Tonic signaling in CAR-T therapy: the lever long enough to move the planet

Yuwei Huang, Haopeng Wang

Front. Med. ››

PDF(3145 KB)
Front. Med. All Journals
PDF(3145 KB)
Front. Med. ›› DOI: 10.1007/s11684-025-1130-x
REVIEW

Tonic signaling in CAR-T therapy: the lever long enough to move the planet

Author information +
History +

Abstract

Chimeric antigen receptor (CAR) T-cell therapy has shown remarkable efficacy in treating hematological malignancies and is expanding into other indications such as autoimmune diseases, fibrosis, aging and viral infection. However, clinical challenges persist in treating solid tumors, including physical barriers, tumor heterogeneity, poor in vivo persistence, and T-cell exhaustion, all of which hinder therapeutic efficacy. This review focuses on the critical role of tonic signaling in CAR-T therapy. Tonic signaling is a low-level constitutive signaling occurring in both natural and engineered antigen receptors without antigen stimulation. It plays a pivotal role in regulating immune cell homeostasis, exhaustion, persistence, and effector functions. The “Peak Theory” suggests an optimal level of tonic signaling for CAR-T function: while weak tonic signaling may result in poor proliferation and persistence, excessively strong signaling can cause T cell exhaustion. This review also summarizes the recent progress in mechanisms underlying the tonic signaling and strategies to fine-tune the CAR tonic signaling. By understanding and precisely modulating tonic signaling, the efficacy of CAR-T therapies can be further optimized, offering new avenues for treatment across a broader spectrum of diseases. These findings have implications beyond CAR-T cells, potentially impacting other engineered immune cell therapies such as CAR-NK and CAR-M.

Keywords

CAR-T / tonic signal / CAR signaling / antigen receptor / CAR-NK / CAR-macrophage

Cite this article

Download citation ▾
Yuwei Huang, Haopeng Wang. Tonic signaling in CAR-T therapy: the lever long enough to move the planet. Front. Med., https://doi.org/10.1007/s11684-025-1130-x
This is a preview of subscription content, contact us for subscripton.

