Metformin and metabolic diseases: a focus on hepatic aspects

Juan Zheng, Shih-Lung Woo, Xiang Hu, Rachel Botchlett, Lulu Chen, Yuqing Huo, Chaodong Wu

PDF(493 KB)
PDF(493 KB)
Front. Med. ›› 2015, Vol. 9 ›› Issue (2) : 173-186. DOI: 10.1007/s11684-015-0384-0
REVIEW

Metformin and metabolic diseases: a focus on hepatic aspects

Author information +
History +

Abstract

Metformin has been widely used as a first-line anti-diabetic medicine for the treatment of type 2 diabetes (T2D). As a drug that primarily targets the liver, metformin suppresses hepatic glucose production (HGP), serving as the main mechanism by which metformin improves hyperglycemia of T2D. Biochemically, metformin suppresses gluconeogenesis and stimulates glycolysis. Metformin also inhibits glycogenolysis, which is a pathway that critically contributes to elevated HGP. While generating beneficial effects on hyperglycemia, metformin also improves insulin resistance and corrects dyslipidemia in patients with T2D. These beneficial effects of metformin implicate a role for metformin in managing non-alcoholic fatty liver disease. As supported by the results from both human and animal studies, metformin improves hepatic steatosis and suppresses liver inflammation. Mechanistically, the beneficial effects of metformin on hepatic aspects are mediated through both adenosine monophosphate-activated protein kinase (AMPK)-dependent and AMPK-independent pathways. In addition, metformin is generally safe and may also benefit patients with other chronic liver diseases.

Keywords

metformin / diabetes / hepatic steatosis / inflammatory response / insulin resistance

Cite this article

Download citation ▾
Juan Zheng, Shih-Lung Woo, Xiang Hu, Rachel Botchlett, Lulu Chen, Yuqing Huo, Chaodong Wu. Metformin and metabolic diseases: a focus on hepatic aspects. Front. Med., 2015, 9(2): 173‒186 https://doi.org/10.1007/s11684-015-0384-0

