Normoalbuminuric diabetic kidney disease

Chao Chen , Chang Wang , Chun Hu , Yachun Han , Li Zhao , Xuejing Zhu , Li Xiao , Lin Sun

Front. Med. ›› 2017, Vol. 11 ›› Issue (3) : 310 -318.

PDF (177KB)
Front. Med. ›› 2017, Vol. 11 ›› Issue (3) : 310 -318. DOI: 10.1007/s11684-017-0542-7
REVIEW
REVIEW

Normoalbuminuric diabetic kidney disease

Author information +
History +
PDF (177KB)

Abstract

Diabetic kidney disease (DKD) is one of the primary causes of end-stage renal disease (ESRD). Early diagnosis is very important in preventing the development of DKD. Urinary albumin excretion rate (UAER) and glomerular filtration rate (GFR) are widely accepted as criteria for the diagnosis and clinical grading of DKD, and microalbuminuria has been recommended as the first clinical sign of DKD. The natural history of DKD has been divided into three stages: normoalbuminuria, microalbuminuria, and macroalbuminuria. However, this clinical paradigm has been questioned recently, as studies have shown that a portion of diabetes mellitus (DM) patients with normoalbuminuria have progressive renal insufficiency, referred to as normoalbuminuric diabetic kidney disease (NADKD) or nonalbuminuric diabetic nephropathy. Epidemiologic research has demonstrated that normoalbuminuric diabetic kidney disease is common, and the large number of NADKD patients suggests that the traditional paradigm needs to be shifted. Currently, the pathogenesis of NADKD remains unclear, but many clinical studies have identified some clinical and pathological features of NADKD. In addition, the long-term outcomes of NADKD patients remain controversial. In this article, we reviewed the latest studies addressing the pathogenesis, pathology, treatment and prevention of NADKD.

Keywords

diabetes / diabetic kidney disease / normoalbuminuria / renal impairment

Cite this article

Download citation ▾
Chao Chen, Chang Wang, Chun Hu, Yachun Han, Li Zhao, Xuejing Zhu, Li Xiao, Lin Sun. Normoalbuminuric diabetic kidney disease. Front. Med., 2017, 11(3): 310-318 DOI:10.1007/s11684-017-0542-7

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

Diabetic nephropathy (DN) is the most common microvascular complication of diabetes mellitus (DM) [1] and the cause of almost half of all new cases end-stage renal disease (ESRD) in the US [2,3]. In 2007, the concept of diabetic kidney disease (DKD) was first proposed by the American Kidney Foundation [4]. The general progression of DKD starts with increasing urinary albumin excretion rate (UAER), leading to severe proteinuria, reduced estimated glomerular filtration rate (eGFR), and ESRD. Therefore, UAER or the urinary albumin to creatinine ratio (UACR) is the most important criterion for early diagnosis for DKD [5]. However, some DM patients with renal insufficiency (eGFR<60 ml/(min·1.73 m2)) have normal-range proteinuria. In 1994, Tsalamandria and colleagues [6] first described DM patients who exhibited no clinically significant proteinuria but had renal insufficiency (eGFR<60 ml/(min·1.73 m2)) and progressed to DKD, a condition described as normoalbuminuric diabetic kidney disease (NADKD), nonalbuminuric diabetic nephropathy or diabetic kidney disease without albuminuria [710].

The latest DKD diagnostic criteria proposed by the American Diabetes Association (ADA) in 2015 include UAER>30 mg/24h or eGFR<60 ml/(min·1.73 m2) [11], reflecting the fact that a portion of DM patients have normal-range albuminuria with renal insufficiency, which meets the criteria for DKD. Based on the concepts described by Zelmanovitzde [12] in 1997 and other sources [7,1316], we propose the following diagnostic criteria for NADKD: (1) conformance to the latest World Health Organization (WHO) or American Diabetes Association (ADA) diagnostic criteria of diabetes; (2) eGFR<60 ml/(min·1.73 m2); (3) urine protein excretion rate<20 µg/min at least twice within six months, random urine protein<17 mg/L, UAER<30 mg/24 h (under normal use of antihypertensive drugs), or UACR<30 mg/g; (4) exclusion of other secondary kidney diseases.

