Advancements in the research of the structure, function, and disease-related roles of ARMC5

Yang Qu , Fan Yang , Yafang Deng , Haitao Li , Yidong Zhou , Xuebin Zhang

Front. Med. ›› 2025, Vol. 19 ›› Issue (2) : 185 -199.

PDF (2321KB)
Front. Med. ›› 2025, Vol. 19 ›› Issue (2) : 185 -199. DOI: 10.1007/s11684-024-1108-0
REVIEW

Advancements in the research of the structure, function, and disease-related roles of ARMC5

Author information +
History +
PDF (2321KB)

Abstract

The armadillo repeat containing 5 (ARMC5) gene is part of a family of protein-coding genes that are rich in armadillo repeat sequences, are ubiquitously present in eukaryotes, and mediate interactions between proteins, playing roles in various cellular processes. Current research has demonstrated that reduced expression or absence of the ARMC5 gene in various tumor tissues can lead to uncontrolled cell proliferation, thereby inducing a range of diseases. The ARMC5 gene was initially extensively studied in the context of bilateral macronodular adrenocortical disease (BMAD), with harmful pathogenic variants in ARMC5 identified in approximately 50% of BMAD patients. With advancing research, scientists have discovered that ARMC5 pathogenic variants may also have potential effects on other diseases and could be associated with increased susceptibility to certain cancers. This review aims to present the latest research progress on how the ARMC5 gene plays its role in tumors. It outlines the basic structure of ARMC5 and the regions where it functions, as well as the diseases currently proven to be associated with ARMC5. Moreover, some evidence suggests its relation to embryonic development and the regulation of immune system activity. In conclusion, the ARMC5 gene is a crucial focal point in genetic and medical research. Understanding its function and regulation is of great importance for the development of new therapeutic strategies related to diseases associated with its pathogenic variants.

Keywords

ARMC5 gene / BMAD / meningioma / primary aldosteronism / renal cell carcinoma

Cite this article

Download citation ▾
Yang Qu, Fan Yang, Yafang Deng, Haitao Li, Yidong Zhou, Xuebin Zhang. Advancements in the research of the structure, function, and disease-related roles of ARMC5. Front. Med., 2025, 19(2): 185-199 DOI:10.1007/s11684-024-1108-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hu Y, Lao L, Mao J, Jin W, Luo H, Charpentier T, Qi S, Peng J, Hu B, Marcinkiewicz MM, Lamarre A, Wu J. Armc5 deletion causes developmental defects and compromises T-cell immune responses. Nat Commun 2017; 8(1): 13834

[2]

Peifer M, Berg S, Reynolds AB. A repeating amino acid motif shared by proteins with diverse cellular roles. Cell 1994; 76(5): 789–791

[3]

Tewari R, Bailes E, Bunting KA, Coates JC. Armadillo-repeat protein functions: questions for little creatures. Trends Cell Biol 2010; 20(8): 470–481

[4]

Assié G, Libé R, Espiard S, Rizk-Rabin M, Guimier A, Luscap W, Barreau O, Lefèvre L, Sibony M, Guignat L, Rodriguez S, Perlemoine K, René-Corail F, Letourneur F, Trabulsi B, Poussier A, Chabbert-Buffet N, Borson-Chazot F, Groussin L, Bertagna X, Stratakis CA, Ragazzon B, Bertherat J. ARMC5 mutations in macronodular adrenal hyperplasia with Cushing’s syndrome. N Engl J Med 2013; 369(22): 2105–2114

[5]

Lodish M, Stratakis CA. A genetic and molecular update on adrenocortical causes of Cushing syndrome. Nat Rev Endocrinol 2016; 12(5): 255–262

[6]

Espiard S, Drougat L, Libé R, Assié G, Perlemoine K, Guignat L, Barrande G, Brucker-Davis F, Doullay F, Lopez S, Sonnet E, Torremocha F, Pinsard D, Chabbert-Buffet N, Raffin-Sanson ML, Groussin L, Borson-Chazot F, Coste J, Bertagna X, Stratakis CA, Beuschlein F, Ragazzon B, Bertherat J. ARMC5 mutations in a large cohort of primary macronodular adrenal hyperplasia: clinical and functional consequences. J Clin Endocrinol Metab 2015; 100(6): E926–E935