References

[1]
Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, Peters AL, Tsapas A, Wender R, Matthews DR. Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia2012; 55(6): 1577–1596
CrossRef Pubmed Google scholar
[2]
Mazza A, Fruci B, Garinis GA, Giuliano S, Malaguarnera R, Belfiore A. The role of metformin in the management of NAFLD. Exp Diabetes Res2012; 2012: 716404
CrossRef Pubmed Google scholar
[3]
Cahova M, Drahota Z, Oliarnyk O, Cervinkova Z, Kucera O, Dankova H, Kazdova L. The effect of metformin on liver mitochondria and lipid metabolism in NAFLD. Diabetologia2010; 53 (Suppl 1): S304
[4]
Valsamakis G, Lois K, Kumar S, Mastorakos G. Metabolic and other effects of pioglitazone as an add-on therapy to metformin in the treatment of polycystic ovary syndrome (PCOS). Hormones (Athens)2013; 12(3): 363–378
Pubmed
[5]
Chen S, Zhou J, Xi M, Jia Y, Wong Y, Zhao J, Ding L, Zhang J, Wen A. Pharmacogenetic variation and metformin response. Curr Drug Metab2013; 14(10): 1070–1082
CrossRef Pubmed Google scholar
[6]
Nies AT, Koepsell H, Damme K, Schwab M. Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. Handbook Exp Pharmacol2011; 201(201): 105–167
CrossRef Pubmed Google scholar
[7]
Takane H, Shikata E, Otsubo K, Higuchi S, Ieiri I. Polymorphism in human organic cation transporters and metformin action. Pharmacogenomics2008; 9(4): 415–422
CrossRef Pubmed Google scholar
[8]
Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK, Furlong TJ, Greenfield JR, Greenup LC, Kirkpatrick CM, Ray JE, Timmins P, Williams KM. Clinical pharmacokinetics of metformin. Clin Pharmacokinet2011; 50(2): 81–98
CrossRef Pubmed Google scholar
[9]
Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest2001; 108(8): 1167–1174
CrossRef Pubmed Google scholar
[10]
Paneni F. 2013 ESC/EASD guidelines on the management of diabetes and cardiovascular disease: established knowledge and evidence gaps. Diab Vasc Dis Res2014; 11(1): 5–10
CrossRef Pubmed Google scholar
[11]
Adler AI, Shaw EJ, Stokes T, Ruiz F, Guideline Development G. Newer agents for blood glucose control in type 2 diabetes: summary of NICE guidance. BMJ2009; 338: b1668
CrossRef Pubmed Google scholar
[12]
Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, Zinman B; American Diabetes Association; European Association for Study of Diabetes. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care2009; 32(1): 193–203
CrossRef Pubmed Google scholar
[13]
UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet1998; 352(9131): 854–865
CrossRef Pubmed Google scholar
[14]
Calvert JW, Gundewar S, Jha S, Greer JJ, Bestermann WH, Tian R, Lefer DJ. Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes2008; 57(3): 696–705
CrossRef Pubmed Google scholar
[15]
Paiva M, Riksen NP, Davidson SM, Hausenloy DJ, Monteiro P, Gonçalves L, Providência L, Rongen GA, Smits P, Mocanu MM, Yellon DM. Metformin prevents myocardial reperfusion injury by activating the adenosine receptor. J Cardiovasc Pharmacol2009; 53(5): 373–378
CrossRef Pubmed Google scholar
[16]
Rena G, Pearson ER, Sakamoto K. Molecular mechanism of action of metformin: old or new insights? Diabetologia2013; 56(9): 1898–1906
CrossRef Pubmed Google scholar
[17]
Chu CA, Wiernsperger N, Muscato N, Knauf M, Neal DW, Cherrington AD. The acute effect of metformin on glucose production in the conscious dog is primarily attributable to inhibition of glycogenolysis. Metabolism2000; 49(12): 1619–1626
CrossRef Pubmed Google scholar
[18]
Silva FMD, da Silva MHRA, Bracht A, Eller GJ, Constantin RP, Yamamoto NS. Effects of metformin on glucose metabolism of perfused rat livers. Mol Cell Biochem2010; 340(1–2): 283–289
CrossRef Pubmed Google scholar
[19]
Heishi M, Ichihara J, Teramoto R, Itakura Y, Hayashi K, Ishikawa H, Gomi H, Sakai J, Kanaoka M, Taiji M, Kimura T. Global gene expression analysis in liver of obese diabetic db/db mice treated with metformin. Diabetologia2006; 49(7): 1647–1655
CrossRef Pubmed Google scholar
[20]
He L, Sabet A, Djedjos S, Miller R, Sun X, Hussain MA, Radovick S, Wondisford FE. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell2009; 137(4): 635–646
CrossRef Pubmed Google scholar
[21]
Da Silva D, Zancan P, Coelho WS, Gomez LS, Sola-Penna M. Metformin reverses hexokinase and 6-phosphofructo-1-kinase inhibition in skeletal muscle, liver and adipose tissues from streptozotocin-induced diabetic mouse. Arch Biochem Biophys2010; 496(1): 53–60
CrossRef Pubmed Google scholar
[22]
Lage R, Diéguez C, Vidal-Puig A, López M. AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol Med2008; 14(12): 539–549
CrossRef Pubmed Google scholar