Epidemiology of NADKD

The prevalence of patients with type 2 diabetes mellitus ranges from 25% to 50% in different studies and counties [12,1720], and the prevalence of NADKD is not low (Table 1) [7,9,13,17,2024]. Over 15 years of follow-up (1977–1991), the UK Prospective Diabetes Study (UKPDS) found that 28% of type 2 DM patients had NADKD, whereas just 38% of DM patients developed proteinuria [17]. The third study by the National Health and Nutrition Examination Survey (NHANES III) in 2003 showed that the prevalence of NADKD was 14.29% (n = 171/1197) in type 2 DM patients [21]. The Renal Insufficiency and Cardiovascular Events (RIACE) research group found that, among type 2 DM patients with chronic kidney disease (CKD) stages 3–5, 21.66% (393/1814) had no proteinuria, and 29.71% (539/1814) had proteinuria [22]. In addition, another group reported that, among 5072 DM patients, 31% had CKD stages 3–5, and 63% had normoalbuminuria [23]. A study by Giuseppe [20] also revealed that, among 2959 DM patients with renal dysfunction, 1673 (56.6%) were normoalbuminuric, with 912 (30.8%) and 374 (12.6%) patients presenting with microalbuminuria and proteinuria, respectively. Boronat et al. [24] reported that 21.8% of DKD patients have normoalbuminuria, 20.5% have microalbuminuria, and 57.7% have severe proteinuria. The Developing Education on Microalbuminuria for Awareness of Renal and Cardiovascular Risk in Diabetes (DEMAND) study reported that 17.2% (1044/6072) of patients with CKD stages 3–5 had NADKD [13], and in a study by Mottl et al. [9], NADKD accounted for 77.3% of the cases. Furthermore, the Diabetes Control and Complications Trial and the Epidemiology of Diabetes Interventions and Complications Study (DCCT/ EDIC) showed that in type 1 DM patients who developed to eGFR<60 ml/(min·1.73 m2), 22.47% (20/89) had UAER<30 m/24 h [25]. Evidently, NADKD is one of the main manifestations of DKD, but the prevalence varies across studies, potentially due to the different methods for measuring proteinuria or previous treatments to alleviate proteinuria. Treatment with renin-angiotensin-aldosterone system (RAAS) blockers may reduce or eliminate the incidence of urinary protein [26].

Moreover, the prevalence of NADKD varies by race. Thomas et al. [19] found that the burden of NADKD is much higher in Caucasian populations than among indigenous Australian and Asian populations; of 506 NADKD patients, 91% were Caucasian, while 2% were Indigenous Australian, and 7% were Asian. Morbidity also varies by country and region.

Compared to DKD patients with UAER>30 mg/24h, the proportion of women was significantly higher than that of men among NADKD patients. A multicenter study conducted by Molitch and colleagues [25] with follow-up over 19 years showed that 89 patients with type 1 DM developed an eGFR<60 ml/(min·1.73 m2); of those, 20 (22.47%) had AER<30 mg/d, and 81% (17/21)were women, but in the microalbuminuria (30–300 mg/d) group (14/89) and the macroalbuminuria (>300 mg/d) group (54/89), 64.3% (9/14) and 51.85% (28/54) were women. The gender differences might relate to the lower glomerular filtration rate in women compared to men [27]. A meta-analysis study found that men with CKD of various etiologies show a more rapid decline in renal function than women, but in the NADKD group, the loss of eGFR in women was even faster than in men [6,28]. This may be related to female hormone levels, as reported by Porrini et al. [29]. However, the effect of hormones on renal disease in women is controversial. Several studies investigating the role of female hormones through animal models have yielded opposite results; in type 1 DM, 17b-estradiol could regulate signaling of transforming growth factor b to protect women from accelerated decline in renal function [30]. However, a few studies have indicated that estrogen may have contradictory effects [31] on GFR among women with diabetes.

Pathophysiology of NADKD

The microangiopathy typically observed in DKD patients with albuminuria is not common in NADKD patients. In their study, An et al. [32] found that the percentage of patients with retinopathy was 16% (7/44) in the NADKD group, whereas it was 56% (28/50) and 81% (46/57) in the microalbuminuria group and the macroalbuminuria group, respectively [32]. Similarly, Kramer and colleagues [21] found an incidence of retinopathy of 28% in NADKD patients, compared to 45% in the microalbuminuria group. Moreover, some studies have shown that macroangiopathy is more prevalent in NADKD patients. A clinical study by Boronat et al. [24] with 78 DKD patients found that in the NADKD group, 47.1% (8/17) had coronary heart disease, and 52.9% (9/17) had apparent retinopathy; however, in the albuminuria group, the prevalence of coronary heart disease was only 29.5% (18/61), and the prevalence of retinopathy reached 59.0% (36/61). It is believed that NADKD may be not directly related to microangiopathy [7,33].

Further studies have shown that eGFR decreases in type 2 diabetes patients and is associated with increases in carotid intimal-medial thickness, carotid stiffness, and the intrarenal arterial resistance index [34]. It has been reported that compared to DM patients with eGFR>60 ml/(min·1.73 m2), those with eGFR<60 ml/(min·1.73 m2) had a higher renal artery resistance index independent of albuminuria [34,35], indicating that renal vascular lesions may be involved in the pathogenesis of NADKD. Boeri et al. [36] conducted a study of 30 DM patients in which they measured the resistive index of the interlobar arteries and found that intrarenal arteriosclerosis was mainly responsible for kidney function impairment in type 2 DM patients, without affecting the albumin excretion rate. This suggested that GFR decline in type 2 DM patients is partly due to increasing arteriosclerosis.

In addition, cardiovascular disease and metabolic syndrome are associated with NADKD, as there is a positive correlation between the prevalence of NADKD and those conditions [14,37]. Lamet al. [38] demonstrated that the association between cholesterol-lowering therapy and renal function progression in type 2 DM is independent of the albumin excretion rate. These studies provided clinical evidence for the role of macroangiopathy in the development of NADKD patients, which may contribute to the development of renal dysfunction in NADKD [35].

