Oxidative stress and diabetes: antioxidative strategies

Pengju Zhang, Tao Li, Xingyun Wu, Edouard C. Nice, Canhua Huang, Yuanyuan Zhang

PDF(1404 KB)
PDF(1404 KB)
Front. Med. ›› 2020, Vol. 14 ›› Issue (5) : 583-600. DOI: 10.1007/s11684-019-0729-1
REVIEW

Oxidative stress and diabetes: antioxidative strategies

Author information +
History +

Abstract

Diabetes mellitus is one of the major public health problems worldwide. Considerable recent evidence suggests that the cellular reduction–oxidation (redox) imbalance leads to oxidative stress and subsequent occurrence and development of diabetes and related complications by regulating certain signaling pathways involved in β-cell dysfunction and insulin resistance. Reactive oxide species (ROS) can also directly oxidize certain proteins (defined as redox modification) involved in the diabetes process. There are a number of potential problems in the clinical application of antioxidant therapies including poor solubility, storage instability and non-selectivity of antioxidants. Novel antioxidant delivery systems may overcome pharmacokinetic and stability problem and improve the selectivity of scavenging ROS. We have therefore focused on the role of oxidative stress and antioxidative therapies in the pathogenesis of diabetes mellitus. Precise therapeutic interventions against ROS and downstream targets are now possible and provide important new insights into the treatment of diabetes.

Keywords

diabetes / oxidative stress / redox modification / antioxidative therapy / novel antioxidant delivery

Cite this article

Download citation ▾
Pengju Zhang, Tao Li, Xingyun Wu, Edouard C. Nice, Canhua Huang, Yuanyuan Zhang. Oxidative stress and diabetes: antioxidative strategies. Front. Med., 2020, 14(5): 583‒600 https://doi.org/10.1007/s11684-019-0729-1