[7]

Yu L, Zhang J, Guo X, Chen X, He Z, He Q. ARMC5 mutations in familial and sporadic primary bilateral macronodular adrenal hyperplasia. PLoS One 2018; 13(1): e0191602

[8]

Berthon A, Faucz F, Bertherat J, Stratakis CA. Analysis of ARMC5 expression in human tissues. Mol Cell Endocrinol 2017; 441: 140–145

[9]

Elbelt U, Trovato A, Kloth M, Gentz E, Finke R, Spranger J, Galas D, Weber S, Wolf C, König K, Arlt W, Büttner R, May P, Allolio B, Schneider JG. Molecular and clinical evidence for an ARMC5 tumor syndrome: concurrent inactivating germline and somatic mutations are associated with both primary macronodular adrenal hyperplasia and meningioma. J Clin Endocrinol Metab 2015; 100(1): E119–E128

[10]

Drougat L, Espiard S, Bertherat J. Genetics of primary bilateral macronodular adrenal hyperplasia: a model for early diagnosis of Cushing’s syndrome. Eur J Endocrinol 2015; 173(4): M121–M131

[11]

Huang Y, Jiang Z, Gao X, Luo P, Jiang X. ARMC subfamily: structures, functions, evolutions, interactions, and diseases. Front Mol Biosci 2021; 8: 791597

[12]

Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, Zhou Z, Shu G, Yin G. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther 2022; 7(1): 3

[13]

Xu W, Kimelman D. Mechanistic insights from structural studies of β-catenin and its binding partners. J Cell Sci 2007; 120(19): 3337–3344

[14]

Stogios PJ, Downs GS, Jauhal JJ, Nandra SK, Privé GG. Sequence and structural analysis of BTB domain proteins. Genome Biol 2005; 6(10): R82

[15]

Cheng J, Guo J, Wang Z, North BJ, Tao K, Dai X, Wei W. Functional analysis of Cullin 3 E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 2018; 1869: 11–28

[16]

FieldsSSong O. A novel genetic system to detect protein-protein interactions. Nature 1989; 340(6230): 20; 245–246

[17]

Yan G, Liu N, Tian J, Fu Y, Wei W, Zou J, Li S, Wang Q, Li K, Wang J. 1Deubiquitylation and stabilization of ARMC5 by ubiquitin-specific processing protease 7 (USP7) are critical for RCC proliferation. J Cell Mol Med 2021; 25(6): 3149–3159

[18]

Iconomou M, Saunders DN. Systematic approaches to identify E3 ligase substrates. Biochem J 2016; 473(22): 4083–4101

[19]

Andérica-Romero AC, González-Herrera IG, Santamaría A, Pedraza-Chaverri J. Cullin 3 as a novel target in diverse pathologies. Redox Biol 2013; 1(1): 366–372

[20]

Bennett EJ, Rush J, Gygi SP, Harper JW. Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell 2010; 143(6): 951–965

[21]

Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, Baltier K, Colby G, Gebreab F, Gygi MP, Parzen H, Szpyt J, Tam S, Zarraga G, Pontano-Vaites L, Swarup S, White AE, Schweppe DK, Rad R, Erickson BK, Obar RA, Guruharsha KG, Li K, Artavanis-Tsakonas S, Gygi SP, Harper JW. Architecture of the human interactome defines protein communities and disease networks. Nature 2017; 545(7655): 505–509

[22]

Gagliardi L, Schreiber AW, Hahn CN, Feng J, Cranston T, Boon H, Hotu C, Oftedal BE, Cutfield R, Adelson DL, Braund WJ, Gordon RD, Rees DA, Grossman AB, Torpy DJ, Scott HS. ARMC5 mutations are common in familial bilateral macronodular adrenal hyperplasia. J Clin Endocrinol Metab 2014; 99(9): E1784–E1792

[23]

Xu Y, Banerjee D, Huelsken J, Birchmeier W, Sen JM. Deletion of beta-catenin impairs T cell development. Nat Immunol 2003; 4(12): 1177–1182

[24]