References

[1]
Guedan S , Ruella M , June CH . Emerging cellular therapies for cancer. Annu Rev Immunol 2019; 37(1): 145–171
CrossRef Google scholar
[2]
June CH , Sadelain M . Chimeric antigen receptor therapy. N Engl J Med 2018; 379(1): 64–73
CrossRef Google scholar
[3]
Park JH , Riviere I , Gonen M , Wang X , Senechal B , Curran KJ , Sauter C , Wang Y , Santomasso B , Mead E , Roshal M , Maslak P , Davila M , Brentjens RJ , Sadelain M . Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 2018; 378(5): 449–459
CrossRef Google scholar
[4]
Chong EA , Ruella M , Schuster SJ , Lymphoma Program Investigators at the University of Pennsylvania . Five-year outcomes for refractory B-cell lymphomas with CAR T-cell therapy. N Engl J Med 2021; 384(7): 673–674
CrossRef Google scholar
[5]
Schmidts A , Maus MV . Making CAR T cells a solid option for solid tumors. Front Immunol 2018; 9: 2593
CrossRef Google scholar
[6]
Kawalekar OU , O’Connor RS , Fraietta JA , Guo L , McGettigan SE , Posey AD Jr , Patel PR , Guedan S , Scholler J , Keith B , Snyder N , Blair I , Milone MC , June CH . Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 2016; 44(2): 380–390
CrossRef Google scholar
[7]
Melenhorst JJ , Chen GM , Wang M , Porter DL , Chen C , Collins MA , Gao P , Bandyopadhyay S , Sun H , Zhao Z , Lundh S , Pruteanu-Malinici I , Nobles CL , Maji S , Frey NV , Gill SI , Loren AW , Tian L , Kulikovskaya I , Gupta M , Ambrose DE , Davis MM , Fraietta JA , Brogdon JL , Young RM , Chew A , Levine BL , Siegel DL , Alanio C , Wherry EJ , Bushman FD , Lacey SF , Tan K , June CH . Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 2022; 602(7897): 503–509
CrossRef Google scholar
[8]
Wang H , Song X , Shen L , Wang X , Xu C . Exploiting T cell signaling to optimize engineered T cell therapies. Trends Cancer 2022; 8(2): 123–134
CrossRef Google scholar
[9]
Wang H , Huang Y , Xu C . Charging CAR by electrostatic power. Immunol Rev 2023; 320(1): 138–146
CrossRef Google scholar
[10]
Baker DJ , Arany Z , Baur JA , Epstein JA , June CH . CAR T therapy beyond cancer: the evolution of a living drug. Nature 2023; 619(7971): 707–715
CrossRef Google scholar
[11]
Schett G , Mackensen A , Mougiakakos D . CAR T-cell therapy in autoimmune diseases. Lancet 2023; 402(10416): 2034–2044
CrossRef Google scholar
[12]
Orvain C , Boulch M , Bousso P , Allanore Y , Avouac J . Is there a place for chimeric antigen receptor-T cells in the treatment of chronic autoimmune rheumatic diseases. Arthritis Rheumatol 2021; 73(11): 1954–1965
CrossRef Google scholar
[13]
Mackensen A , Muller F , Mougiakakos D , Boltz S , Wilhelm A , Aigner M , Volkl S , Simon D , Kleyer A , Munoz L , Kretschmann S , Kharboutli S , Gary R , Reimann H , Rosler W , Uderhardt S , Bang H , Herrmann M , Ekici AB , Buettner C , Habenicht KM , Winkler TH , Kronke G , Schett G . Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat Med 2022; 28(10): 2124–2132
CrossRef Google scholar
[14]
Jin X , Xu Q , Pu C , Zhu K , Lu C , Jiang Y , Xiao L , Han Y , Lu L . Therapeutic efficacy of anti-CD19 CAR-T cells in a mouse model of systemic lupus erythematosus. Cell Mol Immunol 2021; 18(8): 1896–1903
CrossRef Google scholar
[15]
Wang W , He S , Zhang W , Zhang H , DeStefano VM , Wada M , Pinz K , Deener G , Shah D , Hagag N , Wang M , Hong M , Zeng R , Lan T , Ma Y , Li F , Liang Y , Guo Z , Zou C , Wang M , Ding L , Ma Y , Yuan Y . BCMA-CD19 compound CAR T cells for systemic lupus erythematosus: a phase 1 open-label clinical trial. Ann Rheum Dis 2024; 83(10): 1304–1314
CrossRef Google scholar
[16]
Kansal R , Richardson N , Neeli I , Khawaja S , Chamberlain D , Ghani M , Ghani QU , Balazs L , Beranova-Giorgianni S , Giorgianni F , Kochenderfer JN , Marion T , Albritton LM , Radic M . Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus. Sci Transl Med 2019; 11(482): eaav1648
CrossRef Google scholar
[17]
Müller F , Boeltz S , Knitza J , Aigner M , Volkl S , Kharboutli S , Reimann H , Taubmann J , Kretschmann S , Rosler W , Manger B , Wacker J , Mougiakakos D , Jabari S , Schroder R , Uder M , Roemer F , Kronke G , Mackensen A , Schett G . CD19-targeted CAR T cells in refractory antisynthetase syndrome. Lancet 2023; 401(10379): 815–818
CrossRef Google scholar
[18]
Pecher AC , Hensen L , Klein R , Schairer R , Lutz K , Atar D , Seitz C , Stanger A , Schneider J , Braun C , Schmidt M , Horger M , Bornemann A , Faul C , Bethge W , Henes J , Lengerke C . CD19-targeting CAR T cells for myositis and interstitial lung disease associated with antisynthetase syndrome. JAMA 2023; 329(24): 2154–2162
CrossRef Google scholar
[19]
Taubmann J , Knitza J , Muller F , Volkl S , Aigner M , Kleyer A , Gary R , Kretschmann S , Boeltz S , Atzinger A , Kuwert T , Roemer F , Uder M , Mackensen A , Schett G . Rescue therapy of antisynthetase syndrome with CD19-targeted CAR-T cells after failure of several B-cell depleting antibodies. Rheumatology (Oxford) 2024; 63(1): e12–e14
CrossRef Google scholar
[20]
Bergmann C , Muller F , Distler JHW , Gyorfi AH , Volkl S , Aigner M , Kretschmann S , Reimann H , Harrer T , Bayerl N , Boeltz S , Wirsching A , Taubmann J , Rosler W , Spriewald B , Wacker J , Atzinger A , Uder M , Kuwert T , Mackensen A , Schett G . Treatment of a patient with severe systemic sclerosis (SSc) using CD19-targeted CAR T cells. Ann Rheum Dis 2023; 82(8): 1117–1120
CrossRef Google scholar
[21]
Merkt W , Freitag M , Claus M , Kolb P , Falcone V , Rohrich M , Rodon L , Deicher F , Andreeva I , Tretter T , Tykocinski LO , Blank N , Watzl C , Schmitt A , Sauer T , Muller-Tidow C , Polke M , Heussel CP , Dreger P , Lorenz HM , Schmitt M . Third-generation CD19. CAR-T cell-containing combination therapy in Scl70+ systemic sclerosis. Ann Rheum Dis 2024; 83(4): 543–546
CrossRef Google scholar
[22]
Haghikia A , Hegelmaier T , Wolleschak D , Bottcher M , Desel C , Borie D , Motte J , Schett G , Schroers R , Gold R , Mougiakakos D . Anti-CD19 CAR T cells for refractory myasthenia gravis. Lancet Neurol 2023; 22(12): 1104–1105
CrossRef Google scholar
[23]
Granit V , Benatar M , Kurtoglu M , Miljkovic MD , Chahin N , Sahagian G , Feinberg MH , Slansky A , Vu T , Jewell CM , Singer MS , Kalayoglu MV , Howard JF Jr , Mozaffar T , MG-001 Study Team . Safety and clinical activity of autologous RNA chimeric antigen receptor T-cell therapy in myasthenia gravis (MG-001): a prospective, multicentre, open-label, non-randomised phase 1b/2a study. Lancet Neurol 2023; 22(7): 578–590
CrossRef Google scholar
[24]
Tian DS , Qin C , Dong MH , Heming M , Zhou LQ , Wang W , Cai SB , You YF , Shang K , Xiao J , Wang D , Li CR , Zhang M , Bu BT , Meyer Zu Horste G , Wang W . B cell lineage reconstitution underlies CAR-T cell therapeutic efficacy in patients with refractory myasthenia gravis. EMBO Mol Med 2024; 16(4): 966–987
CrossRef Google scholar
[25]
Rurik JG , Tombacz I , Yadegari A , Mendez Fernandez PO , Shewale SV , Li L , Kimura T , Soliman OY , Papp TE , Tam YK , Mui BL , Albelda SM , Pure E , June CH , Aghajanian H , Weissman D , Parhiz H , Epstein JA . CAR T cells produced in vivo to treat cardiac injury. Science 2022; 375(6576): 91–96
CrossRef Google scholar
[26]
Aghajanian H , Kimura T , Rurik JG , Hancock AS , Leibowitz MS , Li L , Scholler J , Monslow J , Lo A , Han W , Wang T , Bedi K , Morley MP , Linares Saldana RA , Bolar NA , McDaid K , Assenmacher CA , Smith CL , Wirth D , June CH , Margulies KB , Jain R , Pure E , Albelda SM , Epstein JA . Targeting cardiac fibrosis with engineered T cells. Nature 2019; 573(7774): 430–433
CrossRef Google scholar
[27]
Amor C , Feucht J , Leibold J , Ho YJ , Zhu C , Alonso-Curbelo D , Mansilla-Soto J , Boyer JA , Li X , Giavridis T , Kulick A , Houlihan S , Peerschke E , Friedman SL , Ponomarev V , Piersigilli A , Sadelain M , Lowe SW . Senolytic CAR T cells reverse senescence-associated pathologies. Nature 2020; 583(7814): 127–132
CrossRef Google scholar
[28]
Amor C , Fernandez-Maestre I , Chowdhury S , Ho YJ , Nadella S , Graham C , Carrasco SE , Nnuji-John E , Feucht J , Hinterleitner C , Barthet VJA , Boyer JA , Mezzadra R , Wereski MG , Tuveson DA , Levine RL , Jones LW , Sadelain M , Lowe SW . Prophylactic and long-lasting efficacy of senolytic CAR T cells against age-related metabolic dysfunction. Nat Aging 2024; 4(3): 336–349
CrossRef Google scholar
[29]
Yang D , Sun B , Li S , Wei W , Liu X , Cui X , Zhang X , Liu N , Yan L , Deng Y , Zhao X . NKG2D-CAR T cells eliminate senescent cells in aged mice and nonhuman primates. Sci Transl Med. 2023; 15(709): eadd1951
CrossRef Google scholar
[30]