[23]
Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, Montminy M, Cantley LC. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science2005; 310(5754): 1642–1646
CrossRef Pubmed Google scholar
[24]
Foretz M, Hébrard S, Leclerc J, Zarrinpashneh E, Soty M, Mithieux G, Sakamoto K, Andreelli F, Viollet B. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest2010; 120(7): 2355–2369
CrossRef Pubmed Google scholar
[25]
Hardie DG. Neither LKB1 nor AMPK are the direct targets of metformin. Gastroenterology2006; 131(3): 973, author reply 974–975
CrossRef Pubmed Google scholar
[26]
Emami Riedmaier A, Fisel P, Nies AT, Schaeffeler E, Schwab M. Metformin and cancer: from the old medicine cabinet to pharmacological pitfalls and prospects. Trends Pharmacol Sci2013; 34(2): 126–135
CrossRef Pubmed Google scholar
[27]
Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J2000; 348(Pt 3): 607–614
CrossRef Pubmed Google scholar
[28]
Ebert BL, Firth JD, Ratcliffe PJ. Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct Cis-acting sequences. J Biol Chem1995; 270(49): 29083–29089
CrossRef Pubmed Google scholar
[151]
Guigas B, Bertrand L, Taleux N, Foretz M, Wiernsperger N, Vertommen D, Andreelli F, Viollet B, Hue L. 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside and metformin inhibit hepatic glucose phosphorylation by an AMP-activated protein kinase-independent effect on glucokinase translocation. Diabetes2006; 55(4): 865–874
Pubmed
[29]
Foretz M, Viollet B. Regulation of hepatic metabolism by AMPK. J Hepatol2011; 54(4): 827–829
CrossRef Pubmed Google scholar
[30]
Luo Q, Hu D, Hu S, Yan M, Sun Z, Chen F. In vitro and in vivo anti-tumor effect of metformin as a novel therapeutic agent in human oral squamous cell carcinoma. BMC Cancer2012; 12(1): 517
CrossRef Pubmed Google scholar
[31]
Zhang J, Gao Z, Yin J, Quon MJ, Ye J. S6K directly phosphorylates IRS-1 on Ser-270 to promote insulin resistance in response to TNF-α signaling through IKK2. J Biol Chem2008; 283(51): 35375–35382
CrossRef Pubmed Google scholar
[32]
Ouyang J, Parakhia RA, Ochs RS. Metformin activates AMP kinase through inhibition of AMP deaminase. J Biol Chem2011; 286(1): 1–11
CrossRef Pubmed Google scholar
[33]
Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature2013; 494(7436): 256–260
CrossRef Pubmed Google scholar
[34]
Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond)2012; 122(6): 253–270
CrossRef Pubmed Google scholar
[35]
Pavlović D, Kocić R, Kocić G, Jevtović T, Radenković S, Mikić D, Stojanović M, Djordjević PB. Effect of four-week metformin treatment on plasma and erythrocyte antioxidative defense enzymes in newly diagnosed obese patients with type 2 diabetes. Diabetes Obes Metab2000; 2(4): 251–256
CrossRef Pubmed Google scholar
[36]
Esteghamati A, Eskandari D, Mirmiranpour H, Noshad S, Mousavizadeh M, Hedayati M, Nakhjavani M. Effects of metformin on markers of oxidative stress and antioxidant reserve in patients with newly diagnosed type 2 diabetes: a randomized clinical trial. Clin Nutr2013; 32(2): 179–185
CrossRef Pubmed Google scholar
[37]
Bonnefont-Rousselot D, Raji B, Walrand S, Gardès-Albert M, Jore D, Legrand A, Peynet J, Vasson MP. An intracellular modulation of free radical production could contribute to the beneficial effects of metformin towards oxidative stress. Metabolism2003; 52(5): 586–589
CrossRef Pubmed Google scholar
[38]
Kane DA, Anderson EJ, Price JW 3rd, Woodlief TL, Lin CT, Bikman BT, Cortright RN, Neufer PD. Metformin selectively attenuates mitochondrial H2O2 emission without affecting respiratory capacity in skeletal muscle of obese rats. Free Radic Biol Med2010; 49(6): 1082–1087
CrossRef Pubmed Google scholar
[39]
Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, Gomes AP, Ward TM, Minor RK, Blouin MJ, Schwab M, Pollak M, Zhang Y, Yu Y, Becker KG, Bohr VA, Ingram DK, Sinclair DA, Wolf NS, Spindler SR, Bernier M, de Cabo R. Metformin improves healthspan and lifespan in mice. Nat Commun2013; 4: 2192
CrossRef Pubmed Google scholar
[40]
Nelson LE, Valentine RJ, Cacicedo JM, Gauthier MS, Ido Y, Ruderman NB. A novel inverse relationship between metformin-triggered AMPK-SIRT1 signaling and p53 protein abundance in high glucose-exposed HepG2 cells. Am J Physiol Cell Physiol2012; 303(1): C4–C13
CrossRef Pubmed Google scholar
[41]
Um JH, Yang S, Yamazaki S, Kang H, Viollet B, Foretz M, Chung JH. Activation of 5′-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2. J Biol Chem2007; 282(29): 20794–20798
CrossRef Pubmed Google scholar
[42]