Mucenski ML, Wert SE, Nation JM, Loudy DE, Huelsken J, Birchmeier W, Morrisey EE, Whitsett JA. β-catenin is required for specification of proximal/distal cell fate during lung morphogenesis. J Biol Chem 2003; 278(41): 40231–40238

[25]

Zhao T, Gan Q, Stokes A, Lassiter RNT, Wang Y, Chan J, Han JX, Pleasure DE, Epstein JA, Zhou CJ. β-catenin regulates Pax3 and Cdx2 for caudal neural tube closure and elongation. Development 2014; 141(1): 148–157

[26]

Dao DY, Jonason JH, Zhang Y, Hsu W, Chen D, Hilton MJ, O’Keefe RJ. Cartilage-specific β-catenin signaling regulates chondrocyte maturation, generation of ossification centers, and perichondrial bone formation during skeletal development. J Bone Miner Res 2012; 27(8): 1680–1694

[27]

Kim AC, Reuter AL, Zubair M, Else T, Serecky K, Bingham NC, Lavery GG, Parker KL, Hammer GD. Targeted disruption of β-catenin in Sf1-expressing cells impairs development and maintenance of the adrenal cortex. Development 2008; 135(15): 2593–2602

[28]

Simcha I, Geiger B, Yehuda-Levenberg S, Salomon D, Ben-Ze’ev A. Suppression of tumorigenicity by plakoglobin: an augmenting effect of N-cadherin. J Cell Biol 1996; 133(1): 199–209

[29]

Chevalier B, Vantyghem MC, Espiard S. Bilateral adrenal hyperplasia: pathogenesis and treatment. Biomedicines 2021; 9(10): 1397

[30]

Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971; 68(4): 820–823

[31]

Lao L, Bourdeau I, Gagliardi L, He X, Shi W, Hao B, Tan M, Hu Y, Peng J, Coulombe B, Torpy DJ, Scott HS, Lacroix A, Luo H, Wu J. ARMC5 is part of an RPB1-specific ubiquitin ligase implicated in adrenal hyperplasia. Nucleic Acids Res 2022; 50(11): 6343–6367

[32]

Cavalcante IP, Vaczlavik A, Drougat L, Lotfi CFP, Perlemoine K, Ribes C, Rizk-Rabin M, Clauser E, Fragoso MCBV, Bertherat J, Ragazzon B. Cullin 3 targets the tumor suppressor gene ARMC5 for ubiquitination and degradation. Endocr Relat Cancer 2020; 27(4): 221–230

[33]

Cavalcante IP, Berthon A, Fragoso MC, Reincke M, Stratakis CA, Ragazzon B, Bertherat J. Primary bilateral macronodular adrenal hyperplasia: definitely a genetic disease. Nat Rev Endocrinol 2022; 18(11): 699–711

[34]

Berthon A, Faucz FR, Espiard S, Drougat L, Bertherat J, Stratakis CA. Age-dependent effects of Armc5 haploinsufficiency on adrenocortical function. Hum Mol Genet 2017; 26(18): 3495–3507

[35]

Lee S, Hwang R, Lee J, Rhee Y, Kim DJ, Chung UI, Lim SK. Ectopic expression of vasopressin V1b and V2 receptors in the adrenal glands of familial ACTH-independent macronodular adrenal hyperplasia. Clin Endocrinol (Oxf) 2005; 63(6): 625–630

[36]

Lacroix A. ACTH-independent macronodular adrenal hyperplasia. Best Pract Res Clin Endocrinol Metab 2009; 23(2): 245–259

[37]

Louiset E, Duparc C, Young J, Renouf S, Tetsi Nomigni M, Boutelet I, Libé R, Bram Z, Groussin L, Caron P, Tabarin A, Grunenberger F, Christin-Maitre S, Bertagna X, Kuhn JM, Anouar Y, Bertherat J, Lefebvre H. Intraadrenal corticotropin in bilateral macronodular adrenal hyperplasia. N Engl J Med 2013; 369(22): 2115–2125

[38]

Bertherat J, Bourdeau I, Bouys L, Chasseloup F, Kamenický P, Lacroix A. Clinical, pathophysiologic, genetic, and therapeutic progress in primary bilateral macronodular adrenal hyperplasia. Endocr Rev 2023; 44(4): 567–628

[39]