RAAS blockers are a traditional class of drugs for reducing proteinuria in DKD patients. Clinical research has shown that most NADKD patients had used a RAAS blocker [7]. Recent evidence suggests that once NADKD patients stop using the RAAS blockers, they progress to microalbuminuria [39]. An and colleagues [32] observed 151 DKD patients with renal insufficiency before treatment with RAAS inhibitors and reported the proportion of normoalbuminuria, microalbuminuria, and proteinuria at 29.1%, 33.1%, and 37.8%, respectively; however, after treatment with a RAAS inhibitor, the proportions were 35.3%, 41.2%, and 23.5%. The Nephrologic Diabetes Complications Trial (BENEDICT) included 1204 type 2 DM patients divided into two groups; 5.8% (35/601) of patients developed microalbuminuria in the angiotensin converting enzyme (ACE) inhibitor treatment group, compared to 10.9% (66/603) in the control group [40]. These results indicated that ACE inhibitors can reduce microalbuminuria and prevent the progression of DM. Recently, Porrini et al. [29] proposed that progression to NADKD might be partly due to treatment with RAAS blockers in patients with DM, which can reduce proteinuria but not improve the GFR. Thus, we should pay more attention to the relationship between RAAS inhibitors and NADKD.

The tubulointerstitium is composed of tubular epithelium, vascular structures, and interstitium and accounts for 90% of renal tissue [42]. The classical interstitial pathological changes in diabetic nephropathy [43] include tubular basement membrane thickening, interstitial fibrosis, tubular atrophy, and arteriosclerosis. Lane et al. [44] found that interstitial expansion is independently associated with decreased renal function in type 1 DM. Another study demonstrated that interstitial fibrosis contributes to further renal function decline compared to glomerular injury, and this decline was independent of albuminuria [45]. This suggested that declining of eGFR is partly related to interstitial injury in type 2 DM. Further studies in NADKD patients had similar results. Ekinci et al. [39] found that 3 in 8 (37.5%) NADKD patients had interstitial and vascular lesions by renal biopsy, and only 1 in 23 (4.3%) proteinuria patients had interstitial and vascular lesions. This suggested that tubulointerstitial damage may be involved in the development of NADKD. Given the importance of renal interstitial damage in NADKD patients, it is necessary to not only detect renal function decline in a timely fashion but also to detect tubular injury.

Previous studies have confirmed that TNFa and other inflammatory cytokines are involved in the DKD immune and inflammatory response [46]. Perkins et al. [47] showed that early decline in renal function was always associated with significantly increased IL-6, IL-8, monocyte chemo-attractant, and other inflammatory markers in urine. In addition, many studies have found that TNFa is involved in the pathogenesis of diabetic nephropathy with albuminuria and that the Fas pathway mediating apoptosis may play a role in the progression of diabetic nephropathy [4850]. Niewczas et al. [51] observed 363 normoalbuminuria and 304 microalbuminuria patients with type 1 DM and showed that the concentration of serum TNFa (sTNFR1, sTNFR2) or Fas-pathways cytokines (sFasL and sFas) was associated with decreased eGFR independent of albuminuria. In the Cholesterol and Recurrent Events (CARE) study, serum TNF receptor 2 (sTNFR2) was found to be associated with the progression of kidney function loss [52]. Several studies have indicated that serum concentrations of TNF receptors (sTNFR1, sTNFR2) could be influenced by their upstream regulators, such as TNFa or IL1 and ADAM17 [53]. Many studies have shown that TNFa reduces glomerular blood flow directly and increases glomerular vasoconstriction, thus decreasing glomerular filtration rate [48]. This indicates that immune inflammation plays an important role in the decrease of renal function in NADKD.

It is widely believed that renal function decline due to acute kidney injury (AKI) is transient and that renal impairment can be completely restored. However, recent clinical studies have shown that AKI can eventually result in chronic kidney disease as well, even though renal function has recovered [54]. Several mechanisms have been proposed for the progression of AKI to CKD, such as nephron loss, inflammation, endothelial injury with vascular rarefaction and hypoxia, epigenetic changes, and cell cycle arrest in epithelial cells [5558]. DM is one of the important risk factors for the development of AKI [5961]. Thakar et al. [62] conducted a longitudinal study observing 3679 DM patients and found that AKI was a risk factor for CKD (HR 3.56; 95% CI 2.76‒4.61) compared with DM patients without AKI, and the risk was independent of albuminuria. Onuigbo and colleagues [63] also reported that once AKI appeared in DM patients, renal function decline was more likely, and this was independent of urine protein levels. Therefore, we propose that AKI may be another important risk factor for renal function decrease in NADKD patients.

Furthermore, the prevalence of NADKD varies across ethnic groups, suggesting that genetic susceptibility may be involved in the development of the disease. Polymorphism in the protein kinase C-b gene in DM patients is associated with eGFR decline [64]. Although there are a great number of studies on DKD susceptibility genes, the real causative genes or susceptibility genes involved in the pathogenesis and progression of NADKD have not yet been identified.

