classification and correlation with imaging findings. Radiol Bras 2015; 48(3): 166–174
CrossRef
Google scholar
|
/
〈 |
|
〉 |