Deng Y , Kumar A , Xie K , Schaaf K , Scifo E , Morsy S , Li T , Ehninger A , Bano D , Ehninger D . Targeting senescent cells with NKG2D-CAR T cells. Cell Death Discov 2024; 10(1): 217
CrossRef Google scholar
[31]
Qiu S , Chen J , Wu T , Li L , Wang G , Wu H , Song X , Liu X , Wang H . CAR-Toner: an AI-driven approach for CAR tonic signaling prediction and optimization. Cell Res 2024; 34(5): 386–388
CrossRef Google scholar
[32]
ThirumalaisamyRVasukiSSindhuSMMothilalTMSrimathiVPoornimaBBhuvaneswariMHariharanM. FDA-approved chimeric antigen receptor (CAR)-T cell therapy for different cancers-a recent perspective. Mol Biotechnol 2024
[33]
Ong MZ , Kimberly SA , Lee WH , Ling M , Lee M , Tan KW , Foo JB , Yow HY , Sellappans R , Hamzah S . FDA-approved CAR T-cell therapy: a decade of progress and challenges. Curr Pharm Biotechnol 2024; 25(11): 1377–1393
CrossRef Google scholar
[34]
Wu W , Ding S , Mingming Z , Yuping Z , Sun X , Zhao Z , Yang Y , Hu Y , Dong H . Cost effectiveness analysis of CAR-T cell therapy for patients with relapsed/refractory multiple myeloma in China. J Med Econ 2023; 26(1): 701–709
CrossRef Google scholar
[35]
Cao X , Li W , Yu Y , Liu T , Zhou Y . China enters CAR-T cell therapy era. Innovation (Camb) 2022; 3(1): 100197
CrossRef Google scholar
[36]
Hu Y , Feng J , Gu T , Wang L , Wang Y , Zhou L , Hong R , Tan Su Yin E , Zhang M , Lu P , Huang H . CAR T-cell therapies in China: rapid evolution and a bright future. Lancet Haematol 2022; 9(12): e930–e941
CrossRef Google scholar
[37]
Li X , Dai H , Li X , Li P , Qian W , Liang A , Han W . Optimal model establishment of whole-process management data for CAR-T therapy in China-how should this be done. Cell Mol Immunol 2022; 19(1): 122–124
CrossRef Google scholar
[38]
Novak U , Mooyaart JE , Daskalakis M , Scheid C , Gabellier L , Yakoub-Agha I , Ram R , Forcade E , Lopez-Corral L , Nicholson E , Galli E , Stolzel F , Bethge W , Wagner-Drouet EM , Hoogenboom JD , Mielke S , Arber C , Simonetta F , Chabannon C , Kuball J , Ruggeri A , Malard F . Choice of commercially available CAR-T cell products for r/r DLBCL & PMBCL in Europe: a survey on behalf of the cellular therapy & immunobiology working party (CTIWP) of the EBMT. Bone Marrow Transplant 2024; 59(11): 1631–1634
CrossRef Google scholar
[39]
S S KD , Joga R , Srivastava S , Nagpal K , Dhamija I , Grover P , Kumar S . Regulatory landscape and challenges in CAR-T cell therapy development in the US, EU, Japan, and India. Eur J Pharm Biopharm 2024; 201: 114361
CrossRef Google scholar
[40]
Gross G , Waks T , Eshhar Z . Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 1989; 86(24): 10024–10028
CrossRef Google scholar
[41]
Kuwana Y , Asakura Y , Utsunomiya N , Nakanishi M , Arata Y , Itoh S , Nagase F , Kurosawa Y . Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochem Biophys Res Commun 1987; 149(3): 960–968
CrossRef Google scholar
[42]
Irving BA , Weiss A . The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 1991; 64(5): 891–901
CrossRef Google scholar
[43]
Eshhar Z , Waks T , Gross G , Schindler DG . Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci USA 1993; 90(2): 720–724
CrossRef Google scholar
[44]
Pule MA , Savoldo B , Myers GD , Rossig C , Russell HV , Dotti G , Huls MH , Liu E , Gee AP , Mei Z , Yvon E , Weiss HL , Liu H , Rooney CM , Heslop HE , Brenner MK . Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 2008; 14(11): 1264–1270
CrossRef Google scholar
[45]
Till BG , Jensen MC , Wang J , Chen EY , Wood BL , Greisman HA , Qian X , James SE , Raubitschek A , Forman SJ , Gopal AK , Pagel JM , Lindgren CG , Greenberg PD , Riddell SR , Press OW . Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 2008; 112(6): 2261–2271
CrossRef Google scholar
[46]
Brentjens RJ , Latouche JB , Santos E , Marti F , Gong MC , Lyddane C , King PD , Larson S , Weiss M , Riviere I , Sadelain M . Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med 2003; 9(3): 279–286
CrossRef Google scholar
[47]
Finney HM , Lawson AD , Bebbington CR , Weir AN . Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J Immunol 1998; 161(6): 2791–2797
CrossRef Google scholar
[48]
Maher J , Brentjens RJ , Gunset G , Riviere I , Sadelain M . Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRξ /CD28 receptor. Nat Biotechnol 2002; 20(1): 70–75
CrossRef Google scholar
[49]
Imai C , Mihara K , Andreansky M , Nicholson IC , Pui CH , Geiger TL , Campana D . Chimeric receptors with 4–1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 2004; 18(4): 676–684
CrossRef Google scholar
[50]
Kowolik CM , Topp MS , Gonzalez S , Pfeiffer T , Olivares S , Gonzalez N , Smith DD , Forman SJ , Jensen MC , Cooper LJ . CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res 2006; 66(22): 10995–11004
CrossRef Google scholar
[51]
Hombach A , Wieczarkowiecz A , Marquardt T , Heuser C , Usai L , Pohl C , Seliger B , Abken H . Tumor-specific T cell activation by recombinant immunoreceptors: CD3ζ signaling and CD28 costimulation are simultaneously required for efficient IL-2 secretion and can be integrated into one combined CD28/CD3 zeta signaling receptor molecule. J Immunol 2001; 167(11): 6123–6131
CrossRef Google scholar
[52]
Safarzadeh Kozani P , Naseri A , Mirarefin SMJ , Salem F , Nikbakht M , Evazi Bakhshi S , Safarzadeh Kozani P . Nanobody-based CAR-T cells for cancer immunotherapy. Biomark Res 2022; 10(1): 24
CrossRef Google scholar
[53]
Li D , English H , Hong J , Liang T , Merlino G , Day CP , Ho M . A novel PD-L1-targeted shark V(NAR) single-domain-based CAR-T cell strategy for treating breast cancer and liver cancer. Mol Ther Oncolytics 2022; 24: 849–863
CrossRef Google scholar
[54]
Moot R , Raikar SS , Fleischer L , Querrey M , Tylawsky DE , Nakahara H , Doering CB , Spencer HT . Genetic engineering of chimeric antigen receptors using lamprey derived variable lymphocyte receptors. Mol Ther Oncolytics 2016; 3: 16026
CrossRef Google scholar
[55]
Han L , Zhang JS , Zhou J , Zhou KS , Xu BL , Li LL , Fang BJ , Yin QS , Zhu XH , Zhou H , Wei XD , Su HC , Zhang BX , Wang YN , Xiang B , Gao QL , Song YP . Single VHH-directed BCMA CAR-T cells cause remission of relapsed/refractory multiple myeloma. Leukemia 2021; 35(10): 3002–3006
CrossRef Google scholar
[56]
Ren Q , Zu Y , Su H , Lu Q , Xiang B , Luo Y , Zhang J , Song Y . Single VHH-directed BCMA CAR-NK cells for multiple myeloma. Exp Hematol Oncol 2023; 12(1): 98
CrossRef Google scholar
[57]
Verhaar ER , van Keizerswaard WJC , Knoflook A , Balligand T , Ploegh HL . Nanobody-based CAR NK cells for possible immunotherapy of MICA+ tumors. PNAS Nexus 2024; 3(5): pgae184
CrossRef Google scholar
[58]
Raikar SS , Fleischer LC , Moot R , Fedanov A , Paik NY , Knight KA , Doering CB , Spencer HT . Development of chimeric antigen receptors targeting T-cell malignancies using two structurally different anti-CD5 antigen binding domains in NK and CRISPR-edited T cell lines. OncoImmunology 2018; 7(3): e1407898
CrossRef Google scholar
[59]
Guedan S , Posey AD Jr , Shaw C , Wing A , Da T , Patel PR , McGettigan SE , Casado-Medrano V , Kawalekar OU , Uribe-Herranz M , Song D , Melenhorst JJ , Lacey SF , Scholler J , Keith B , Young RM , June CH . Enhancing CAR T cell persistence through ICOS and 4–1BB costimulation. JCI Insight 2018; 3(1): e96976
CrossRef Google scholar
[60]
Prinzing B , Schreiner P , Bell M , Fan Y , Krenciute G , Gottschalk S . MyD88/CD40 signaling retains CAR T cells in a less differentiated state. JCI Insight 2020; 5(21): e136093
CrossRef Google scholar
[61]
Guedan S , Chen X , Madar A , Carpenito C , McGettigan SE , Frigault MJ , Lee J , Posey AD Jr , Scholler J , Scholler N , Bonneau R , June CH . ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells. Blood 2014; 124(7): 1070–1080
CrossRef Google scholar
[62]
Mata M , Gerken C , Nguyen P , Krenciute G , Spencer DM , Gottschalk S . Inducible activation of MyD88 and CD40 in CAR T Cells results in controllable and potent antitumor activity in preclinical solid tumor models. Cancer Discov 2017; 7(11): 1306–1319
CrossRef Google scholar
[63]
Collinson-Pautz MR , Chang WC , Lu A , Khalil M , Crisostomo JW , Lin PY , Mahendravada A , Shinners NP , Brandt ME , Zhang M , Duong M , Bayle JH , Slawin KM , Spencer DM , Foster AE . Constitutively active MyD88/CD40 costimulation enhances expansion and efficacy of chimeric antigen receptor T cells targeting hematological malignancies. Leukemia 2019; 33(9): 2195–2207
CrossRef Google scholar
[64]