Pathology of NADKD

The observed pathological changes differ between NADKD and DKD with microalbuminuria or macroalbuminuria. Shimizu et al. [65] showed that NADKD patients have more severe renal pathological changes compared to patients with normal eGFR, including mesangial matrix proliferation, hyaline degeneration of renal arteries, and increased glomerular fibrosis [27,65]. Ekinci et al. [39] found that 3 in 8 NADKD patients showed typical glomerular changes, whereas the prevalence in patients with microalbuminuria and macroalbuminuria was 5/6 and 17/17. Yagil et al. [66] experimented on rat models (Cohen diabetic-resistant rats) and found that the pathological changes of Cohen diabetic-sensitive rats (an experimental model of type 2 diabetes mellitus that develops normoalbuminuric DKD) included mesangial matrix proliferation, thickened glomerular basement membrane, and increased type IV collagen in the glomeruli and interstitium. The renal pathological changes typical of NADKD are tubular and interstitial damage, but the mechanism of NADKD remains unclear.

Clinical features of NADKD

Several studies mentioned above indicated that retinopathy is more frequent in albuminuric patients than in normoalbuminuric patients [21,22,32]. However, opinions on this matter differ. The prevalence of retinopathy in NADKD patients varies across studies. A study from RIACE with 2959 DKD patients with renal impairment found that 2028 (68.5%) patients had no retinopathy, 1280 (43.2%) NADKD patients had neither proteinuria nor retinopathy, and 538 patients (18.2%) showed both proteinuria and retinopathy [20]. The varying prevalence of retinopathy might be due to different observation methods, or it could be that the development of NADKD does not depend on microangiopathic lesions.

Type 2 DM with albuminuria is an independent risk factor for cardiovascular disease (CVD), but the burden of CVD in NADKD is even higher [20]. For patients within the normoalbuminuria range (UAER<30 mg/24h), the burden of CVD varies. In a cross-sectional analysis, normoalbuminuric patients were divided into normal albuminuria (NA) (UAER<10 mg/24h) and low albuminuria (LA) (UAER 10–29 mg/24h) groups, and the burden of acute cardiovascular events, ulcers, coronary events, and peripheral vascular events was significantly higher in the LA group [67,68]. Therefore, NADKD patients should undergo quantitative detection of albuminuria, and those with UAER 10–29 mg/24h should receive vigilant follow-up for CVD events. As we can see from Fig. 1, the burden of diabetes complications in normoalbuminuric patients is lower than in DM patients with albuminuria. Boronat et al. [24] observed 78 DKD patients and found that in the normoalbuminuric group (21.8%), the BMI and waist circumference were significantly higher than in the microalbuminuria (20.5%) and macroalbuminuria (57.7%) groups. In addition, the average low-density lipoprotein (LDL) level was 1.02 mmol/L (90.4 mg/dl) in the NADKD group, compared to 0.85 mmol/L (75.1 mg/dl) in the control group. Another study found that NADKD is associated with higher hemoglobin levels. The risk factors associated with NADKD might include obesity, hyperlipidemia, and high hemoglobin. The clinical characteristics are summarized in Table 2.

Perkins et al. [69] found that eGFR declined faster in DKD patients with proteinuria compared to NADKD patients. Rigalleau and colleagues [16] showed that NADKD patients had a lower risk for progression to ESRD than DM patients with proteinuria after 38 months of follow-up. This finding was consistent with what Boronat et al. [24] reported, possibly because normoalbuminuria alleviates eGFR decline [14].

A multi-center study found that among type 2 DM patients with renal dysfunction, all-cause mortality in the normoalbuminuric DKD group was not significantly lower compared to the proteinuric DKD group [70] and was higher when compared to the normal eGFR DKD group, suggesting that eGFR is a risk factor for death independent of proteinuria [65]. Therefore, monitoring renal function in NADKD patients is very important for predicting prognosis [21].

Diagnostic biomarkers of NADKD

Neutrophil gelatinase-associated lipocalin (NGAL), a small protein that belongs to the lipocal superfamily, usually increases before the excretion of urine microalbumin in type 1 DM patients [71]. Some research also found that urine levels of NGAL increased progressively from ACR 10 mg/g creatinine to 30 mg/g creatinine in diabetic patients [72]. NGAL is now considered a reliable indicator of NADKD with high sensitivity and specificity [8]. Lim et al. [73] also found that zinc-a (2)-glycoprotein may be a urinary biomarker for NADKD. Moreover, several studies have indicated that liver-type fatty acid binding protein (L-FABP) and heart-type fatty acid binding protein (H-FABP) were important indicators of renal tubular injury, which can help in the diagnosis of NADKD [74,75].

Prevention of NADKD

K/DOQI guidelines recommend that the diagnosis of DKD should be based on not only monitoring UAER and fundus changes but also assessment of eGFR [76]. The MDRD [77] or Cockcroft-Gault formula can be applied for the calculation of eGFR [78]. In addition, numerous studies have shown that the development of NADKD is closely related to gender, age, smoking, macrovascular disease, metabolic syndrome, and environmental factors [21,32]. Thus, female sex, old age, and metabolic syndrome are risk factors for NADKD. Regular monitoring of eGFR in high-risk patients could assist in timely diagnosis [79].

Currently, we do not have effective therapies for NADKD. It is generally believed that reducing urinary protein by controlling glucose, blood pressure, blood lipids, and other factors in DKD patients can protect renal function and especially delay the progression to chronic renal failure [80], but whether this is equally effective in NADKD patients remains to be shown [81,82]. Satirapoj et al. [83,84] showed that glycosaminoglycans (GAGs) could inhibit TGF-b1 transcription, which is induced by high levels of glucose, and protect against renal fibrosis in early-stage DM or DKD patients, but the efficacy in NADKD patients remains to be confirmed. Whether RAAS inhibitors can be used for NADKD treatment is also currently unclear. Dwyer et al. [85] proposed that RAAS inhibitors may play a protective role in NADKD progression by decreasing proteinuria, but more research is needed to confirm this.