References

[1]
Evans JM, Newton RW, Ruta DA, MacDonald TM, Morris AD. Socio-economic status, obesity and prevalence of type 1 and type 2 diabetes mellitus. Diabet Med 2000; 17(6): 478–480
CrossRef Pubmed Google scholar
[2]
Bruno G, Runzo C, Cavallo-Perin P, Merletti F, Rivetti M, Pinach S, Novelli G, Trovati M, Cerutti F, Pagano G; Piedmont Study Group for Diabetes Epidemiology. Incidence of type 1 and type 2 diabetes in adults aged 30–49 years: the population-based registry in the Province of Turin, Italy. Diabetes Care 2005; 28(11): 2613–2619
CrossRef Pubmed Google scholar
[3]
Holman N, Young B, Gadsby R. Current prevalence of type 1 and type 2 diabetes in adults and children in the UK. Diabet Med 2015; 32(9): 1119–1120
CrossRef Pubmed Google scholar
[4]
Yang Y, Chan L. Monogenic diabetes: what it teaches us on the common forms of type 1 and type 2 diabetes. Endocr Rev 2016; 37(3): 190–222
CrossRef Pubmed Google scholar
[5]
Matkovics B, Varga SI, Szabó L, Witas H. The effect of diabetes on the activities of the peroxide metabolism enzymes. Horm Metab Res 1982; 14(2): 77–79
CrossRef Pubmed Google scholar
[6]
Paoletti R, Bolego C, Poli A, Cignarella A. Metabolic syndrome, inflammation and atherosclerosis. Vasc Health Risk Manag 2006; 2(2): 145–152
CrossRef Pubmed Google scholar
[7]
Bukhari SA, Naqvi SA, Nagra SA, Anjum F, Javed S, Farooq M. Assessing of oxidative stress related parameters in diabetes mellitus type 2: cause excessive damaging to DNA and enhanced homocysteine in diabetic patients. Pak J Pharm Sci 2015; 28(2): 483–491
Pubmed
[8]
Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 2002; 23(5): 599–622
CrossRef Pubmed Google scholar
[9]
David JA, Rifkin WJ, Rabbani PS, Ceradini DJ. The Nrf2/Keap1/ARE pathway and oxidative stress as a therapeutic target in type II diabetes mellitus. J Diabetes Res 2017; 2017: 4826724
CrossRef Pubmed Google scholar
[10]
Okatan EN, Tuncay E, Turan B. Cardioprotective effect of selenium via modulation of cardiac ryanodine receptor calcium release channels in diabetic rat cardiomyocytes through thioredoxin system. J Nutr Biochem 2013; 24(12): 2110–2118
CrossRef Pubmed Google scholar
[11]
Duvvuri LS, Katiyar S, Kumar A, Khan W. Delivery aspects of antioxidants in diabetes management. Expert Opin Drug Deliv 2015; 12(5): 827–844
CrossRef Pubmed Google scholar
[12]
Maritim AC, Sanders RA, Watkins JB 3rd. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 2003; 17(1): 24–38
CrossRef Pubmed Google scholar
[13]
Calcutt NA, Lopez VL, Bautista AD, Mizisin LM, Torres BR, Shroads AL, Mizisin AP, Stacpoole PW. Peripheral neuropathy in rats exposed to dichloroacetate. J Neuropathol Exp Neurol 2009; 68(9): 985–993
CrossRef Pubmed Google scholar
[14]
Gray SP, Jandeleit-Dahm K. The pathobiology of diabetic vascular complications—cardiovascular and kidney disease. J Mol Med (Berl) 2014; 92(5): 441–452
CrossRef Pubmed Google scholar
[15]
Heinonen SE, Genové G, Bengtsson E, Hübschle T, Åkesson L, Hiss K, Benardeau A, Ylä-Herttuala S, Jönsson-Rylander AC, Gomez MF. Animal models of diabetic macrovascular complications: key players in the development of new therapeutic approaches. J Diabetes Res 2015; 2015: 404085
CrossRef Pubmed Google scholar
[16]
Gong Z, Neuhouser ML, Goodman PJ, Albanes D, Chi C, Hsing AW, Lippman SM, Platz EA, Pollak MN, Thompson IM, Kristal AR. Obesity, diabetes, and risk of prostate cancer: results from the prostate cancer prevention trial. Cancer Epidemiol Biomarkers Prev 2006; 15(10): 1977–1983
CrossRef Pubmed Google scholar
[17]
Lu FP, Lin KP, Kuo HK. Diabetes and the risk of multi-system aging phenotypes: a systematic review and meta-analysis. PLoS One 2009; 4(1): e4144
CrossRef Pubmed Google scholar
[18]
Wong E, Backholer K, Gearon E, Harding J, Freak-Poli R, Stevenson C, Peeters A. Diabetes and risk of physical disability in adults: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 2013; 1(2): 106–114
CrossRef Pubmed Google scholar
[19]
Jeon CY, Murray MB. Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLoS Med 2008; 5(7): e152
CrossRef Pubmed Google scholar
[20]
Riza AL, Pearson F, Ugarte-Gil C, Alisjahbana B, van de Vijver S, Panduru NM, Hill PC, Ruslami R, Moore D, Aarnoutse R, Critchley JA, van Crevel R. Clinical management of concurrent diabetes and tuberculosis and the implications for patient services. Lancet Diabetes Endocrinol 2014; 2(9): 740–753
CrossRef Pubmed Google scholar
[21]
Roy T, Lloyd CE. Epidemiology of depression and diabetes: a systematic review. J Affect Disord 2012; 142(Suppl): S8–S21
CrossRef Pubmed Google scholar
[22]
You WP, Henneberg M. Type 1 diabetes prevalence increasing globally and regionally: the role of natural selection and life expectancy at birth. BMJ Open Diabetes Res Care 2016; 4(1): e000161