Le Mestre J, Thomas M, Duparc C, Val P, Bures C, Tuech JJ, Sabourin JC, Baert-Desurmont S, Lefebvre H, Louiset E. β-catenin activation and illicit receptor expression in adrenocortical cells. Endocr Relat Cancer 2022; 29(3): 151–162

[40]

Pawlikowski M. Direct actions of gonadotropins beyond the reproductive system and their role in human aging and neoplasia. Endokrynol Pol 2019; 70(5): 437–444

[41]

Lecoq A-L, Stratakis CA, Viengchareun S, Chaligné R, Tosca L, Deméocq V, Hage M, Berthon A, Faucz FR, Hanna P, Boyer H-G, Servant N, Salenave S, Tachdjian G, Adam C, Benhamo V, Clauser E, Guiochon-Mantel A, Young J, Lombès M, Bourdeau I, Maiter D, Tabarin A, Bertherat J, Lefebvre H, de Herder W, Louiset E, Lacroix A, Chanson P, Bouligand J, Kamenický P. Adrenal GIPR expression and chromosome 19q13 microduplications in GIP-dependent Cushing’s syndrome. JCI Insight 2017; 2: e92184]

[42]

Ghayee HK, Rege J, Watumull LM, Nwariaku FE, Carrick KS, Rainey WE, Miller WL, Auchus RJ. Clinical, biochemical, and molecular characterization of macronodular adrenocortical hyperplasia of the zona reticularis: a new syndrome. J Clin Endocrinol Metab 2011; 96(2): E243–E250

[43]

Goodarzi MO, Dawson DW, Li X, Lei Z, Shintaku P, Rao CV, Van Herle AJ. Virilization in bilateral macronodular adrenal hyperplasia controlled by luteinizing hormone. J Clin Endocrinol Metab 2003; 88(1): 73–77

[44]

Malchoff CD, Rosa J, DeBold CR, Kozol RA, Ramsby GR, Page DL, Malchoff DM, Orth DN. Adrenocorticotropin-independent bilateral macronodular adrenal hyperplasia: an unusual cause of Cushing’s syndrome. J Clin Endocrinol Metab 1989; 68(4): 855–860

[45]

Espiard S, Drougat L, Libé R, Assié G, Perlemoine K, Guignat L, Barrande G, Brucker-Davis F, Doullay F, Lopez S, Sonnet E, Torremocha F, Pinsard D, Chabbert-Buffet N, Raffin-Sanson ML, Groussin L, Borson-Chazot F, Coste J, Bertagna X, Stratakis CA, Beuschlein F, Ragazzon B, Bertherat J. ARMC5 mutations in a large cohort of primary macronodular adrenal hyperplasia: clinical and functional consequences. J Clin Endocrinol Metab 2015; 100(6): E926–E935

[46]

Ohashi A, Yamada Y, Sakaguchi K, Inoue T, Kubo M, Fushimi H. A natural history of adrenocorticotropin-independent bilateral adrenal macronodular hyperplasia (AIMAH) from preclinical to clinically overt Cushing’s syndrome. Endocr J 2001; 48(6): 677–683

[47]

Findlay JC, Sheeler LR, Engeland WC, Aron DC. Familial adrenocorticotropin-independent Cushing’s syndrome with bilateral macronodular adrenal hyperplasia. J Clin Endocrinol Metab 1993; 76: 189–191

[48]

Minami S, Sugihara H, Sato J, Tatsukuchi A, Sugisaki Y, Sasano H, Wakabayashi I. ACTH independent Cushing’s syndrome occurring in siblings. Clin Endocrinol (Oxf) 1996; 44(4): 483–488

[49]

Imöhl M, Köditz R, Stachon A, Müller KM, Nicolas V, Pfeilschifter J, Krieg M. Catecholamine-dependent hereditary Cushing’s syndrome—follow-up after unilateral adrenalectomy. Med Klin (Munich) 2002; 97(12): 747–753

[50]

Miyamura N, Taguchi T, Murata Y, Taketa K, Iwashita S, Matsumoto K, Nishikawa T, Toyonaga T, Sakakida M, Araki E. Inherited adrenocorticotropin-independent macronodular adrenal hyperplasia with abnormal cortisol secretion by vasopressin and catecholamines: detection of the aberrant hormone receptors on adrenal gland. Endocr J 2002; 19(3): 319–326