Conclusions

In short, DM patients with renal insufficiency (eGFR<60 ml/(min·1.73 m2)) but urinary protein levels in the normal range and in whom other secondary kidney diseases (e.g., hypertensive nephropathy and obstructive nephropathy) are excluded should be considered as having DKD according to the latest ADA diagnostic criteria. Current clinical and basic research on such patients is lacking, and we need more multicenter, large-sample clinical research and investigations to further our understanding of NADKD.

References

[1]

Xiao LWang MYang SLiu FSun L.A glimpse of the pathogenetic mechanisms of Wnt/β-catenin signaling in diabetic nephropathy. Biomed Res Int 2013;2013:987064

[2]

Kwak SHPark KS. Genetic studies on diabetic microvascular complications: focusing on genome-wide association studies. Endocrinol Metab (Seoul) 201530(2): 147–158

[3]

Xu XXiao LXiao PYang SChen GLiu FKanwar YSSun L. A glimpse of matrix metalloproteinases in diabetic nephropathy. Curr Med Chem 201421(28): 3244–3260

[4]

KDOQI. KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Diabetes and Chronic Kidney Disease. Am J Kidney Dis 200749(2 Suppl 2): S12–S154

[5]

Remuzzi GSchieppati ARuggenenti P. Clinical practice. Nephropathy in patients with type 2 diabetes. N Engl J Med 2002346(15): 1145–1151

[6]

Tsalamandris CAllen TJGilbert RESinha APanagiotopoulos SCooper MEJerums G. Progressive decline in renal function in diabetic patients with and without albuminuria. Diabetes 199443(5): 649–655

[7]

MacIsaac RJTsalamandris CPanagiotopoulos SSmith TJMcNeil KJJerums G. Nonalbuminuric renal insufficiency in type 2 diabetes. Diabetes Care 200427(1): 195–200

[8]

Lacquaniti ADonato VPintaudi BDi Vieste GChirico VBuemi ADi Benedetto AArena ABuemi M. “Normoalbuminuric” diabetic nephropathy: tubular damage and NGAL. Acta Diabetol 201350(6): 935–942

[9]

Mottl AKKwon KSMauer MMayer-Davis EJHogan SLKshirsagar AV. Normoalbuminuric diabetic kidney disease in the U.S. population. J Diabetes Complications 201327(2): 123–127

[10]

MacIsaac RJJerums G. Diabetic kidney disease with and without albuminuria. Curr Opin Nephrol Hypertens 201120(3): 246–257

[11]

American Diabetes Association. Standards of medical care in diabetes—2015 abridged for primary care providers. Clin Diabetes 201533(2): 97–111

[12]

Zelmanovitz TGross JLOliveira JRPaggi ATatsch MAzevedo MJ. The receiver operating characteristics curve in the evaluation of a random urine specimen as a screening test for diabetic nephropathy. Diabetes Care 199720(4): 516–519

[13]

Dwyer JPParving HHHunsicker LGRavid MRemuzzi GLewis JB. Renal dysfunction in the presence of normoalbuminuria in type 2 diabetes: results from the DEMAND study. Cardiorenal Med 20122(1): 1–10

[14]

Kramer CKLeitão CBPinto LCSilveiro SPGross JLCanani LH. Clinical and laboratory profile of patients with type 2 diabetes with low glomerular filtration rate and normoalbuminuria. Diabetes Care 200730(8): 1998–2000

[15]

Bhalla VZhao BAzar KMWang EJChoi SWong ECFortmann SPPalaniappan LP. Racial/ethnic differences in the prevalence of proteinuric and nonproteinuric diabetic kidney disease. Diabetes Care 201336(5): 1215–1221

[16]

Rigalleau VLasseur CRaffaitin CBeauvieux MCBarthe NChauveau PCombe CGin H. Normoalbuminuric renal-insufficient diabetic patients: a lower-risk group. Diabetes Care 200730(8): 2034–2039

[17]

Retnakaran RCull CAThorne KIAdler AIHolman RR; UKPDS Study Group. Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes 200655(6): 1832–1839

[18]

Yokoyama HSone HOishi MKawai KFukumoto YKobayashi M; Japan Diabetes Clinical Data Management Study Group. Prevalence of albuminuria and renal insufficiency and associated clinical factors in type 2 diabetes: the Japan Diabetes Clinical Data Management study (JDDM15). Nephrol Dial Transplant 200924(4): 1212–1219

[19]

Thomas MCMacisaac RJJerums GWeekes AMoran JShaw JEAtkins RC. Nonalbuminuric renal impairment in type 2 diabetic patients and in the general population (national evaluation of the frequency of renal impairment cO-existing with NIDDM [NEFRON] 11). Diabetes Care 200932(8): 1497–1502

[20]