Carpenito C , Milone MC , Hassan R , Simonet JC , Lakhal M , Suhoski MM , Varela-Rohena A , Haines KM , Heitjan DF , Albelda SM , Carroll RG , Riley JL , Pastan I , June CH . Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA 2009; 106(9): 3360–3365
CrossRef Google scholar
[65]
Ramos CA , Rouce R , Robertson CS , Reyna A , Narala N , Vyas G , Mehta B , Zhang H , Dakhova O , Carrum G , Kamble RT , Gee AP , Mei Z , Wu MF , Liu H , Grilley B , Rooney CM , Heslop HE , Brenner MK , Savoldo B , Dotti G . In vivo fate and activity of second- versus third-generation CD19-specific CAR-T cells in B cell non-Hodgkin’s lymphomas. Mol Ther 2018; 26(12): 2727–2737
CrossRef Google scholar
[66]
Zhong XS , Matsushita M , Plotkin J , Riviere I , Sadelain M . Chimeric antigen receptors combining 4–1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Mol Ther 2010; 18(2): 413–420
CrossRef Google scholar
[67]
Till BG , Jensen MC , Wang J , Qian X , Gopal AK , Maloney DG , Lindgren CG , Lin Y , Pagel JM , Budde LE , Raubitschek A , Forman SJ , Greenberg PD , Riddell SR , Press OW . CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4–1BB domains: pilot clinical trial results. Blood 2012; 119(17): 3940–3950
CrossRef Google scholar
[68]
Enblad G , Karlsson H , Gammelgard G , Wenthe J , Lovgren T , Amini RM , Wikstrom KI , Essand M , Savoldo B , Hallbook H , Hoglund M , Dotti G , Brenner MK , Hagberg H , Loskog A . A phase I/IIa trial using CD19-targeted third-generation CAR T cells for lymphoma and leukemia. Clin Cancer Res 2018; 24(24): 6185–6194
CrossRef Google scholar
[69]
Pegram HJ , Lee JC , Hayman EG , Imperato GH , Tedder TF , Sadelain M , Brentjens RJ . Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 2012; 119(18): 4133–4141
CrossRef Google scholar
[70]
Krenciute G , Prinzing BL , Yi Z , Wu MF , Liu H , Dotti G , Balyasnikova IV , Gottschalk S . Transgenic expression of IL15 improves antiglioma activity of IL13Rα2-CAR T cells but results in antigen loss variants. Cancer Immunol Res 2017; 5(7): 571–581
CrossRef Google scholar
[71]
Batra SA , Rathi P , Guo L , Courtney AN , Fleurence J , Balzeau J , Shaik RS , Nguyen TP , Wu MF , Bulsara S , Mamonkin M , Metelitsa LS , Heczey A . Glypican-3-specific CAR T cells coexpressing IL15 and IL21 have superior expansion and antitumor activity against hepatocellular carcinoma. Cancer Immunol Res 2020; 8(3): 309–320
CrossRef Google scholar
[72]
Koneru M , Purdon TJ , Spriggs D , Koneru S , Brentjens RJ . IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. OncoImmunology 2015; 4(3): e994446
CrossRef Google scholar
[73]
Chinnasamy D , Yu Z , Kerkar SP , Zhang L , Morgan RA , Restifo NP , Rosenberg SA . Local delivery of interleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice. Clin Cancer Res 2012; 18(6): 1672–1683
CrossRef Google scholar
[74]
Hu B , Ren J , Luo Y , Keith B , Young RM , Scholler J , Zhao Y , June CH . Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18. Cell Rep 2017; 20(13): 3025–3033
CrossRef Google scholar
[75]
Chmielewski M , Abken H . CAR T cells releasing IL-18 convert to T-Bethigh FoxO1low effectors that exhibit augmented activity against advanced solid tumors. Cell Rep 2017; 21(11): 3205–3219
CrossRef Google scholar
[76]
Schuster SJ , Bishop MR , Tam CS , Waller EK , Borchmann P , McGuirk JP , Jager U , Jaglowski S , Andreadis C , Westin JR , Fleury I , Bachanova V , Foley SR , Ho PJ , Mielke S , Magenau JM , Holte H , Pantano S , Pacaud LB , Awasthi R , Chu J , Anak O , Salles G , Maziarz RT , Investigators J . Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med 2019; 380(1): 45–56
CrossRef Google scholar
[77]
Locke FL , Ghobadi A , Jacobson CA , Miklos DB , Lekakis LJ , Oluwole OO , Lin Y , Braunschweig I , Hill BT , Timmerman JM , Deol A , Reagan PM , Stiff P , Flinn IW , Farooq U , Goy A , McSweeney PA , Munoz J , Siddiqi T , Chavez JC , Herrera AF , Bartlett NL , Wiezorek JS , Navale L , Xue A , Jiang Y , Bot A , Rossi JM , Kim JJ , Go WY , Neelapu SS . Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol 2019; 20(1): 31–42
CrossRef Google scholar
[78]
Abramson JS , Palomba ML , Gordon LI , Lunning MA , Wang M , Arnason J , Mehta A , Purev E , Maloney DG , Andreadis C , Sehgal A , Solomon SR , Ghosh N , Albertson TM , Garcia J , Kostic A , Mallaney M , Ogasawara K , Newhall K , Kim Y , Li D , Siddiqi T . Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 2020; 396(10254): 839–852
CrossRef Google scholar
[79]
Berdeja JG , Madduri D , Usmani SZ , Jakubowiak A , Agha M , Cohen AD , Stewart AK , Hari P , Htut M , Lesokhin A , Deol A , Munshi NC , O’Donnell E , Avigan D , Singh I , Zudaire E , Yeh TM , Allred AJ , Olyslager Y , Banerjee A , Jackson CC , Goldberg JD , Schecter JM , Deraedt W , Zhuang SH , Infante J , Geng D , Wu X , Carrasco-Alfonso MJ , Akram M , Hossain F , Rizvi S , Fan F , Lin Y , Martin T , Jagannath S . Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet 2021; 398(10297): 314–324
CrossRef Google scholar
[80]
Munshi NC , Anderson LD Jr , Shah N , Madduri D , Berdeja J , Lonial S , Raje N , Lin Y , Siegel D , Oriol A , Moreau P , Yakoub-Agha I , Delforge M , Cavo M , Einsele H , Goldschmidt H , Weisel K , Rambaldi A , Reece D , Petrocca F , Massaro M , Connarn JN , Kaiser S , Patel P , Huang L , Campbell TB , Hege K , San-Miguel J . Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med 2021; 384(8): 705–716
CrossRef Google scholar
[81]
Shah BD , Ghobadi A , Oluwole OO , Logan AC , Boissel N , Cassaday RD , Leguay T , Bishop MR , Topp MS , Tzachanis D , O’Dwyer KM , Arellano ML , Lin Y , Baer MR , Schiller GJ , Park JH , Subklewe M , Abedi M , Minnema MC , Wierda WG , DeAngelo DJ , Stiff P , Jeyakumar D , Feng C , Dong J , Shen T , Milletti F , Rossi JM , Vezan R , Masouleh BK , Houot R . KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet 2021; 398(10299): 491–502
CrossRef Google scholar
[82]
Maude SL , Frey N , Shaw PA , Aplenc R , Barrett DM , Bunin NJ , Chew A , Gonzalez VE , Zheng Z , Lacey SF , Mahnke YD , Melenhorst JJ , Rheingold SR , Shen A , Teachey DT , Levine BL , June CH , Porter DL , Grupp SA . Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014; 371(16): 1507–1517
CrossRef Google scholar
[83]
Maude SL , Laetsch TW , Buechner J , Rives S , Boyer M , Bittencourt H , Bader P , Verneris MR , Stefanski HE , Myers GD , Qayed M , De Moerloose B , Hiramatsu H , Schlis K , Davis KL , Martin PL , Nemecek ER , Yanik GA , Peters C , Baruchel A , Boissel N , Mechinaud F , Balduzzi A , Krueger J , June CH , Levine BL , Wood P , Taran T , Leung M , Mueller KT , Zhang Y , Sen K , Lebwohl D , Pulsipher MA , Grupp SA . Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 2018; 378(5): 439–448
CrossRef Google scholar
[84]
Lee DW , Kochenderfer JN , Stetler-Stevenson M , Cui YK , Delbrook C , Feldman SA , Fry TJ , Orentas R , Sabatino M , Shah NN , Steinberg SM , Stroncek D , Tschernia N , Yuan C , Zhang H , Zhang L , Rosenberg SA , Wayne AS , Mackall CL . T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 2015; 385(9967): 517–528
CrossRef Google scholar
[85]
Fry TJ , Shah NN , Orentas RJ , Stetler-Stevenson M , Yuan CM , Ramakrishna S , Wolters P , Martin S , Delbrook C , Yates B , Shalabi H , Fountaine TJ , Shern JF , Majzner RG , Stroncek DF , Sabatino M , Feng Y , Dimitrov DS , Zhang L , Nguyen S , Qin H , Dropulic B , Lee DW , Mackall CL . CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med 2018; 24(1): 20–28
CrossRef Google scholar
[86]
Valkenburg KC , de Groot AE , Pienta KJ . Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol 2018; 15(6): 366–381
CrossRef Google scholar
[87]
Lanitis E , Irving M , Coukos G . Targeting the tumor vasculature to enhance T cell activity. Curr Opin Immunol 2015; 33: 55–63
CrossRef Google scholar
[88]
Huang Y , Kim BYS , Chan CK , Hahn SM , Weissman IL , Jiang W . Improving immune-vascular crosstalk for cancer immunotherapy. Nat Rev Immunol 2018; 18(3): 195–203
CrossRef Google scholar
[89]
Nagarsheth N , Wicha MS , Zou W . Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol 2017; 17(9): 559–572
CrossRef Google scholar
[90]
Snuderl M , Fazlollahi L , Le LP , Nitta M , Zhelyazkova BH , Davidson CJ , Akhavanfard S , Cahill DP , Aldape KD , Betensky RA , Louis DN , Iafrate AJ . Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell 2011; 20(6): 810–817
CrossRef Google scholar
[91]
Majzner RG , Mackall CL . Tumor antigen escape from CAR T-cell therapy. Cancer Discov 2018; 8(10): 1219–1226
CrossRef Google scholar
[92]
Mount CW , Majzner RG , Sundaresh S , Arnold EP , Kadapakkam M , Haile S , Labanieh L , Hulleman E , Woo PJ , Rietberg SP , Vogel H , Monje M , Mackall CL . Potent antitumor efficacy of anti-GD2 CAR T cells in H3–K27M+ diffuse midline gliomas. Nat Med 2018; 24(5): 572–579