[51]

Nies C, Bartsch DK, Ehlenz K, Wild A, Langer P, Fleischhacker S, Rothmund M. Familial ACTH-independent Cushing’s syndrome with bilateral macronodular adrenal hyperplasia clinically affecting only female family members. Exp Clin Endocrinol Diabetes 2002; 110(6): 277–283

[52]

Watson TD, Patel SJ, Nardi PM. Case 121: familial adrenocorticotropin-independent macronodular adrenal hyperplasia causing Cushing syndrome. Radiology 2007; 244(3): 923–926

[53]

Vezzosi D, Cartier D, Régnier C, Otal P, Bennet A, Parmentier F, Plantavid M, Lacroix A, Lefebvre H, Caron P. Familial adrenocorticotropin-independent macronodular adrenal hyperplasia with aberrant serotonin and vasopressin adrenal receptors. Eur J Endocrinol 2007; 156(1): 21–31

[54]

Gagliardi L, Hotu C, Casey G, Braund WJ, Ling KH, Dodd T, Manavis J, Devitt PG, Cutfield R, Rudzki Z, Scott HS, Torpy DJ. Familial vasopressin-sensitive ACTH-independent macronodular adrenal hyperplasia (VPs-AIMAH): clinical studies of three kindreds. Clin Endocrinol (Oxf) 2009; 70(6): 883–891

[55]

Alencar GA, Lerario AM, Nishi MY, Mariani BM de P, Almeida MQ, Tremblay J, Hamet P, Bourdeau I, Zerbini MCN, Pereira MAA, Gomes GC, Rocha M de S, Chambo JL, Lacroix A, Mendonca BB, Fragoso MCBV. ARMC5 mutations are a frequent cause of primary macronodular adrenal hyperplasia. J Clin Endocrinol Metab 2014; 99(8): E1501–E1509

[56]

Faucz FR, Zilbermint M, Lodish MB, Szarek E, Trivellin G, Sinaii N, Berthon A, Libé R, Assié G, Espiard S, Drougat L, Ragazzon B, Bertherat J, Stratakis CA. Macronodular adrenal hyperplasia due to mutations in an armadillo repeat containing 5 (ARMC5) gene: a clinical and genetic investigation. J Clin Endocrinol Metab 2014; 99(6): E1113–E1119

[57]

Cavalcante IP, Nishi M, Zerbini MCN, Almeida MQ, Brondani VB, Botelho MLA de A, Tanno FY, Srougi V, Chambo JL, Mendonca BB, Bertherat J, Lotfi CFP, Fragoso MCBV. The role of ARMC5 in human cell cultures from nodules of primary macronodular adrenocortical hyperplasia (PMAH). Mol Cell Endocrinol 2018; 460: 36–46

[58]

Bourdeau I, Antonini SR, Lacroix A, Kirschner LS, Matyakhina L, Lorang D, Libutti SK, Stratakis CA. Gene array analysis of macronodular adrenal hyperplasia confirms clinical heterogeneity and identifies several candidate genes as molecular mediators. Oncogene 2004; 23(8): 1575–1585

[59]

Assie G, Louiset E, Sturm N, René-Corail F, Groussin L, Bertherat J, Thomas M, Lefebvre H, Feige JJ, Clauser E, Chabre O, Cherradi N. Systematic analysis of G protein-coupled receptor gene expression in adrenocorticotropin-independent macronodular adrenocortical hyperplasia identifies novel targets for pharmacological control of adrenal Cushing’s syndrome. J Clin Endocrinol Metab 2010; 95(10): E253–E262

[60]

Wurth R, Tirosh A, Kamilaris CDC, Camacho J, Faucz FR, Maria AG, Berthon A, Papadakis GZ, Nilubol N, Hamimi A, Gharib AM, Demidowich A, Zilbermint M, Eisenhofer G, Braun L, Reincke M, Stratakis CA, Hannah-Shmouni F. Volumetric modeling of adrenal gland size in primary bilateral macronodular adrenocortical hyperplasia. J Endocr Soc 2021; 5(1): bvaa162