Penno GSolini ABonora EFondelli COrsi EZerbini GTrevisan RVedovato MGruden GCavalot FCignarelli MLaviola LMorano SNicolucci APugliese G; Renal Insufficiency And Cardiovascular Events (RIACE) Study Group.Clinical significance of nonalbuminuric renal impairment in type 2 diabetes. J Hypertens 201129(9): 1802–1809

[21]

Kramer HJNguyen QDCurhan GHsu CY. Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. JAMA 2003289(24): 3273–3277

[22]

New JPMiddleton RJKlebe BFarmer CKde Lusignan SStevens PEO’Donoghue DJ. Assessing the prevalence, monitoring and management of chronic kidney disease in patients with diabetes compared with those without diabetes in general practice. Diabet Med 200724(4): 364–369

[23]

Boronat MGarcía-Cantón CQuevedo VLorenzo DLLópez-Ríos LBatista FRiaño MSaavedra PCheca MD. Non-albuminuric renal disease among subjects with advanced stages of chronic kidney failure related to type 2 diabetes mellitus. Ren Fail 201436(2): 166–170

[24]

Penno GSolini AZoppini GOrsi EZerbini GTrevisan RGruden GCavalot FLaviola LMorano SNicolucci APugliese G; Renal Insufficiency And Cardiovascular Events (RIACE) Study Group. Rate and determinants of association between advanced retinopathy and chronic kidney disease in patients with type 2 diabetes: the Renal Insufficiency And Cardiovascular Events (RIACE) Italian multicenter study. Diabetes Care 201235(11): 2317–2323

[25]

Molitch MESteffes MSun WRutledge BCleary Pde Boer IHZinman BLachin J; Epidemiology of Diabetes Interventions and Complications Study Group. Development and progression of renal insufficiency with and without albuminuria in adults with type 1 diabetes in the diabetes control and complications trial and the epidemiology of diabetes interventions and complications study. Diabetes Care 201033(7): 1536–1543

[26]

Araki SHaneda MSugimoto TIsono MIsshiki KKashiwagi AKoya D. Factors associated with frequent remission of microalbuminuria in patients with type 2 diabetes. Diabetes 200554(10): 2983–2987

[27]

Lane PHSteffes MWMauer SM. Glomerular structure in IDDM women with low glomerular filtration rate and normal urinary albumin excretion. Diabetes 199241(5): 581–586

[28]

Neugarten JAcharya ASilbiger SR. Effect of gender on the progression of nondiabetic renal disease: a meta-analysis. J Am Soc Nephrol 200011(2): 319–329

[29]

Porrini ERuggenenti PMogensen CEBarlovic DPPraga MCruzado JMHojs RAbbate Mde Vries AP; ERA-EDTA diabesity working group.Non-proteinuric pathways in loss of renal function in patients with type 2 diabetes. Lancet Diabetes Endocrinol 20153(5): 382–391

[30]

Diamond-Stanic MKYou YHSharma K. Sugar, sex, and TGF-b in diabetic nephropathy. Semin Nephrol 201232(3): 261–268

[31]

Ahmed SBCulleton BFTonelli MKlarenbach SWMacrae JMZhang JHemmelgarn BR; Alberta Kidney Disease Network.Oral estrogen therapy in postmenopausal women is associated with loss of kidney function. Kidney Int 200874(3): 370–376

[32]

An JHCho YMYu HGJang HCPark KSKim SYLee HK. The clinical characteristics of normoalbuminuric renal insufficiency in Korean type 2 diabetic patients: a possible early stage renal complication. J Korean Med Sci 200924(Suppl): S75–S81

[33]

Shimizu MFuruichi KYokoyama HToyama TIwata YSakai NKaneko SWada T. Kidney lesions in diabetic patients with normoalbuminuric renal insufficiency. Clin Exp Nephrol 201418(2): 305–312

[34]

Taniwaki HNishizawa YKawagishi TIshimura EEmoto MOkamura TOkuno YMorii H. Decrease in glomerular filtration rate in Japanese patients with type 2 diabetes is linked to atherosclerosis. Diabetes Care 199821(11): 1848–1855

[35]

MacIsaac RJPanagiotopoulos SMcNeil KJSmith TJTsalamandris CHao HMatthews PGThomas MCPower DAJerums G. Is nonalbuminuric renal insufficiency in type 2 diabetes related to an increase in intrarenal vascular disease? Diabetes Care 200629(7): 1560–1566

[36]

Boeri DDerchi LEMartinoli CSimoni GSampietro LStorace DPonte LCalvi CRepetto MRobaudo CMaiello M. Intrarenal arteriosclerosis and impairment of kidney function in NIDDM subjects. Diabetologia 199841(1): 121–124

[37]

Mattock MBBarnes DJViberti GKeen HBurt DHughes JMFitzgerald APSandhu BJackson PG. Microalbuminuria and coronary heart disease in NIDDM: an incidence study. Diabetes 199847(11): 1786–1792

[38]

Lam KSCheng IKJanus EDPang RW. Cholesterol-lowering therapy may retard the progression of diabetic nephropathy. Diabetologia 199538(5): 604–609

[39]

Ekinci EIJerums GSkene ACrammer PPower DCheong KYPanagiotopoulos SMcNeil KBaker STFioretto PMacisaac RJ. Renal structure in normoalbuminuric and albuminuric patients with type 2 diabetes and impaired renal function. Diabetes Care 201336(11): 3620–3626