Barnea M, Haviv L, Gutman R, Chapnik N, Madar Z, Froy O. Metformin affects the circadian clock and metabolic rhythms in a tissue-specific manner. Biochim Biophys Acta2012; 1822(11): 1796–1806
CrossRef Pubmed Google scholar
[43]
Caton PW, Kieswich J, Yaqoob MM, Holness MJ, Sugden MC. Metformin opposes impaired AMPK and SIRT1 function and deleterious changes in core clock protein expression in white adipose tissue of genetically-obese db/db mice. Diabetes Obes Metab2011; 13(12): 1097–1104
CrossRef Pubmed Google scholar
[44]
Liu HY, Han J, Cao SY, Hong T, Zhuo D, Shi J, Liu Z, Cao W. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J Biol Chem2009; 284(45): 31484–31492
CrossRef Pubmed Google scholar
[45]
Noh BK, Lee JK, Jun HJ, Lee JH, Jia Y, Hoang MH, Kim JW, Park KH, Lee SJ. Restoration of autophagy by puerarin in ethanol-treated hepatocytes via the activation of AMP-activated protein kinase. Biochem Biophys Res Commun2011; 414(2): 361–366
CrossRef Pubmed Google scholar
[46]
Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlton M, Sanyal AJ. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology2012; 55(6): 2005–2023
CrossRef Pubmed Google scholar
[47]
Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology2010; 52(5): 1836–1846
CrossRef Pubmed Google scholar
[48]
Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther2011; 34(3): 274–285
CrossRef Pubmed Google scholar
[49]
Wattacheril J, Chalasani N. Nonalcoholic fatty liver disease (NAFLD): is it really a serious condition? Hepatology2012; 56(4): 1580–1584
CrossRef Pubmed Google scholar
[50]
Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology1998; 114(4): 842–845
CrossRef Pubmed Google scholar
[51]
Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest2004; 114(2): 147–152
CrossRef Pubmed Google scholar
[52]
Fabbrini E, Mohammed BS, Magkos F, Korenblat KM, Patterson BW, Klein S. Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology2008; 134(2): 424–431
CrossRef Pubmed Google scholar
[53]
Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, Osterreicher CH, Takahashi H, Karin M. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell2010; 140(2): 197–208
CrossRef Pubmed Google scholar
[54]
Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, Manini R, Natale S, Vanni E, Villanova N, Melchionda N, Rizzetto M. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology2003; 37(4): 917–923
CrossRef Pubmed Google scholar
[55]
Woo SL, Xu H, Li H, Zhao Y, Hu X, Zhao J, Guo X, Guo T, Botchlett R, Qi T, Pei Y, Zheng J, Xu Y, An X, Chen L, Chen L, Li Q, Xiao X, Huo Y, Wu C. Metformin ameliorates hepatic steatosis and inflammation without altering adipose phenotype in diet-induced obesity. PLoS ONE2014; 9(3): e91111
CrossRef Pubmed Google scholar
[56]
Kita Y, Takamura T, Misu H, Ota T, Kurita S, Takeshita Y, Uno M, Matsuzawa-Nagata N, Kato K, Ando H, Fujimura A, Hayashi K, Kimura T, Ni Y, Otoda T, Miyamoto K, Zen Y, Nakanuma Y, Kaneko S. Metformin prevents and reverses inflammation in a non-diabetic mouse model of nonalcoholic steatohepatitis. PLoS ONE2012; 7(9): e43056
CrossRef Pubmed Google scholar
[57]
Carlson CA, Kim KH. Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. J Biol Chem1973; 248(1): 378–380
Pubmed
[58]
Beg ZH, Allmann DW, Gibson DM. Modulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity with cAMP and wth protein fractions of rat liver cytosol. Biochem Biophys Res Commun1973; 54(4): 1362–1369
CrossRef Pubmed Google scholar
[59]
Hardie DG. AMP-activated protein kinase: a key regulator of energy balance with many roles in human disease. J Intern Med2014; 276(6): 543–559
CrossRef Pubmed Google scholar
[60]
Stumvoll M, Häring HU, Matthaei S. Metformin. Endocr Res2007; 32(1–2): 39–57
CrossRef Pubmed Google scholar
[61]
Lin HZ, Yang SQ, Chuckaree C, Kuhajda F, Ronnet G, Diehl AM. Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nat Med2000; 6(9): 998–1003
CrossRef Pubmed Google scholar
[62]
Zang M, Zuccollo A, Hou X, Nagata D, Walsh K, Herscovitz H, Brecher P, Ruderman NB, Cohen RA. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J Biol Chem2004; 279(46): 47898–47905
CrossRef Pubmed Google scholar
[63]
Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JY, Gao B, Wierzbicki M, Verbeuren TJ, Shaw RJ, Cohen RA, Zang M. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab2011; 13(4): 376–388
CrossRef Pubmed Google scholar
[64]
Jia L, Vianna CR, Fukuda M, Berglund ED, Liu C, Tao C, Sun K, Liu T, Harper MJ, Lee CE, Lee S, Scherer PE, Elmquist JK. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance. Nat Commun2014; 5: 3878
CrossRef Pubmed Google scholar
[65]
Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat Med2005; 11(2): 183–190