CrossRef Google scholar
[93]
Louis CU , Savoldo B , Dotti G , Pule M , Yvon E , Myers GD , Rossig C , Russell HV , Diouf O , Liu E , Liu H , Wu MF , Gee AP , Mei Z , Rooney CM , Heslop HE , Brenner MK . Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 2011; 118(23): 6050–6056
CrossRef Google scholar
[94]
Beatty GL , O’Hara MH , Lacey SF , Torigian DA , Nazimuddin F , Chen F , Kulikovskaya IM , Soulen MC , McGarvey M , Nelson AM , Gladney WL , Levine BL , Melenhorst JJ , Plesa G , June CH . Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a phase 1 trial. Gastroenterology 2018; 155(1): 29–32
CrossRef Google scholar
[95]
Moon EK , Carpenito C , Sun J , Wang LC , Kapoor V , Predina J , Powell DJ Jr , Riley JL , June CH , Albelda SM . Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin Cancer Res 2011; 17(14): 4719–4730
CrossRef Google scholar
[96]
Adusumilli PS , Cherkassky L , Villena-Vargas J , Colovos C , Servais E , Plotkin J , Jones DR , Sadelain M . Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci Transl Med 2014; 6(261): 261ra151
CrossRef Google scholar
[97]
Maus MV , Haas AR , Beatty GL , Albelda SM , Levine BL , Liu X , Zhao Y , Kalos M , June CH . T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol Res 2013; 1(1): 26–31
CrossRef Google scholar
[98]
Haas AR , Tanyi JL , O’Hara MH , Gladney WL , Lacey SF , Torigian DA , Soulen MC , Tian L , McGarvey M , Nelson AM , Farabaugh CS , Moon E , Levine BL , Melenhorst JJ , Plesa G , June CH , Albelda SM , Beatty GL . Phase I study of lentiviral-transduced chimeric antigen receptor-modified T cells recognizing mesothelin in advanced solid cancers. Mol Ther 2019; 27(11): 1919–1929
CrossRef Google scholar
[99]
Priceman SJ , Tilakawardane D , Jeang B , Aguilar B , Murad JP , Park AK , Chang WC , Ostberg JR , Neman J , Jandial R , Portnow J , Forman SJ , Brown CE . Regional delivery of chimeric antigen receptor-engineered T cells effectively targets HER2+ breast cancer metastasis to the brain. Clin Cancer Res 2018; 24(1): 95–105
CrossRef Google scholar
[100]
Ahmed N , Brawley VS , Hegde M , Robertson C , Ghazi A , Gerken C , Liu E , Dakhova O , Ashoori A , Corder A , Gray T , Wu MF , Liu H , Hicks J , Rainusso N , Dotti G , Mei Z , Grilley B , Gee A , Rooney CM , Brenner MK , Heslop HE , Wels WS , Wang LL , Anderson P , Gottschalk S . Human epidermal growth factor receptor 2 (HER2) -specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol 2015; 33(15): 1688–1696
CrossRef Google scholar
[101]
Ahmed N , Brawley V , Hegde M , Bielamowicz K , Kalra M , Landi D , Robertson C , Gray TL , Diouf O , Wakefield A , Ghazi A , Gerken C , Yi Z , Ashoori A , Wu MF , Liu H , Rooney C , Dotti G , Gee A , Su J , Kew Y , Baskin D , Zhang YJ , New P , Grilley B , Stojakovic M , Hicks J , Powell SZ , Brenner MK , Heslop HE , Grossman R , Wels WS , Gottschalk S . HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol 2017; 3(8): 1094–1101
CrossRef Google scholar
[102]
Forsberg EMV , Lindberg MF , Jespersen H , Alsen S , Bagge RO , Donia M , Svane IM , Nilsson O , Ny L , Nilsson LM , Nilsson JA . HER2 CAR-T cells eradicate uveal melanoma and T-cell therapy-resistant human melanoma in IL2 transgenic NOD/SCID IL2 receptor knockout mice. Cancer Res 2019; 79(5): 899–904
CrossRef Google scholar
[103]
Majzner RG , Theruvath JL , Nellan A , Heitzeneder S , Cui Y , Mount CW , Rietberg SP , Linde MH , Xu P , Rota C , Sotillo E , Labanieh L , Lee DW , Orentas RJ , Dimitrov DS , Zhu Z , Croix BS , Delaidelli A , Sekunova A , Bonvini E , Mitra SS , Quezado MM , Majeti R , Monje M , Sorensen PHB , Maris JM , Mackall CL . CAR T cells targeting B7–H3, a pan-cancer antigen, demonstrate potent preclinical activity against pediatric solid tumors and brain tumors. Clin Cancer Res 2019; 25(8): 2560–2574
CrossRef Google scholar
[104]
Du H , Hirabayashi K , Ahn S , Kren NP , Montgomery SA , Wang X , Tiruthani K , Mirlekar B , Michaud D , Greene K , Herrera SG , Xu Y , Sun C , Chen Y , Ma X , Ferrone CR , Pylayeva-Gupta Y , Yeh JJ , Liu R , Savoldo B , Ferrone S , Dotti G . Antitumor responses in the absence of toxicity in solid tumors by targeting B7–H3 via chimeric antigen receptor T cells. Cancer Cell 2019; 35(2): 221–37.e8
CrossRef Google scholar
[105]
Nehama D , Di Ianni N , Musio S , Du H , Patane M , Pollo B , Finocchiaro G , Park JJH , Dunn DE , Edwards DS , Damrauer JS , Hudson H , Floyd SR , Ferrone S , Savoldo B , Pellegatta S , Dotti G . B7–H3-redirected chimeric antigen receptor T cells target glioblastoma and neurospheres. EBioMedicine 2019; 47: 33–43
CrossRef Google scholar
[106]
Vitanza NA , Wilson AL , Huang W , Seidel K , Brown C , Gustafson JA , Yokoyama JK , Johnson AJ , Baxter BA , Koning RW , Reid AN , Meechan M , Biery MC , Myers C , Rawlings-Rhea SD , Albert CM , Browd SR , Hauptman JS , Lee A , Ojemann JG , Berens ME , Dun MD , Foster JB , Crotty EE , Leary SES , Cole BL , Perez FA , Wright JN , Orentas RJ , Chour T , Newell EW , Whiteaker JR , Zhao L , Paulovich AG , Pinto N , Gust J , Gardner RA , Jensen MC , Park JR . Intraventricular B7–H3 CAR T Cells for diffuse intrinsic pontine glioma: preliminary first-in-human bioactivity and safety. Cancer Discov 2023; 13(1): 114–131
CrossRef Google scholar
[107]
Caruso HG , Hurton LV , Najjar A , Rushworth D , Ang S , Olivares S , Mi T , Switzer K , Singh H , Huls H , Lee DA , Heimberger AB , Champlin RE , Cooper LJ . Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity. Cancer Res 2015; 75(17): 3505–3518
CrossRef Google scholar
[108]
Johnson LA , Scholler J , Ohkuri T , Kosaka A , Patel PR , McGettigan SE , Nace AK , Dentchev T , Thekkat P , Loew A , Boesteanu AC , Cogdill AP , Chen T , Fraietta JA , Kloss CC , Posey AD Jr , Engels B , Singh R , Ezell T , Idamakanti N , Ramones MH , Li N , Zhou L , Plesa G , Seykora JT , Okada H , June CH , Brogdon JL , Maus MV . Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci Transl Med 2015; 7(275): 275ra22
CrossRef Google scholar
[109]
Zhang Y , Zhang Z , Ding Y , Fang Y , Wang P , Chu W , Jin Z , Yang X , Wang J , Lou J , Qian Q . Phase I clinical trial of EGFR-specific CAR-T cells generated by the piggyBac transposon system in advanced relapsed/refractory non-small cell lung cancer patients. J Cancer Res Clin Oncol 2021; 147(12): 3725–3734
CrossRef Google scholar
[110]
Li H , Huang Y , Jiang DQ , Cui LZ , He Z , Wang C , Zhang ZW , Zhu HL , Ding YM , Li LF , Li Q , Jin HJ , Qian QJ . Antitumor activity of EGFR-specific CAR T cells against non-small-cell lung cancer cells in vitro and in mice. Cell Death Dis 2018; 9(2): 177
CrossRef Google scholar
[111]
Priceman SJ , Gerdts EA , Tilakawardane D , Kennewick KT , Murad JP , Park AK , Jeang B , Yamaguchi Y , Yang X , Urak R , Weng L , Chang WC , Wright S , Pal S , Reiter RE , Wu AM , Brown CE , Forman SJ . Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer. OncoImmunology 2018; 7(2): e1380764
CrossRef Google scholar
[112]
Dorff TB , Blanchard MS , Adkins LN , Luebbert L , Leggett N , Shishido SN , Macias A , Del Real MM , Dhapola G , Egelston C , Murad JP , Rosa R , Paul J , Chaudhry A , Martirosyan H , Gerdts E , Wagner JR , Stiller T , Tilakawardane D , Pal S , Martinez C , Reiter RE , Budde LE , D’Apuzzo M , Kuhn P , Pachter L , Forman SJ , Priceman SJ . PSCA-CAR T cell therapy in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat Med 2024; 30(6): 1636–1644
CrossRef Google scholar
[113]
Abate-Daga D , Lagisetty KH , Tran E , Zheng Z , Gattinoni L , Yu Z , Burns WR , Miermont AM , Teper Y , Rudloff U , Restifo NP , Feldman SA , Rosenberg SA , Morgan RA . A novel chimeric antigen receptor against prostate stem cell antigen mediates tumor destruction in a humanized mouse model of pancreatic cancer. Hum Gene Ther 2014; 25(12): 1003–1012
CrossRef Google scholar
[114]
Shi D , Shi Y , Kaseb AO , Qi X , Zhang Y , Chi J , Lu Q , Gao H , Jiang H , Wang H , Yuan D , Ma H , Wang H , Li Z , Zhai B . Chimeric antigen receptor-glypican-3 T-cell therapy for advanced hepatocellular carcinoma: results of phase I trials. Clin Cancer Res 2020; 26(15): 3979–3989
CrossRef Google scholar
[115]
Jiang Z , Jiang X , Chen S , Lai Y , Wei X , Li B , Lin S , Wang S , Wu Q , Liang Q , Liu Q , Peng M , Yu F , Weng J , Du X , Pei D , Liu P , Yao Y , Xue P , Li P . Anti-GPC3-CAR T cells suppress the growth of tumor cells in patient-derived xenografts of hepatocellular carcinoma. Front Immunol 2016; 7: 690
[116]