[40]

Ruggenenti PFassi AIlieva APBruno SIliev IPBrusegan VRubis NGherardi GArnoldi FGaneva MEne-Iordache BGaspari FPerna ABossi ATrevisan RDodesini ARRemuzzi G; Bergamo Nephrologic Diabetes Complications Trial (BENEDICT) Investigators.Preventing microalbuminuria in type 2 diabetes. N Engl J Med 2004351(19): 1941–1951

[41]

Border WAYamamoto TNoble NA. Transforming growth factor β in diabetic nephropathy. Diabetes Metab Rev 199612(4): 309–339

[42]

Bader RBader HGrund KEMackensen-Haen SChrist HBohle A. Structure and function of the kidney in diabetic glomerulosclerosis. Correlations between morphological and functional parameters. Pathol Res Pract 1980167(2-4): 204–216

[43]

Lane PHSteffes MWFioretto PMauer SM. Renal interstitial expansion in insulin-dependent diabetes mellitus. Kidney Int 199343(3): 661–667

[44]

Taft JLNolan CJYeung SPHewitson TDMartin FI. Clinical and histological correlations of decline in renal function in diabetic patients with proteinuria. Diabetes 199443(8): 1046–1051

[45]

Sun LKanwar YS. Relevance of TNF-a in the context of other inflammatory cytokines in the progression of diabetic nephropathy. Kidney Int 201588(4): 662–665

[46]

Perkins BAKrolewski AS. Early nephropathy in type 1 diabetes: the importance of early renal function decline. Curr Opin Nephrol Hypertens 200918(3): 233–240

[47]

Navarro JFMora-Fernández C. The role of TNF-α in diabetic nephropathy: pathogenic and therapeutic implications. Cytokine Growth Factor Rev 200617(6): 441–450

[48]

Schelling JRNkemere NKopp JBCleveland RP. Fas-dependent fratricidal apoptosis is a mechanism of tubular epithelial cell deletion in chronic renal failure. Lab Invest 199878(7): 813–824

[49]

Perianayagam MCMurray SLBalakrishnan VSGuo DKing AJPereira BJJaber BL. Serum soluble Fas (CD95) and Fas ligand profiles in chronic kidney failure. J Lab Clin Med 2000136(4): 320–327

[50]

Niewczas MAFicociello LHJohnson ACWalker WRosolowsky ETRoshan BWarram JHKrolewski AS. Serum concentrations of markers of TNFα and Fas-mediated pathways and renal function in nonproteinuric patients with type 1 diabetes. Clin J Am Soc Nephrol 20094(1): 62–70160;

[51]

Tonelli MSacks FPfeffer MJhangri GSCurhan G; Cholesterol and Recurrent Events (CARE) Trial Investigators.Biomarkers of inflammation and progression of chronic kidney disease. Kidney Int 200568(1): 237–245160;

[52]

Bell JHHerrera AHLi YWalcheck B. Role of ADAM17 in the ectodomain shedding of TNF-α and its receptors by neutrophils and macrophages. J Leukoc Biol 200782(1): 173–176

[53]

Onuigbo MA. Syndrome of rapid-onset end-stage renal disease: a new unrecognized pattern of CKD progression to ESRD. Ren Fail 201032(8): 954–958

[54]

Ascon MAscon DBLiu MCheadle CSarkar CRacusen LHassoun HTRabb H. Renal ischemia-reperfusion leads to long term infiltration of activated and effector-memory T lymphocytes. Kidney Int 200975(5): 526–535

[55]

Basile DPAnderson MDSutton TA. Pathophysiology of acute kidney injury. Compr Physiol 20122(2): 1303–1353

[56]

Basile DPDonohoe DRoethe KOsborn JL. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Renal Physiol 2001281(5): F887–F899

[57]

Chawla LSKimmel PL. Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney Int 201282(5): 516–524

[58]

Zhao ZZhu BAnderson JFu HLeNarz L. Resource utilization and healthcare costs for acute coronary syndrome patients with and without diabetes mellitus. J Med Econ 201013(4): 748–759

[59]

Go ASChertow GMFan DMcCulloch CEHsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004351(13): 1296–1305

[60]

Waikar SSLiu KDChertow GM. Diagnosis, epidemiology and outcomes of acute kidney injury. Clin J Am Soc Nephrol 20083(3): 844–861

[61]

Thakar CVChristianson AHimmelfarb JLeonard AC. Acute kidney injury episodes and chronic kidney disease risk in diabetes mellitus. Clin J Am Soc Nephrol 20116(11): 2567–2572

[62]

Onuigbo MAAgbasi N. Diabetic nephropathy and CKD-analysis of individual patient serum creatinine trajectories: a forgotten diagnostic methodology for diabetic CKD prognostication and prediction. J Clin Med 20154(7): 1348–1368

[63]

Araki SHaneda MSugimoto TIsono MIsshiki KKashiwagi AKoya D. Polymorphisms of the protein kinase C-β gene (PRKCB1) accelerate kidney disease in type 2 diabetes without overt proteinuria. Diabetes Care 200629(4): 864–868

[64]