CrossRef Pubmed Google scholar
[66]
Guo X, Li H, Xu H, Halim V, Zhang W, Wang H, Ong KT, Woo SL, Walzem RL, Mashek DG, Dong H, Lu F, Wei L, Huo Y, Wu C. Palmitoleate induces hepatic steatosis but suppresses liver inflammatory response in mice. PLoS ONE2012; 7(6): e39286
CrossRef Pubmed Google scholar
[67]
Huo Y, Guo X, Li H, Xu H, Halim V, Zhang W, Wang H, Fan YY, Ong KT, Woo SL, Chapkin RS, Mashek DG, Chen Y, Dong H, Lu F, Wei L, Wu C. Targeted overexpression of inducible 6-phosphofructo-2-kinase in adipose tissue increases fat deposition but protects against diet-induced insulin resistance and inflammatory responses. J Biol Chem2012; 287(25): 21492–21500
CrossRef Pubmed Google scholar
[68]
Deng ZB, Liu Y, Liu C, Xiang X, Wang J, Cheng Z, Shah SV, Zhang S, Zhang L, Zhuang X, Michalek S, Grizzle WE, Zhang HG. Immature myeloid cells induced by a high-fat diet contribute to liver inflammation. Hepatology2009; 50(5): 1412–1420
CrossRef Pubmed Google scholar
[69]
Dong Z, Wei H, Sun R, Tian Z. The roles of innate immune cells in liver injury and regeneration. Cell Mol Immunol2007; 4(4): 241–252
Pubmed
[70]
Su GL. Lipopolysaccharides in liver injury: molecular mechanisms of Kupffer cell activation. Am J Physiol Gastrointest Liver Physiol2002; 283(2): G256–G265
Pubmed
[71]
Fan J, Zhong L, Wang G, . The role of Kupffer cells in non-alcoholic steatohepatitis of rats chronically fed with high-fat diet. Chin J Hepatol (Zhonghua Gan Zang Bing Za Zhi )2001; 9(1): 16–18 (in Chinese)
[72]
Rivera CA, Adegboyega P, van Rooijen N, Tagalicud A, Allman M, Wallace M. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol2007; 47(4): 571–579
CrossRef Pubmed Google scholar
[73]
Salminen A, Hyttinen JM, Kaarniranta K. AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan. J Mol Med (Berl)2011; 89(7): 667–676
CrossRef Pubmed Google scholar
[74]
El-Mir MY, Nogueira V, Fontaine E, Avéret N, Rigoulet M, Leverve X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem2000; 275(1): 223–228
CrossRef Pubmed Google scholar
[75]
Marchesini G, Brizi M, Bianchi G, Tomassetti S, Zoli M, Melchionda N. Metformin in non-alcoholic steatohepatitis. Lancet2001; 358(9285): 893–894
CrossRef Pubmed Google scholar
[76]
Nair S, Diehl AM, Wiseman M, Farr GH Jr, Perrillo RP. Metformin in the treatment of non-alcoholic steatohepatitis: a pilot open label trial. Aliment Pharmacol Ther2004; 20(1): 23–28
CrossRef Pubmed Google scholar
[77]
Uygun A, Kadayifci A, Isik AT, Ozgurtas T, Deveci S, Tuzun A, Yesilova Z, Gulsen M, Dagalp K. Metformin in the treatment of patients with non-alcoholic steatohepatitis. Aliment Pharmacol Ther2004; 19(5): 537–544
CrossRef Pubmed Google scholar
[78]
Loomba R, Lutchman G, Kleiner DE, Ricks M, Feld JJ, Borg BB, Modi A, Nagabhyru P, Sumner AE, Liang TJ, Hoofnagle JH. Clinical trial: pilot study of metformin for the treatment of non-alcoholic steatohepatitis. Aliment Pharmacol Ther2009; 29(2): 172–182
CrossRef Pubmed Google scholar
[79]
Bugianesi E, Gentilcore E, Manini R, Natale S, Vanni E, Villanova N, David E, Rizzetto M, Marchesini G. A randomized controlled trial of metformin versus vitamin E or prescriptive diet in nonalcoholic fatty liver disease. Am J Gastroenterol2005; 100(5): 1082–1090
CrossRef Pubmed Google scholar
[80]
Duseja A, Das A, Dhiman RK, Chawla YK, Thumburu KT, Bhadada S, Bhansali A. Metformin is effective in achieving biochemical response in patients with nonalcoholic fatty liver disease (NAFLD) not responding to lifestyle interventions. Ann Hepatol2007; 6(4): 222–226
Pubmed
[81]
de Oliveira CP, Stefano JT, de Siqueira ER, . Combination of N-acetylcysteine and metformin improves histological steatosis and fibrosis in patients with non-alcoholic steatohepatitis. Hepatol Res2008; 38(2): 159–165
[82]
Haukeland JW, Konopski Z, Eggesbø HB, von Volkmann HL, Raschpichler G, Bjøro K, Haaland T, Løberg EM, Birkeland K. Metformin in patients with non-alcoholic fatty liver disease: a randomized, controlled trial. Scand J Gastroenterol2009; 44(7): 853–860
CrossRef Pubmed Google scholar
[83]
Garinis GA, Fruci B, Mazza A, De Siena M, Abenavoli S, Gulletta E, Ventura V, Greco M, Abenavoli L, Belfiore A. Metformin versus dietary treatment in nonalcoholic hepatic steatosis: a randomized study. Int J Obes (Lond)2010; 34(8): 1255–1264
CrossRef Pubmed Google scholar
[84]
Shargorodsky M, Omelchenko E, Matas Z, Boaz M, Gavish D. Relation between augmentation index and adiponectin during one-year metformin treatment for nonalcoholic steatohepatosis: effects beyond glucose lowering? Cardiovasc Diabetol2012; 11(1): 61