[61]

Correa R, Zilbermint M, Berthon A, Espiard S, Batsis M, Papadakis GZ, Xekouki P, Lodish MB, Bertherat J, Faucz FR, Stratakis CA. The ARMC5 gene shows extensive genetic variance in primary macronodular adrenocortical hyperplasia. Eur J Endocrinol 2015; 173(4): 435–440

[62]

Albiger NM, Regazzo D, Rubin B, Ferrara AM, Rizzati S, Taschin E, Ceccato F, Arnaldi G, Pecori Giraldi F, Stigliano A, Cerquetti L, Grimaldi F, De Menis E, Boscaro M, Iacobone M, Occhi G, Scaroni C. A multicenter experience on the prevalence of ARMC5 mutations in patients with primary bilateral macronodular adrenal hyperplasia: from genetic characterization to clinical phenotype. Endocrine 2017; 55(3): 959–968

[63]

Bourdeau I, Oble S, Magne F, Lévesque I, Cáceres-Gorriti KY, Nolet S, Awadalla P, Tremblay J, Hamet P, Fragoso MCBV, Lacroix A. ARMC5 mutations in a large French-Canadian family with cortisol-secreting β-adrenergic/vasopressin responsive bilateral macronodular adrenal hyperplasia. Eur J Endocrinol 2016; 174(1): 85–96

[64]

Rego T, Fonseca F, Espiard S, Perlemoine K, Bertherat J, Agapito A. ARMC5 mutation in a Portuguese family with primary bilateral macronodular adrenal hyperplasia (PBMAH). Endocrinol Diabetes Metab Case Rep 2017; 2017: 16–0135

[65]

Suzuki S, Tatsuno I, Oohara E, Nakayama A, Komai E, Shiga A, Kono T, Takiguchi T, Higuchi S, Sakuma I, Nagano H, Hashimoto N, Mayama T, Koide H, Sasano H, Nakatani Y, Imamoto T, Ichikawa T, Yokote K, Tanaka T. Germline deletion of ARMC5 in familial primary macronodular adrenal hyperplasia. Endocr Pract 2015; 21(10): 1152–1160

[66]

Stratakis CA, Berthon A. Molecular mechanisms of ARMC5 mutations in adrenal pathophysiology. Curr Opin Endocr Metab Res 2019; 8: 104–111

[67]

Kyo C, Usui T, Kosugi R, Torii M, Yonemoto T, Ogawa T, Kotani M, Tamura N, Yamamoto Y, Katabami T, Kurihara I, Saito K, Kanamoto N, Fukuoka H, Wada N, Murabe H, Inoue T. ARMC5 alterations in primary macronodular adrenal hyperplasia (PMAH) and the clinical state of variant carriers. J Endocr Soc 2019; 3(10): 1837–1846

[68]

Calhoun DA, Nishizaka MK, Zaman MA, Thakkar RB, Weissmann P. Hyperaldosteronism among black and white subjects with resistant hypertension. Hypertension 2002; 40(6): 892–896

[69]

Bouys L, Vaczlavik A, Jouinot A, Vaduva P, Espiard S, Assié G, Libé R, Perlemoine K, Ragazzon B, Guignat L, Groussin L, Bricaire L, Cavalcante IP, Bonnet-Serrano F, Lefebvre H, Raffin-Sanson ML, Chevalier N, Touraine P, Jublanc C, Vatier C, Raverot G, Haissaguerre M, Maione L, Kroiss M, Fassnacht M, Christin-Maitre S, Pasmant E, Borson-Chazot F, Tabarin A, Vantyghem MC, Reincke M, Kamenicky P, North MO, Bertherat J. Identification of predictive criteria for pathogenic variants of primary bilateral macronodular adrenal hyperplasia (PBMAH) gene ARMC5 in 352 unselected patients. Eur J Endocrinol 2022; 187(1): 123–134

[70]

SwainJMGrant CSSchlinkertRTThompsonGBvanHeerden JALloydRVYoungWF. Corticotropin-independent macronodular adrenal hyperplasia: a clinicopathologic correlation. Arch Surg 1998; 133(5): 541–545, discussion 541–545

[71]