Shimizu MFuruichi KToyama TKitajima SHara AKitagawa KIwata YSakai NTakamura TYoshimura MYokoyama HKaneko SWada T; Kanazawa Study Group for Renal Diseases and Hypertension.Long-term outcomes of Japanese type 2 diabetic patients with biopsy-proven diabetic nephropathy. Diabetes Care 201336(11): 3655–3662

[65]

Yagil CBarak ABen-Dor DRosenmann EBernheim JRosner MSegev YWeksler-Zangen SRaz IYagil Y. Nonproteinuric diabetes-associated nephropathy in the Cohen rat model of type 2 diabetes. Diabetes 200554(5): 1487–1496

[66]

Levey ASCattran DFriedman AMiller WGSedor JTuttle KKasiske BHostetter T. Proteinuria as a surrogate outcome in CKD: report of a scientific workshop sponsored by the National Kidney Foundation and the US Food and Drug Administration. Am J Kidney Dis 200954(2): 205–226

[67]

Penno GSolini AZoppini GFondelli CTrevisan RVedovato MCavalot FGruden GLamacchia OLaviola LOrsi EPugliese G; Renal Insufficiency Cardiovascular Events (RIACE) Study Group.Independent correlates of urinary albumin excretion within the normoalbuminuric range in patients with type 2 diabetes: The Renal Insufficiency And Cardiovascular Events (RIACE) Italian Multicentre Study. Acta Diabetol 201552(5): 971–981

[68]

Perkins BAFicociello LHOstrander BESilva KHWeinberg JWarram JHKrolewski AS. Microalbuminuria and the risk for early progressive renal function decline in type 1 diabetes. J Am Soc Nephrol 200718(4): 1353–1361

[69]

De Cosmo SLamacchia OPacilli AFariello SPinnelli SFontana ADi Mauro LCignarelli MTrischitta V. Normoalbuminuric renal impairment and all-cause mortality in type 2 diabetes mellitus. Acta Diabetol 201451(4): 687–689

[70]

Nielsen SESchjoedt KJAstrup ASTarnow LLajer MHansen PRParving HHRossing P. Neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule 1 (KIM1) in patients with diabetic nephropathy: a cross-sectional study and the effects of lisinopril. Diabet Med 201027(10): 1144–1150

[71]

de Carvalho JATatsch EHausen BSBollick YSMoretto MBDuarte TDuarte MMLondero SWPremaor MOComim FVDelanghe JRMoresco RN. Urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin as indicators of tubular damage in normoalbuminuric patients with type 2 diabetes. Clin Biochem 201649(3): 232–236

[72]

Lim SCLiying DQToy WCWong MYeoh LYTan CLau DTan CSubramaniam TSum CF. Adipocytokine zinc a2 glycoprotein (ZAG) as a novel urinary biomarker for normo-albuminuric diabetic nephropathy. Diabet Med 201229(7): 945–949 

[73]

Kamijo-Ikemori ASugaya TYasuda TKawata TOta ATatsunami SKaise RIshimitsu TTanaka YKimura K. Clinical significance of urinary liver-type fatty acid-binding protein in diabetic nephropathy of type 2 diabetic patients. Diabetes Care 201134(3): 691–696

[74]

Alter MLKretschmer AVon Websky KTsuprykov OReichetzeder CSimon AStasch JPHocher B. Early urinary and plasma biomarkers for experimental diabetic nephropathy. Clin Lab 201258(7-8): 659–671

[75]

National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 200239(2 Suppl 1): S1–S266

[76]

Levey ASBosch JPLewis JBGreene TRogers NRoth D; Modification of Diet in Renal Disease Study Group. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med 1999130(6): 461–470

[77]

Cockcroft DWGault MH. Prediction of creatinine clearance from serum creatinine. Nephron 197616(1): 31–41

[78]

Caramori MLFioretto PMauer M. Low glomerular filtration rate in normoalbuminuric type 1 diabetic patients: an indicator of more advanced glomerular lesions. Diabetes 200352(4): 1036–1040

[79]

Van Buren PNToto R. Current update in the management of diabetic nephropathy. Curr Diabetes Rev 20139(1): 62–77

[80]

Brenner BMCooper MEde Zeeuw DKeane WFMitch WEParving HHRemuzzi GSnapinn SMZhang ZShahinfar S; RENAAL Study Investigators.Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001345(12): 861–869

[81]

Lewis EJHunsicker LGClarke WRBerl TPohl MALewis JBRitz EAtkins RCRohde RRaz I; Collaborative Study Group.Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001345(12): 851–860

[82]

Satirapoj BKaewput WSupasyndh ORuangkanchanasetr P. Effect of sulodexide on urinary biomarkers of kidney injury in normoalbuminuric type 2 diabetes: a randomized controlled trial. J Diabetes Res 20152015:172038

[83]

Nielsen SEReinhard HZdunek DHess GGutiérrez OMWolf MParving HHJacobsen PKRossing P. Tubular markers are associated with decline in kidney function in proteinuric type 2 diabetic patients. Diabetes Res Clin Pract 201297(1): 71–76

[84]

Dwyer JPLewis JB. Nonproteinuric diabetic nephropathy: when diabetics don’t read the textbook. Med Clin North Am 201397(1): 53–58

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (177KB)

2860

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/