Pang N , Shi J , Qin L , Chen A , Tang Y , Yang H , Huang Y , Wu Q , Li X , He B , Li T , Liang B , Zhang J , Cao B , Liu M , Feng Y , Ye X , Chen X , Wang L , Tian Y , Li H , Li J , Hu H , He J , Hu Y , Zhi C , Tang Z , Gong Y , Xu F , Xu L , Fan W , Zhao M , Chen D , Lian H , Yang L , Li P , Zhang Z . IL-7 and CCL19-secreting CAR-T cell therapy for tumors with positive glypican-3 or mesothelin. J Hematol Oncol 2021; 14(1): 118
CrossRef Google scholar
[117]
Fu Q , Zheng Y , Fang W , Zhao Q , Zhao P , Liu L , Zhai Y , Tong Z , Zhang H , Lin M , Zhu X , Wang H , Wang Y , Liu Z , Yuan D , Bao X , Gao W , Dai X , Li Z , Liang T . RUNX-3-expressing CAR T cells targeting glypican-3 in patients with heavily pretreated advanced hepatocellular carcinoma: a phase I trial. EClinicalMedicine 2023; 63: 102175
CrossRef Google scholar
[118]
Chen S , Gong F , Liu S , Xie Y , Ye X , Lin X , Wang X , Zheng Q , Liu Q , Sun Y . IL-21- and CXCL9-engineered GPC3-specific CAR-T cells combined with PD-1 blockade enhance cytotoxic activities against hepatocellular carcinoma. Clin Exp Med 2024; 24(1): 204
CrossRef Google scholar
[119]
Qi C , Gong J , Li J , Liu D , Qin Y , Ge S , Zhang M , Peng Z , Zhou J , Cao Y , Zhang X , Lu Z , Lu M , Yuan J , Wang Z , Wang Y , Peng X , Gao H , Liu Z , Wang H , Yuan D , Xiao J , Ma H , Wang W , Li Z , Shen L . Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat Med 2022; 28(6): 1189–1198
CrossRef Google scholar
[120]
Qi C , Xie T , Zhou J , Wang X , Gong J , Zhang X , Li J , Yuan J , Liu C , Shen L . CT041 CAR T cell therapy for Claudin18.2-positive metastatic pancreatic cancer. J Hematol Oncol 2023; 16(1): 102
CrossRef Google scholar
[121]
Zhang C , Wang Z , Yang Z , Wang M , Li S , Li Y , Zhang R , Xiong Z , Wei Z , Shen J , Luo Y , Zhang Q , Liu L , Qin H , Liu W , Wu F , Chen W , Pan F , Zhang X , Bie P , Liang H , Pecher G , Qian C , Phase I . Escalating-dose trial of CAR-T therapy targeting CEA+ metastatic colorectal cancers. Mol Ther 2017; 25(5): 1248–1258
CrossRef Google scholar
[122]
Zhu X , Chen J , Li W , Xu Y , Shan J , Hong J , Zhao Y , Xu H , Ma J , Shen J , Qian C . Hypoxia-responsive CAR-T cells exhibit reduced exhaustion and enhanced efficacy in solid tumors. Cancer Res 2024; 84(1): 84–100
CrossRef Google scholar
[123]
Sato O , Tsuchikawa T , Kato T , Amaishi Y , Okamoto S , Mineno J , Takeuchi Y , Sasaki K , Nakamura T , Umemoto K , Suzuki T , Wang L , Wang Y , Hatanaka KC , Mitsuhashi T , Hatanaka Y , Shiku H , Hirano S . Tumor growth suppression of pancreatic cancer orthotopic xenograft model by CEA-targeting CAR-T cells. Cancers (Basel) 2023; 15(3): 601
CrossRef Google scholar
[124]
Pellegatta S , Savoldo B , Di Ianni N , Corbetta C , Chen Y , Patane M , Sun C , Pollo B , Ferrone S , DiMeco F , Finocchiaro G , Dotti G . Constitutive and TNFα-inducible expression of chondroitin sulfate proteoglycan 4 in glioblastoma and neurospheres: implications for CAR-T cell therapy. Sci Transl Med 2018; 10(430): eaao2731
CrossRef Google scholar
[125]
Beard RE , Zheng Z , Lagisetty KH , Burns WR , Tran E , Hewitt SM , Abate-Daga D , Rosati SF , Fine HA , Ferrone S , Rosenberg SA , Morgan RA . Multiple chimeric antigen receptors successfully target chondroitin sulfate proteoglycan 4 in several different cancer histologies and cancer stem cells. J Immunother Cancer 2014; 2(1): 25
CrossRef Google scholar
[126]
Wang X , Osada T , Wang Y , Yu L , Sakakura K , Katayama A , McCarthy JB , Brufsky A , Chivukula M , Khoury T , Hsu DS , Barry WT , Lyerly HK , Clay TM , Ferrone S . CSPG4 protein as a new target for the antibody-based immunotherapy of triple-negative breast cancer. J Natl Cancer Inst 2010; 102(19): 1496–1512
CrossRef Google scholar
[127]
Fraietta JA , Lacey SF , Orlando EJ , Pruteanu-Malinici I , Gohil M , Lundh S , Boesteanu AC , Wang Y , O’Connor RS , Hwang WT , Pequignot E , Ambrose DE , Zhang C , Wilcox N , Bedoya F , Dorfmeier C , Chen F , Tian L , Parakandi H , Gupta M , Young RM , Johnson FB , Kulikovskaya I , Liu L , Xu J , Kassim SH , Davis MM , Levine BL , Frey NV , Siegel DL , Huang AC , Wherry EJ , Bitter H , Brogdon JL , Porter DL , June CH , Melenhorst JJ . Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med 2018; 24(5): 563–571
CrossRef Google scholar
[128]
Lynn RC , Weber EW , Sotillo E , Gennert D , Xu P , Good Z , Anbunathan H , Lattin J , Jones R , Tieu V , Nagaraja S , Granja J , de Bourcy CFA , Majzner R , Satpathy AT , Quake SR , Monje M , Chang HY , Mackall CL . c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 2019; 576(7786): 293–300
CrossRef Google scholar
[129]
Long AH , Haso WM , Shern JF , Wanhainen KM , Murgai M , Ingaramo M , Smith JP , Walker AJ , Kohler ME , Venkateshwara VR , Kaplan RN , Patterson GH , Fry TJ , Orentas RJ , Mackall CL . 4–1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 2015; 21(6): 581–590
CrossRef Google scholar
[130]
Sawant DV , Yano H , Chikina M , Zhang Q , Liao M , Liu C , Callahan DJ , Sun Z , Sun T , Tabib T , Pennathur A , Corry DB , Luketich JD , Lafyatis R , Chen W , Poholek AC , Bruno TC , Workman CJ , Vignali DAA . Adaptive plasticity of IL-10+ and IL-35+ T(reg) cells cooperatively promotes tumor T cell exhaustion. Nat Immunol 2019; 20(6): 724–735
CrossRef Google scholar
[131]
Dadey RE , Workman CJ , Vignali DAA . Regulatory T cells in the tumor microenvironment. Adv Exp Med Biol 2020; 1273: 105–134
CrossRef Google scholar
[132]
Scott EN , Gocher AM , Workman CJ , Vignali DAA . Regulatory T cells: barriers of immune infiltration into the tumor microenvironment. Front Immunol 2021; 12: 702726
CrossRef Google scholar
[133]
Gabrilovich DI , Ostrand-Rosenberg S , Bronte V . Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012; 12(4): 253–268
CrossRef Google scholar
[134]
Munir MT , Kay MK , Kang MH , Rahman MM , Al-Harrasi A , Choudhury M , Moustaid-Moussa N , Hussain F , Rahman SM . Tumor-associated macrophages as multifaceted regulators of breast tumor growth. Int J Mol Sci 2021; 22(12): 6526
CrossRef Google scholar
[135]
Tharp KM , Kersten K , Maller O , Timblin GA , Stashko C , Canale FP , Menjivar RE , Hayward MK , Berestjuk I , Ten Hoeve J , Samad B , Ironside AJ , di Magliano MP , Muir A , Geiger R , Combes AJ , Weaver VM . Tumor-associated macrophages restrict CD8+ T cell function through collagen deposition and metabolic reprogramming of the breast cancer microenvironment. Nat Cancer 2024; 5(7): 1045–1062
CrossRef Google scholar
[136]
Chen Y , Song Y , Du W , Gong L , Chang H , Zou Z . Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci 2019; 26(1): 78
CrossRef Google scholar
[137]
Tauriello DVF , Palomo-Ponce S , Stork D , Berenguer-Llergo A , Badia-Ramentol J , Iglesias M , Sevillano M , Ibiza S , Canellas A , Hernando-Momblona X , Byrom D , Matarin JA , Calon A , Rivas EI , Nebreda AR , Riera A , Attolini CS , Batlle E . TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 2018; 554(7693): 538–543
CrossRef Google scholar
[138]
Chakravarthy A , Khan L , Bensler NP , Bose P , De Carvalho DD . TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat Commun 2018; 9(1): 4692
CrossRef Google scholar
[139]
Gunderson AJ , Yamazaki T , McCarty K , Fox N , Phillips M , Alice A , Blair T , Whiteford M , O’Brien D , Ahmad R , Kiely MX , Hayman A , Crocenzi T , Gough MJ , Crittenden MR , Young KH . TGFβ suppresses CD8+ T cell expression of CXCR3 and tumor trafficking. Nat Commun 2020; 11(1): 1749
CrossRef Google scholar
[140]
Kawalekar OU , O’Connor RS , Fraietta JA , Guo L , McGettigan SE , Posey AD Jr , Patel PR , Guedan S , Scholler J , Keith B , Snyder NW , Blair IA , Milone MC , June CH . Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 2016; 44(2): 380–390
CrossRef Google scholar
[141]
van Oers NS , Tao W , Watts JD , Johnson P , Aebersold R , Teh HS . Constitutive tyrosine phosphorylation of the T-cell receptor (TCR) ζ subunit: regulation of TCR-associated protein tyrosine kinase activity by TCR zeta. Mol Cell Biol 1993; 13(9): 5771–5780
CrossRef Google scholar
[142]
van Oers NS , Killeen N , Weiss A . ZAP-70 is constitutively associated with tyrosine-phosphorylated TCR ζ in murine thymocytes and lymph node T cells. Immunity 1994; 1(8): 675–685
CrossRef Google scholar
[143]
Bartleson JM , Viehmann Milam AA , Donermeyer DL , Horvath S , Xia Y , Egawa T , Allen PM . Strength of tonic T cell receptor signaling instructs T follicular helper cell-fate decisions. Nat Immunol 2020; 21(11): 1384–1396
CrossRef Google scholar
[144]
Polic B , Kunkel D , Scheffold A , Rajewsky K . How αβ T cells deal with induced TCR α ablation. Proc Natl Acad Sci USA 2001; 98(15): 8744–8749