Eghbali M, Cheraghi S, Samanian S, Rad I, Meghdadi J, Akbari H, Honardoost M. A novel ARMC5 germline variant in primary macronodular adrenal hyperplasia using whole-exome sequencing. Diagnostics (Basel) 2022; 12(12): 3028

[72]

Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 2016; 131(6): 803–820

[73]

ClausEBBondy MLSchildkrautJMWiemelsJLWrenschM BlackPM. Epidemiology of intracranial meningioma. Neurosurgery 2005; 57(6): 1088–1095

[74]

Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro-oncol 2017; 19(suppl_5): v1–v88

[75]

Wiemels J, Wrensch M, Claus EB. Epidemiology and etiology of meningioma. J Neurooncol 2010; 99(3): 307–314

[76]

Vernooij MW, Ikram MA, Tanghe HL, Vincent AJPE, Hofman A, Krestin GP, Niessen WJ, Breteler MMB, van der Lugt A. Incidental findings on brain MRI in the general population. N Engl J Med 2007; 357(18): 1821–1828

[77]

Hage M, Plesa O, Lemaire I, Raffin Sanson ML. Estrogen and progesterone therapy and meningiomas. Endocrinology 2022; 163(2): bqab259

[78]

Donnell MS, Meyer GA, Donegan WL. Estrogen-receptor protein in intracranial meningiomas. J Neurosurg 1979; 50(4): 499–502

[79]

Du Z, Santagata S. Uncovering the links between systemic hormones and oncogenic signaling in the pathogenesis of meningioma. Ann Oncol 2018; 29(3): 537–540

[80]

Peyre M, Gaillard S, de Marcellus C, Giry M, Bielle F, Villa C, Boch AL, Loiseau H, Baussart B, Cazabat L, Raffin-Sanson ML, Sanson M, Kalamarides M. Progestin-associated shift of meningioma mutational landscape. Ann Oncol 2018; 29(3): 681–686

[81]

Portet S, Naoufal R, Tachon G, Simonneau A, Chalant A, Naar A, Milin S, Bataille B, Karayan-Tapon L. Histomolecular characterization of intracranial meningiomas developed in patients exposed to high-dose cyproterone acetate: an antiandrogen treatment. Neurooncol Adv 2019; 1(1): vdz003

[82]

De Menis E, Tulipano G, Villa S, Billeci D, Bonfanti C, Pollara P, Pauletto P, Giustina A. Development of a meningioma in a patient with acromegaly during octreotide treatment: are there any causal relationships. J Endocrinol Invest 2003; 26(4): 359–363

[83]

Frara S, Allora A, di Filippo L, Formenti AM, Loli P, Polizzi E, Tradati D, Ulivieri FM, Giustina A. Osteopathy in mild adrenal Cushing’s syndrome and Cushing disease. Best Pract Res Clin Endocrinol Metab 2021; 35(2): 101515

[84]

Rodrigues MO, Moraes AB, de Paula MP, Pereira VA, Leão ATT, Vieira Neto L. Adrenal incidentaloma as a novel independent predictive factor for periodontitis. J Endocrinol Invest 2021; 44(11): 2455–2463

[85]

Jojima T, Kogai T, Iijima T, Kato K, Sagara M, Kezuka A, Kase M, Sakurai S, Akimoto K, Sakumoto J, Namatame T, Ueki K, Hishinuma A, Kamai T, Usui I, Aso Y. Genetic alteration of ARMC5 in a patient diagnosed with meningioma and primary macronodular adrenal hyperplasia: a case report. Eur J Endocrinol 2020; 183(6): K7–K12

[86]

Young WF. Primary aldosteronism: renaissance of a syndrome. Clin Endocrinol (Oxf) 2007; 66(5): 607–618

[87]

Monticone S, Burrello J, Tizzani D, Bertello C, Viola A, Buffolo F, Gabetti L, Mengozzi G, Williams TA, Rabbia F, Veglio F, Mulatero P. Prevalence and clinical manifestations of primary aldosteronism encountered in primary care practice. J Am Coll Cardiol 2017; 69(14): 1811–1820

[88]

Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, Stowasser M, Young WF Jr. The management of primary aldosteronism: case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 2016; 101(5): 1889–1916

[89]