CrossRef Pubmed Google scholar
[85]
Han Y, Shi JP, Ma AL, Xu Y, Ding XD, Fan JG. Randomized, vitamin E-controlled trial of bicyclol plus metformin in non-alcoholic fatty liver disease patients with impaired fasting glucose. Clin Drug Investig2014; 34(1): 1–7
CrossRef Pubmed Google scholar
[86]
Li Y, Liu L, Wang B, Wang J, Chen D. Metformin in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Biomedical reports2013; 1(1): 57–64
[87]
Rakoski MO, Singal AG, Rogers MA, Conjeevaram H. Meta-analysis: insulin sensitizers for the treatment of non-alcoholic steatohepatitis. Aliment Pharmacol Ther2010; 32(10): 1211–1221
CrossRef Pubmed Google scholar
[88]
Musso G, Gambino R, Cassader M, Pagano G. A meta-analysis of randomized trials for the treatment of nonalcoholic fatty liver disease. Hepatology2010; 52(1): 79–104
CrossRef Pubmed Google scholar
[89]
Musso G, Cassader M, Rosina F, Gambino R. Impact of current treatments on liver disease, glucose metabolism and cardiovascular risk in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of randomised trials. Diabetologia2012; 55(4): 885–904
CrossRef Pubmed Google scholar
[90]
Kaul S, Bolger AF, Herrington D, Giugliano RP, Eckel RH. Thiazolidinedione drugs and cardiovascular risks: a science advisory from the American Heart Association and American College of Cardiology Foundation. Circulation2010; 121(16): 1868–1877
CrossRef Pubmed Google scholar
[91]
Hofmann CA, Colca JR. New oral thiazolidinedione antidiabetic agents act as insulin sensitizers. Diabetes Care1992; 15(8): 1075–1078
CrossRef Pubmed Google scholar
[92]
Masoudi FA, Wang Y, Inzucchi SE, Setaro JF, Havranek EP, Foody JM, Krumholz HM. Metformin and thiazolidinedione use in Medicare patients with heart failure. JAMA2003; 290(1): 81–85
CrossRef Pubmed Google scholar
[93]
Sinha B, Ghosal S. Pioglitazone—do we really need it to manage type 2 diabetes? Diabetes Metab Syndr2013; 7(1): 52–55
CrossRef Pubmed Google scholar
[94]
Buckingham RE, Hanna A. Thiazolidinedione insulin sensitizers and the heart: a tale of two organs? Diabetes Obes Metab2008; 10(4): 312–328
CrossRef Pubmed Google scholar
[95]
Lebovitz HE. Differentiating members of the thiazolidinedione class: a focus on safety. Diabetes Metab Res Rev2002; 18(S2 Suppl 2): S23–S29
CrossRef Pubmed Google scholar
[96]
Pouwels KB, van Grootheest K. The rosiglitazone decision process at FDA and EMA. What should we learn? Int J Risk Saf Med2012; 24(2): 73–80
Pubmed
[97]
Sadikot SM, Ghosal S. India suspends pioglitazone: is it justified? Diabetes Metab Syndr2014; 8(1): 53–56
CrossRef Pubmed Google scholar
[98]
Yau H, Rivera K, Lomonaco R, Cusi K. The future of thiazolidinedione therapy in the management of type 2 diabetes mellitus. Curr Diab Rep2013; 13(3): 329–341
CrossRef Pubmed Google scholar
[99]
Kung J, Henry RR. Thiazolidinedione safety. Expert Opin Drug Saf2012; 11(4): 565–579
CrossRef Pubmed Google scholar
[100]
Shaw RJ. Metformin trims fats to restore insulin sensitivity. Nat Med2013; 19(12): 1570–1572
CrossRef Pubmed Google scholar
[101]
Diabetes Prevention Program Research Group. Long-term safety, tolerability, and weight loss associated with metformin in the Diabetes Prevention Program Outcomes Study. Diabetes Care2012; 35(4): 731–737
CrossRef Pubmed Google scholar
[102]
Reitman ML, Schadt EE. Pharmacogenetics of metformin response: a step in the path toward personalized medicine. J Clin Invest2007; 117(5): 1226–1229
CrossRef Pubmed Google scholar
[103]
Lautatzis ME, Goulis DG, Vrontakis M. Efficacy and safety of metformin during pregnancy in women with gestational diabetes mellitus or polycystic ovary syndrome: a systematic review. Metabolism2013; 62(11): 1522–1534
CrossRef Pubmed Google scholar
[104]
Ekström N, Schiöler L, Svensson AM, Eeg-Olofsson K, Miao Jonasson J, Zethelius B, Cederholm J, Eliasson B, Gudbjörnsdottir S. Effectiveness and safety of metformin in 51 675 patients with type 2 diabetes and different levels of renal function: a cohort study from the Swedish National Diabetes Register. BMJ Open2012; 2(4): e001076
CrossRef Pubmed Google scholar
[105]
Spinozzi S, Colliva C, Camborata C, Roberti M, Ianni C, Neri F, Calvarese C, Lisotti A, Mazzella G, Roda A. Berberine and its metabolites: relationship between physicochemical properties and plasma levels after administration to human subjects. J Nat Prod2014; 77(4): 766–772
CrossRef Pubmed Google scholar
[106]
Liu Y, Zhang L, Song H, Ji G. Update on berberine in nonalcoholic Fatty liver disease. Evid Based Complement Alternat Med2013; 2013: 308134
[107]