CrossRef Google scholar
[145]
Spits H . Development of αβ T cells in the human thymus. Nat Rev Immunol 2002; 2(10): 760–772
CrossRef Google scholar
[146]
Irving BA , Alt FW , Killeen N . Thymocyte development in the absence of pre-T cell receptor extracellular immunoglobulin domains. Science 1998; 280(5365): 905–908
CrossRef Google scholar
[147]
Michie AM , Zuniga-Pflucker JC . Regulation of thymocyte differentiation: pre-TCR signals and β-selection. Semin Immunol 2002; 14(5): 311–323
CrossRef Google scholar
[148]
Yamasaki S , Ishikawa E , Sakuma M , Ogata K , Sakata-Sogawa K , Hiroshima M , Wiest DL , Tokunaga M , Saito T . Mechanistic basis of pre-T cell receptor-mediated autonomous signaling critical for thymocyte development. Nat Immunol 2006; 7(1): 67–75
CrossRef Google scholar
[149]
Ishikawa E , Miyake Y , Hara H , Saito T , Yamasaki S . Germ-line elimination of electric charge on pre-T-cell receptor (TCR) impairs autonomous signaling for beta-selection and TCR repertoire formation. Proc Natl Acad Sci USA 2010; 107(46): 19979–19984
CrossRef Google scholar
[150]
Pang SS , Berry R , Chen Z , Kjer-Nielsen L , Perugini MA , King GF , Wang C , Chew SH , La Gruta NL , Williams NK , Beddoe T , Tiganis T , Cowieson NP , Godfrey DI , Purcell AW , Wilce MC , McCluskey J , Rossjohn J . The structural basis for autonomous dimerization of the pre-T-cell antigen receptor. Nature 2010; 467(7317): 844–848
CrossRef Google scholar
[151]
Morris GP , Allen PM . How the TCR balances sensitivity and specificity for the recognition of self and pathogens. Nat Immunol 2012; 13(2): 121–128
CrossRef Google scholar
[152]
Lam KP , Kuhn R , Rajewsky K . In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 1997; 90(6): 1073–1083
CrossRef Google scholar
[153]
Srinivasan L , Sasaki Y , Calado DP , Zhang B , Paik JH , DePinho RA , Kutok JL , Kearney JF , Otipoby KL , Rajewsky K . PI3 kinase signals BCR-dependent mature B cell survival. Cell 2009; 139(3): 573–586
CrossRef Google scholar
[154]
Wang Y , Liu J , Burrows PD , Wang JY . B cell development and maturation. Adv Exp Med Biol 2020; 1254: 1–22
CrossRef Google scholar
[155]
Melchers F , Karasuyama H , Haasner D , Bauer S , Kudo A , Sakaguchi N , Jameson B , Rolink A . The surrogate light chain in B-cell development. Immunol Today 1993; 14(2): 60–68
CrossRef Google scholar
[156]
Ohnishi K , Melchers F . The nonimmunoglobulin portion of lambda5 mediates cell-autonomous pre-B cell receptor signaling. Nat Immunol 2003; 4(9): 849–856
CrossRef Google scholar
[157]
Bankovich AJ , Raunser S , Juo ZS , Walz T , Davis MM , Garcia KC . Structural insight into pre-B cell receptor function. Science 2007; 316(5822): 291–294
CrossRef Google scholar
[158]
Frigault MJ , Lee J , Basil MC , Carpenito C , Motohashi S , Scholler J , Kawalekar OU , Guedan S , McGettigan SE , Posey AD Jr , Ang S , Cooper LJ , Platt JM , Johnson FB , Paulos CM , Zhao Y , Kalos M , Milone MC , June CH . Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells. Cancer Immunol Res 2015; 3(4): 356–367
CrossRef Google scholar
[159]
Chen J , Qiu S , Li W , Wang K , Zhang Y , Yang H , Liu B , Li G , Li L , Chen M , Lan J , Niu J , He P , Cheng L , Fan G , Liu X , Song X , Xu C , Wu H , Wang H . Tuning charge density of chimeric antigen receptor optimizes tonic signaling and CAR-T cell fitness. Cell Res 2023; 33(5): 341–354
CrossRef Google scholar
[160]
Singh N , Frey NV , Engels B , Barrett DM , Shestova O , Ravikumar P , Cummins KD , Lee YG , Pajarillo R , Chun I , Shyu A , Highfill SL , Price A , Zhao L , Peng L , Granda B , Ramones M , Lu XM , Christian DA , Perazzelli J , Lacey SF , Roy NH , Burkhardt JK , Colomb F , Damra M , Abdel-Mohsen M , Liu T , Liu D , Standley DM , Young RM , Brogdon JL , Grupp SA , June CH , Maude SL , Gill S , Ruella M . Antigen-independent activation enhances the efficacy of 4–1BB-costimulated CD22 CAR T cells. Nat Med 2021; 27(5): 842–850
CrossRef Google scholar
[161]
Watanabe N , Bajgain P , Sukumaran S , Ansari S , Heslop HE , Rooney CM , Brenner MK , Leen AM , Vera JF . Fine-tuning the CAR spacer improves T-cell potency. OncoImmunology 2016; 5(12): e1253656
CrossRef Google scholar
[162]
Zhang H , Li F , Cao J , Wang X , Cheng H , Qi K , Wang G , Xu K , Zheng J , Fu YX , Yang X . A chimeric antigen receptor with antigen-independent OX40 signaling mediates potent antitumor activity. Sci Transl Med 2021; 13(578): eaba7308
CrossRef Google scholar
[163]
Tan J , Jia Y , Zhou M , Fu C , Tuhin IJ , Ye J , Monty MA , Xu N , Kang L , Li M , Shao J , Fang X , Zhu H , Yan L , Qu C , Xue S , Jin Z , Chen S , Huang H , Xu Y , Chen J , Miao M , Tang X , Li C , Yan Z , Wu D , Yu L . Chimeric antigen receptors containing the OX40 signalling domain enhance the persistence of T cells even under repeated stimulation with multiple myeloma target cells. J Hematol Oncol 2022; 15(1): 39
CrossRef Google scholar
[164]
Feucht J , Sun J , Eyquem J , Ho YJ , Zhao Z , Leibold J , Dobrin A , Cabriolu A , Hamieh M , Sadelain M . Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat Med 2019; 25(1): 82–88
CrossRef Google scholar
[165]
Li W , Qiu S , Chen J , Jiang S , Chen W , Jiang J , Wang F , Si W , Shu Y , Wei P , Fan G , Tian R , Wu H , Xu C , Wang H . Chimeric antigen receptor designed to prevent ubiquitination and downregulation showed durable antitumor efficacy. Immunity 2020; 53(2): 456–70.e6
CrossRef Google scholar
[166]
Wu W , Zhou Q , Masubuchi T , Shi X , Li H , Xu X , Huang M , Meng L , He X , Zhu H , Gao S , Zhang N , Jing R , Sun J , Wang H , Hui E , Wong CC , Xu C . Multiple signaling roles of CD3ε and its application in CAR-T cell therapy. Cell 2020; 182(4): 855–71.e23
CrossRef Google scholar
[167]
Hartl FA , Beck-Garcia E , Woessner NM , Flachsmann LJ , Cardenas RMV , Brandl SM , Taromi S , Fiala GJ , Morath A , Mishra P , Yousefi OS , Zimmermann J , Hoefflin N , Kohn M , Wohrl BM , Zeiser R , Schweimer K , Gunther S , Schamel WW , Minguet S . Noncanonical binding of Lck to CD3ε promotes TCR signaling and CAR function. Nat Immunol 2020; 21(8): 902–913
CrossRef Google scholar
[168]
ZhangXXiaoQZengLHashmiFSuX. IDR-induced CAR condensation improves the cytotoxicity of CAR-Ts against low-antigen cancers. bioRxiv. 2023. 560460
[169]
Chen X , Chen LC , Khericha M , Meng X , Salvestrini E , Shafer A , Iyer N , Alag AS , Ding Y , Nicolaou DM , Chen YY . Rational protein design yields a CD20 CAR with superior antitumor efficacy compared with CD19 CAR. Cancer Immunol Res 2023; 11(2): 150–163
CrossRef Google scholar
[170]
Brudno JN , Lam N , Vanasse D , Shen YW , Rose JJ , Rossi J , Xue A , Bot A , Scholler N , Mikkilineni L , Roschewski M , Dean R , Cachau R , Youkharibache P , Patel R , Hansen B , Stroncek DF , Rosenberg SA , Gress RE , Kochenderfer JN . Safety and feasibility of anti-CD19 CAR T cells with fully human binding domains in patients with B-cell lymphoma. Nat Med 2020; 26(2): 270–280
CrossRef Google scholar
[171]
Ying Z , Huang XF , Xiang X , Liu Y , Kang X , Song Y , Guo X , Liu H , Ding N , Zhang T , Duan P , Lin Y , Zheng W , Wang X , Lin N , Tu M , Xie Y , Zhang C , Liu W , Deng L , Gao S , Ping L , Wang X , Zhou N , Zhang J , Wang Y , Lin S , Mamuti M , Yu X , Fang L , Wang S , Song H , Wang G , Jones L , Zhu J , Chen SY . A safe and potent anti-CD19 CAR T cell therapy. Nat Med 2019; 25(6): 947–953
CrossRef Google scholar
[172]
Azzam HS , Grinberg A , Lui K , Shen H , Shores EW , Love PE . CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity. J Exp Med 1998; 188(12): 2301–2311
CrossRef Google scholar
[173]
Mandl JN , Monteiro JP , Vrisekoop N , Germain RN . T cell-positive selection uses self-ligand binding strength to optimize repertoire recognition of foreign antigens. Immunity 2013; 38(2): 263–274
CrossRef Google scholar
[174]
Fulton RB , Hamilton SE , Xing Y , Best JA , Goldrath AW , Hogquist KA , Jameson SC . The TCR’s sensitivity to self peptide-MHC dictates the ability of naive CD8+ T cells to respond to foreign antigens. Nat Immunol 2015; 16(1): 107–117
CrossRef Google scholar
[175]
Stefanova I , Dorfman JR , Germain RN . Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature 2002; 420(6914): 429–434
CrossRef Google scholar
[176]
Manz BN , Tan YX , Courtney AH , Rutaganira F , Palmer E , Shokat KM , Weiss A . Small molecule inhibition of Csk alters affinity recognition by T cells. eLife 2015; 4: e08088
CrossRef Google scholar
[177]
Lakhani A , Chen X , Chen LC , Hong M , Khericha M , Chen Y , Chen YY , Park JO . Extracellular domains of CARs reprogramme T cell metabolism without antigen stimulation. Nat Metab 2024; 6(6): 1143–1160