Milliez P, Girerd X, Plouin PF, Blacher J, Safar ME, Mourad JJ. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol 2005; 45(8): 1243–1248

[90]

Stowasser M, Sharman J, Leano R, Gordon RD, Ward G, Cowley D, Marwick TH. Evidence for abnormal left ventricular structure and function in normotensive individuals with familial hyperaldosteronism type I. J Clin Endocrinol Metab 2005; 90(9): 5070–5076

[91]

Tu W, Eckert GJ, Hannon TS, Liu H, Pratt LM, Wagner MA, Dimeglio LA, Jung J, Pratt JH. Racial differences in sensitivity of blood pressure to aldosterone. Hypertension 2014; 63(6): 1212–1218

[92]

Spence JD. Lessons from Africa: the importance of measuring plasma renin and aldosterone in resistant hypertension. Can J Cardiol 2012; 28(3): 254–257

[93]

Kidambi S, Kotchen JM, Grim CE, Raff H, Mao J, Singh RJ, Kotchen TA. Association of adrenal steroids with hypertension and the metabolic syndrome in blacks. Hypertension 2007; 49(3): 704–711

[94]

Spence JD, Rayner BL. Hypertension in blacks: individualized therapy based on renin/aldosterone phenotyping. hypertension 2018; 72(2): 263–269

[95]

Zilbermint M, Xekouki P, Faucz FR, Berthon A, Gkourogianni A, Schernthaner-Reiter MH, Batsis M, Sinaii N, Quezado MM, Merino M, Hodes A, Abraham SB, Libé R, Assié G, Espiard S, Drougat L, Ragazzon B, Davis A, Gebreab SY, Neff R, Kebebew E, Bertherat J, Lodish MB, Stratakis CA. Primary aldosteronism and ARMC5 variants. J Clin Endocrinol Metab 2015; 100(6): E900–E909

[96]

Zilbermint M, Gaye A, Berthon A, Hannah-Shmouni F, Faucz FR, Lodish MB, Davis AR, Gibbons GH, Stratakis CA. ARMC 5 variants and risk of hypertension in blacks: MH-GRID study. J Am Heart Assoc 2019; 8(14): e012508

[97]

Joseph JJ, Zhou X, Zilbermint M, Stratakis CA, Faucz FR, Lodish MB, Berthon A, Wilson JG, Hsueh WA, Golden SH, Lin S. The association of ARMC5 with the renin-angiotensin-aldosterone system, blood pressure, and glycemia in African Americans. J Clin Endocrinol Metab 2020; 105(8): 2625–2633

[98]

Berthon A, Drelon C, Ragazzon B, Boulkroun S, Tissier F, Amar L, Samson-Couterie B, Zennaro MC, Plouin PF, Skah S, Plateroti M, Lefèbvre H, Sahut-Barnola I, Batisse-Lignier M, Assié G, Lefrançois-Martinez AM, Bertherat J, Martinez A, Val P. WNT/β-catenin signalling is activated in aldosterone-producing adenomas and controls aldosterone production. Hum Mol Genet 2014; 23(4): 889–905

[99]

Nishimoto K, Tomlins SA, Kuick R, Cani AK, Giordano TJ, Hovelson DH, Liu CJ, Sanjanwala AR, Edwards MA, Gomez-Sanchez CE, Nanba K, Rainey WE. Aldosterone-stimulating somatic gene mutations are common in normal adrenal glands. Proc Natl Acad Sci USA 2015; 112(33): E4591–E4599

[100]

Chow WH, Dong LM, Devesa SS. Epidemiology and risk factors for kidney cancer. Nat Rev Urol 2010; 7(5): 245–257

[101]

Ljungberg B, Campbell SC, Choi HY, Jacqmin D, Lee JE, Weikert S, Kiemeney LA. The epidemiology of renal cell carcinoma. Eur Urol 2011; 60(4): 615–621

[102]

Gupta K, Miller JD, Li JZ, Russell MW, Charbonneau C. Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): a literature review. Cancer Treat Rev 2008; 34(3): 193–205

[103]

Muglia VF, Prando A. Renal cell carcinoma: histological classification and correlation with imaging findings. Radiol Bras 2015; 48(3): 166–174

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2321KB)

558

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/