Affuso F, Mercurio V, Fazio V, Fazio S. Cardiovascular and metabolic effects of berberine. World J Cardiol2010; 2(4): 71–77
[108]
Hu Y, Young AJ, Ehli EA, Nowotny D, Davies PS, Droke EA, Soundy TJ, Davies GE. Metformin and berberine prevent olanzapine-induced weight gain in rats. PLoS ONE2014; 9(3): e93310
CrossRef Pubmed Google scholar
[109]
Chang W, Zhang M, Li J, Meng Z, Wei S, Du H, Chen L, Hatch GM. Berberine improves insulin resistance in cardiomyocytes via activation of 5′-adenosine monophosphate-activated protein kinase. Metabolism2013; 62(8): 1159–1167
CrossRef Pubmed Google scholar
[110]
Chen Y, Li Y, Wang Y, Wen Y, Sun C. Berberine improves free-fatty-acid-induced insulin resistance in L6 myotubes through inhibiting peroxisome proliferator-activated receptor γ and fatty acid transferase expressions. Metabolism2009; 58(12): 1694–1702
CrossRef Pubmed Google scholar
[111]
Kong WJ, Zhang H, Song DQ, Xue R, Zhao W, Wei J, Wang YM, Shan N, Zhou ZX, Yang P, You XF, Li ZR, Si SY, Zhao LX, Pan HN, Jiang JD. Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin receptor expression. Metabolism2009; 58(1): 109–119
CrossRef Pubmed Google scholar
[112]
Shan CY, Yang JH, Kong Y, Wang XY, Zheng MY, Xu YG, Wang Y, Ren HZ, Chang BC, Chen LM. Alteration of the intestinal barrier and GLP2 secretion in berberine-treated type 2 diabetic rats. J Endocrinol2013; 218(3): 255–262
CrossRef Pubmed Google scholar
[113]
Li Z, Geng YN, Jiang JD, Kong WJ. Antioxidant and anti-inflammatory activities of berberine in the treatment of diabetes mellitus. Evid Based Complement Alternat Med2014; 2014: 289264
[114]
Zhang H, Wei J, Xue R, Wu JD, Zhao W, Wang ZZ, Wang SK, Zhou ZX, Song DQ, Wang YM, Pan HN, Kong WJ, Jiang JD. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metabolism2010; 59(2): 285–292
CrossRef Pubmed Google scholar
[115]
Han J, Lin H, Huang W. Modulating gut microbiota as an anti-diabetic mechanism of berberine. Med Sci Monit2011; 17(7): RA164–RA167
CrossRef Pubmed Google scholar
[116]
Dong H, Wang N, Zhao L, Lu F. Berberine in the treatment of type 2 diabetes mellitus: a systemic review and meta-analysis. Evid Based Complement Alternat Med2012; 2012: 591654
[117]
Tillhon M, Guamán Ortiz LM, Lombardi P, Scovassi AI. Berberine: new perspectives for old remedies. Biochem Pharmacol2012; 84(10): 1260–1267
CrossRef Pubmed Google scholar
[118]
Xia X, Yan J, Shen Y, Tang K, Yin J, Zhang Y, Yang D, Liang H, Ye J, Weng J. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis. PLoS ONE2011; 6(2): e16556
CrossRef Pubmed Google scholar
[119]
Yin J, Gao Z, Liu D, Liu Z, Ye J. Berberine improves glucose metabolism through induction of glycolysis. Am J Physiol Endocrinol Metab2008; 294(1): E148–E156
CrossRef Pubmed Google scholar
[120]
Turner N, Li JY, Gosby A, To SW, Cheng Z, Miyoshi H, Taketo MM, Cooney GJ, Kraegen EW, James DE, Hu LH, Li J, Ye JM. Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I: a mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action. Diabetes2008; 57(5): 1414–1418
CrossRef Pubmed Google scholar
[121]
Witters LA. The blooming of the French lilac. J Clin Invest2001; 108(8): 1105–1107
CrossRef Pubmed Google scholar
[122]
Ma RC. Acarbose: an alternative to metformin for first-line treatment in type 2 diabetes? Lancet Diabetes Endocrinol2014; 2(1): 6–7
[123]
Holman R. Metformin as first choice in oral diabetes treatment: the UKPDS experience. Journ Annu Diabetol Hotel Dieu2007; 2007: 13–20
Pubmed
[124]
Prutsky G, Domecq JP, Tsapas A. Insulin secretagogues were associated with increased mortality compared with metformin in type 2 diabetes. Ann Intern Med2012; 156(2): JC1–JC7
CrossRef Pubmed Google scholar
[125]
Vecchio S, Giampreti A, Petrolini VM, Lonati D, Protti A, Papa P, Rognoni C, Valli A, Rocchi L, Rolandi L, Manzo L, Locatelli CA. Metformin accumulation: lactic acidosis and high plasmatic metformin levels in a retrospective case series of 66 patients on chronic therapy. Clin Toxicol (Phila)2014; 52(2): 129–135
CrossRef Pubmed Google scholar
[126]
Lin KD, Lin JD, Juang JH. Metformin-induced hemolysis with jaundice. N Engl J Med1998; 339(25): 1860–1861
CrossRef Pubmed Google scholar
[127]
Babich MM, Pike I, Shiffman ML. Metformin-induced acute hepatitis. Am J Med1998; 104(5): 490–492
CrossRef Pubmed Google scholar
[128]
Saadi T, Waterman M, Yassin H, Baruch Y. Metformin-induced mixed hepatocellular and cholestatic hepatic injury: case report and literature review. Int J Gen Med2013; 6: 703–706
CrossRef Pubmed Google scholar
[129]
Miralles-Linares F, Puerta-Fernandez S, Bernal-Lopez MR, Tinahones FJ, Andrade RJ, Gomez-Huelgas R. Metformin-induced hepatotoxicity. Diabetes Care2012; 35(3): e21