CrossRef Google scholar
[178]
Bezie S , Charreau B , Vimond N , Lasselin J , Gerard N , Nerriere-Daguin V , Bellier-Waast F , Duteille F , Anegon I , Guillonneau C . Human CD8+ Tregs expressing a MHC-specific CAR display enhanced suppression of human skin rejection and GVHD in NSG mice. Blood Adv 2019; 3(22): 3522–3538
CrossRef Google scholar
[179]
Noyan F , Zimmermann K , Hardtke-Wolenski M , Knoefel A , Schulde E , Geffers R , Hust M , Huehn J , Galla M , Morgan M , Jokuszies A , Manns MP , Jaeckel E . Prevention of allograft rejection by use of regulatory T cells with an MHC-specific chimeric antigen receptor. Am J Transplant 2017; 17(4): 917–930
CrossRef Google scholar
[180]
Shrestha B , Walton K , Reff J , Sagatys EM , Tu N , Boucher J , Li G , Ghafoor T , Felices M , Miller JS , Pidala J , Blazar BR , Anasetti C , Betts BC , Davila ML . Human CD83-targeted chimeric antigen receptor T cells prevent and treat graft-versus-host disease. J Clin Invest 2020; 130(9): 4652–4662
CrossRef Google scholar
[181]
Pierini A , Iliopoulou BP , Peiris H , Perez-Cruz M , Baker J , Hsu K , Gu X , Zheng PP , Erkers T , Tang SW , Strober W , Alvarez M , Ring A , Velardi A , Negrin RS , Kim SK , Meyer EH . T cells expressing chimeric antigen receptor promote immune tolerance. JCI Insight 2017; 2(20): e92865
CrossRef Google scholar
[182]
Rosado-Sanchez I , Haque M , Salim K , Speck M , Fung VC , Boardman DA , Mojibian M , Raimondi G , Levings MK . Tregs integrate native and CAR-mediated costimulatory signals for control of allograft rejection. JCI Insight 2023; 8(19): e167215
CrossRef Google scholar
[183]
Wagner JC , Ronin E , Ho P , Peng Y , Tang Q . Anti-HLA-A2-CAR Tregs prolong vascularized mouse heterotopic heart allograft survival. Am J Transplant 2022; 22(9): 2237–2245
CrossRef Google scholar
[184]
Sicard A , Lamarche C , Speck M , Wong M , Rosado-Sanchez I , Blois M , Glaichenhaus N , Mojibian M , Levings MK . Donor-specific chimeric antigen receptor Tregs limit rejection in naive but not sensitized allograft recipients. Am J Transplant 2020; 20(6): 1562–1573
CrossRef Google scholar
[185]
Skuljec J , Chmielewski M , Happle C , Habener A , Busse M , Abken H , Hansen G . Chimeric antigen receptor-redirected regulatory T cells suppress experimental allergic airway inflammation, a model of asthma. Front Immunol 2017; 8: 1125
CrossRef Google scholar
[186]
Yoon J , Schmidt A , Zhang AH , Konigs C , Kim YC , Scott DW . FVIII-specific human chimeric antigen receptor T-regulatory cells suppress T- and B-cell responses to FVIII. Blood 2017; 129(2): 238–245
CrossRef Google scholar
[187]
Tenspolde M , Zimmermann K , Weber LC , Hapke M , Lieber M , Dywicki J , Frenzel A , Hust M , Galla M , Buitrago-Molina LE , Manns MP , Jaeckel E , Hardtke-Wolenski M . Regulatory T cells engineered with a novel insulin-specific chimeric antigen receptor as a candidate immunotherapy for type 1 diabetes. J Autoimmun 2019; 103: 102289
CrossRef Google scholar
[188]
Radichev IA , Yoon J , Scott DW , Griffin K , Savinov AY . Towards antigen-specific Tregs for type 1 diabetes: construction and functional assessment of pancreatic endocrine marker, HPi2-based chimeric antigen receptor. Cell Immunol 2020; 358: 104224
CrossRef Google scholar
[189]
Mukhatayev Z , Dellacecca ER , Cosgrove C , Shivde R , Jaishankar D , Pontarolo-Maag K , Eby JM , Henning SW , Ostapchuk YO , Cedercreutz K , Issanov A , Mehrotra S , Overbeck A , Junghans RP , Leventhal JR , Le Poole IC . Antigen specificity enhances disease control by Tregs in vitiligo. Front Immunol 2020; 11: 581433
CrossRef Google scholar
[190]
Blat D , Zigmond E , Alteber Z , Waks T , Eshhar Z . Suppression of murine colitis and its associated cancer by carcinoembryonic antigen-specific regulatory T cells. Mol Ther 2014; 22(5): 1018–1028
CrossRef Google scholar
[191]
Fransson M , Piras E , Burman J , Nilsson B , Essand M , Lu B , Harris RA , Magnusson PU , Brittebo E , Loskog AS . CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. J Neuroinflammation 2012; 9(1): 112
CrossRef Google scholar
[192]
Xiao L , Cen D , Gan H , Sun Y , Huang N , Xiong H , Jin Q , Su L , Liu X , Wang K , Yan G , Dong T , Wu S , Zhou P , Zhang J , Liang W , Ren J , Teng Y , Chen C , Xu XH . Adoptive transfer of NKG2D CAR mRNA-engineered natural killer cells in colorectal cancer patients. Mol Ther 2019; 27(6): 1114–1125
CrossRef Google scholar
[193]
Romee R , Rosario M , Berrien-Elliott MM , Wagner JA , Jewell BA , Schappe T , Leong JW , Abdel-Latif S , Schneider SE , Willey S , Neal CC , Yu L , Oh ST , Lee YS , Mulder A , Claas F , Cooper MA , Fehniger TA . Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med 2016; 8(357): 357ra123
CrossRef Google scholar
[194]
Romee R , Schneider SE , Leong JW , Chase JM , Keppel CR , Sullivan RP , Cooper MA , Fehniger TA . Cytokine activation induces human memory-like NK cells. Blood 2012; 120(24): 4751–4760
CrossRef Google scholar
[195]
Gang M , Marin ND , Wong P , Neal CC , Marsala L , Foster M , Schappe T , Meng W , Tran J , Schaettler M , Davila M , Gao F , Cashen AF , Bartlett NL , Mehta-Shah N , Kahl BS , Kim MY , Cooper ML , DiPersio JF , Berrien-Elliott MM , Fehniger TA . CAR-modified memory-like NK cells exhibit potent responses to NK-resistant lymphomas. Blood 2020; 136(20): 2308–2318
CrossRef Google scholar
[196]
Dong H , Ham JD , Hu G , Xie G , Vergara J , Liang Y , Ali A , Tarannum M , Donner H , Baginska J , Abdulhamid Y , Dinh K , Soiffer RJ , Ritz J , Glimcher LH , Chen J , Romee R . Memory-like NK cells armed with a neoepitope-specific CAR exhibit potent activity against NPM1 mutated acute myeloid leukemia. Proc Natl Acad Sci USA 2022; 119(25): e2122379119
CrossRef Google scholar
[197]
He B , Mai Q , Pang Y , Deng S , He Y , Xue R , Xu N , Zhou H , Liu X , Xuan L , Li C , Liu Q . Cytokines induced memory-like NK cells engineered to express CD19 CAR exhibit enhanced responses against B cell malignancies. Front Immunol 2023; 14: 1130442
CrossRef Google scholar
[198]
Klichinsky M , Ruella M , Shestova O , Lu XM , Best A , Zeeman M , Schmierer M , Gabrusiewicz K , Anderson NR , Petty NE , Cummins KD , Shen F , Shan X , Veliz K , Blouch K , Yashiro-Ohtani Y , Kenderian SS , Kim MY , O’Connor RS , Wallace SR , Kozlowski MS , Marchione DM , Shestov M , Garcia BA , June CH , Gill S . Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol 2020; 38(8): 947–953
CrossRef Google scholar
[199]
Chen Y , Yu Z , Tan X , Jiang H , Xu Z , Fang Y , Han D , Hong W , Wei W , Tu J . CAR-macrophage: a new immunotherapy candidate against solid tumors. Biomed Pharmacother 2021; 139: 111605
CrossRef Google scholar
[200]
Lei A , Yu H , Lu S , Lu H , Ding X , Tan T , Zhang H , Zhu M , Tian L , Wang X , Su S , Xue D , Zhang S , Zhao W , Chen Y , Xie W , Zhang L , Zhu Y , Zhao J , Jiang W , Church G , Chan FK , Gao Z , Zhang J . A second-generation M1-polarized CAR macrophage with antitumor efficacy. Nat Immunol 2024; 25(1): 102–116
CrossRef Google scholar
[201]
Paasch D , Lachmann N . CAR macrophages tuning the immune symphony of anti-cancer therapies. Cell Stem Cell 2024; 31(6): 791–793
CrossRef Google scholar
[202]
Italiani P , Boraschi D . From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol 2014; 5: 514
CrossRef Google scholar
[203]
Boutilier AJ , Elsawa SF . Macrophage polarization states in the tumor microenvironment. Int J Mol Sci 2021; 22(13): 6995
CrossRef Google scholar
[204]
Mehla K , Singh PK . Metabolic regulation of macrophage polarization in cancer. Trends Cancer 2019; 5(12): 822–834
CrossRef Google scholar
[205]
Christofides A , Strauss L , Yeo A , Cao C , Charest A , Boussiotis VA . The complex role of tumor-infiltrating macrophages. Nat Immunol 2022; 23(8): 1148–1156
CrossRef Google scholar

Acknowledgements

Science Fund Original Exploratory Program (No. 82350110 to Haopeng Wang), the National Key R&D Program of China (No. 2019YFA0111000 to Haopeng Wang), Program of Shanghai Academic/Technology Research Leader, Shanghai Frontiers Science Center for Biomacromolecules and Precision Medicine at ShanghaiTech University, the Central Guidance on Local Science and Technology Development Fund (No. YDZX20233100001002) and Shanghai Local College Capacity Building Project (No. 22010502700).

Compliance with ethics guidelines

Conflicts of interest Yuwei Huang and Haopeng Wang declare that they have no conflict of interest.
This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(3145 KB)

52

Accesses

0

Citations

1

Altmetric

Detail

Sections
Recommended

/