CrossRef Pubmed Google scholar
[130]
Kutoh E. Possible metformin-induced hepatotoxicity. Am J Geriatr Pharmacother2005; 3(4): 270–273
CrossRef Pubmed Google scholar
[131]
Aksay E, Yanturali S, Bayram B, Hocaoglu N, Kiyan S. A rare side effect of metformin: metformin-induced hepatotoxicity. Turk J Med Sci2007; 37(3): 173–175
[132]
Holstein A, Egberts EH. Currently listed contraindications to the use of metformin — more harmful than beneficial? Deut Med Wochenschr2006; 131(3): 105–110
CrossRef Google scholar
[133]
Harris K, Smith L. Safety and efficacy of metformin in patients with type 2 diabetes mellitus and chronic hepatitis C. Ann Pharmacother2013; 47(10): 1348–1352
CrossRef Pubmed Google scholar
[134]
Xun YH, Zhang YJ, Pan QC, Mao RC, Qin YL, Liu HY, Zhang YM, Yu YS, Tang ZH, Lu MJ, Zang GQ, Zhang JM. Metformin inhibits hepatitis B virus protein production and replication in human hepatoma cells. J Viral Hepat2014; 21(8): 597–603
Pubmed
[135]
Donadon V, Balbi M, Mas MD, Casarin P, Zanette G. Metformin and reduced risk of hepatocellular carcinoma in diabetic patients with chronic liver disease. Liver Int2010; 30(5): 750–758
[136]
Bhalla K, Hwang BJ, Dewi RE, Twaddel W, Goloubeva OG, Wong KK, Saxena NK, Biswal S, Girnun GD. Metformin prevents liver tumorigenesis by inhibiting pathways driving hepatic lipogenesis. Cancer Prev Res (Phila)2012; 5(4): 544–552
CrossRef Pubmed Google scholar
[137]
DeCensi A, Puntoni M, Goodwin P, Cazzaniga M, Gennari A, Bonanni B, Gandini S. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res (Phila)2010; 3(11): 1451–1461
CrossRef Pubmed Google scholar
[138]
Huang X, Wullschleger S, Shpiro N, McGuire VA, Sakamoto K, Woods YL, McBurnie W, Fleming S, Alessi DR. Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem J2008; 412(2): 211–221
CrossRef Pubmed Google scholar
[139]
Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ, Zhao F, Viollet B, Thompson CB. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res 2007; 67(14): 6745–6752
CrossRef Pubmed Google scholar
[140]
Jalling O, Olsen C. The effects of metformin compared to the effects of phenformin on the lactate production and the metabolism of isolated parenchymal rat liver cell. Acta Pharmacol Toxicol (Copenh)1984; 54(5): 327–332
CrossRef Pubmed Google scholar
[141]
Chang CT, Chen YC, Fang JT, Huang CC. Metformin-associated lactic acidosis: case reports and literature review. J Nephrol2002; 15(4): 398–402
Pubmed
[142]
Rojas LB, Gomes MB. Metformin: an old but still the best treatment for type 2 diabetes. Diabetol Metab Syndr 2013; 5(1): 6
CrossRef Pubmed Google scholar
[143]
Cusi K, Consoli A, DeFronzo RA. Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab1996; 81(11): 4059–4067
Pubmed
[144]
Salpeter SR, Greyber E, Pasternak GA, Salpeter EE. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus: systematic review and meta-analysis. Arch Intern Med2003; 163(21): 2594–2602
CrossRef Pubmed Google scholar
[145]
Kadayifci A. Nonalcoholic steatohepatitis: role of leptin in pathogenesis and benefits of metformin in treatment. Am J Gastroenterol2003; 98(10): 2330
[146]
Salpeter SR, Greyber E, Pasternak GA, Salpeter EE. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev2010; (4): CD002967
CrossRef Pubmed Google scholar
[147]
Brackett CC. Clarifying metformin’s role and risks in liver dysfunction. J Am Pharm Assoc (2003)2010; 50(3): 407–410
CrossRef Pubmed Google scholar
[148]
Chitturi S, George J. Hepatotoxicity of commonly used drugs: nonsteroidal anti-inflammatory drugs, antihypertensives, antidiabetic agents, anticonvulsants, lipid-lowering agents, psychotropic drugs. Semin Liver Dis2002; 22(2): 169–183
CrossRef Pubmed Google scholar
[149]
Edwards CMB, Barton MA, Snook J, David M, Mak VHF, Chowdhury TA. Metformin-associated lactic acidosis in a patient with liver disease. QJM2003; 96(4): 315–316
CrossRef Pubmed Google scholar
[150]
Møller S, Hillingsø J, Christensen E, Henriksen JH. Arterial hypoxaemia in cirrhosis: fact or fiction? Gut 1998; 42(6): 868–874
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported, in whole or in part, by National Natural Science Foundation of China (81100562/H0711) (to J.Z.), and National Key Basic Research Program of China (2012CB910402) (to Y. H.), ADA grant 1-13-BS-214-BR, AHA 12BGIA9050003, NIH/NIDDK grants (1R01DK095828; 1R01DK095862) (to C.W.).
Juan Zheng, Shih-Lung Woo, Xiang Hu, Rachel Botchlett, Lulu Chen, Yuqing Huo, and Chaodong Wu declare no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(493 KB)

Accesses

Citations

Detail

Sections
Recommended

/