CrossRef Pubmed Google scholar
[23]
Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 2010; 464(7293): 1293–1300
CrossRef Pubmed Google scholar
[24]
Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, Jacobsen LM, Schatz DA, Lernmark Å. Type 1 diabetes mellitus. Nat Rev Dis Primers 2017; 3(1): 17016
CrossRef Pubmed Google scholar
[25]
Barnett R. Type 1 diabetes. Lancet 2018; 391(10117): 195
CrossRef Pubmed Google scholar
[26]
Sakurai T, Tsuchiya S. Superoxide production from nonenzymatically glycated protein. FEBS Lett 1988; 236(2): 406–410
CrossRef Pubmed Google scholar
[27]
Rochette L, Zeller M, Cottin Y, Vergely C. Diabetes, oxidative stress and therapeutic strategies. Biochim Biophys Acta 2014; 1840(9): 2709–2729
CrossRef Pubmed Google scholar
[28]
Zeller M, Steg PG, Ravisy J, Lorgis L, Laurent Y, Sicard P, Janin-Manificat L, Beer JC, Makki H, Lagrost AC, Rochette L, Cottin Y; RICO Survey Working Group. Relation between body mass index, waist circumference, and death after acute myocardial infarction. Circulation 2008; 118(5): 482–490
CrossRef Pubmed Google scholar
[29]
Olsson AH, Rönn T, Elgzyri T, Hansson O, Eriksson KF, Groop L, Vaag A, Poulsen P, Ling C. The expression of myosin heavy chain (MHC) genes in human skeletal muscle is related to metabolic characteristics involved in the pathogenesis of type 2 diabetes. Mol Genet Metab 2011; 103(3): 275–281
CrossRef Pubmed Google scholar
[30]
Kahn CR. Banting Lecture. Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes 1994; 43(8): 1066–1084
CrossRef Pubmed Google scholar
[31]
Ayepola OR, Brooks NL, Oguntibeju O. Oxidative stress and diabetic complications: the role of antioxidant vitamins and flavonoids. In: Oguntibeju O. Antioxidant-Antidiabetic Agents and Human Health. IntechOpen, 2014
CrossRef Google scholar
[32]
Fetita LS, Sobngwi E, Serradas P, Calvo F, Gautier JF. Consequences of fetal exposure to maternal diabetes in offspring. J Clin Endocrinol Metab 2006; 91(10): 3718–3724
CrossRef Pubmed Google scholar
[33]
Bellamy L, Casas JP, Hingorani AD, Williams D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet 2009; 373(9677): 1773–1779
CrossRef Pubmed Google scholar
[34]
Catalano PM, McIntyre HD, Cruickshank JK, McCance DR, Dyer AR, Metzger BE, Lowe LP, Trimble ER, Coustan DR, Hadden DR, Persson B, Hod M, Oats JJ; HAPO Study Cooperative Research Group. The hyperglycemia and adverse pregnancy outcome study: associations of GDM and obesity with pregnancy outcomes. Diabetes Care 2012; 35(4): 780–786
CrossRef Pubmed Google scholar
[35]
Kelstrup L, Damm P, Mathiesen ER, Hansen T, Vaag AA, Pedersen O, Clausen TD. Insulin resistance and impaired pancreatic β-cell function in adult offspring of women with diabetes in pregnancy. J Clin Endocrinol Metab 2013; 98(9): 3793–3801
CrossRef Pubmed Google scholar
[36]
World Health Organization. WHO Guidelines Approved by the Guidelines Review Committee. In: Diagnostic Criteria and Classification of Hyperglycaemia First Detected in Pregnancy. Geneva: World Health Organization, 2013
[37]
Radaelli T, Varastehpour A, Catalano P, Hauguel-de Mouzon S. Gestational diabetes induces placental genes for chronic stress and inflammatory pathways. Diabetes 2003; 52(12): 2951–2958
CrossRef Pubmed Google scholar
[38]
Mrizak I, Grissa O, Henault B, Fekih M, Bouslema A, Boumaiza I, Zaouali M, Tabka Z, Khan NA. Placental infiltration of inflammatory markers in gestational diabetic women. Gen Physiol Biophys 2014; 33(2): 169–176
CrossRef Pubmed Google scholar
[39]
Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 2004; 24(5): 816–823
CrossRef Pubmed Google scholar
[40]
Mohsen L, Akmal DM, Ghonaim EKE, Riad NM. Role of mean platelet volume and ischemia modified albumin in evaluation of oxidative stress and its association with postnatal complications in infants of diabetic mothers. J Matern Fetal Neonatal Med 2018; 31(14): 1819–1823
CrossRef Pubmed Google scholar
[41]
Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 2008; 57(6): 1446–1454
CrossRef Pubmed Google scholar
[42]
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39(1): 44–84
CrossRef Pubmed Google scholar
[43]
Abhary S, Kasmeridis N, Burdon KP, Kuot A, Whiting MJ, Yew WP, Petrovsky N, Craig JE. Diabetic retinopathy is associated with elevated serum asymmetric and symmetric dimethylarginines. Diabetes Care 2009; 32(11): 2084–2086
CrossRef Pubmed Google scholar
[44]
Cassuto J, Dou H, Czikora I, Szabo A, Patel VS, Kamath V, Belin de Chantemele E, Feher A, Romero MJ, Bagi Z. Peroxynitrite disrupts endothelial caveolae leading to eNOS uncoupling and diminished flow-mediated dilation in coronary arterioles of diabetic patients. Diabetes 2014; 63(4): 1381–1393
CrossRef Pubmed Google scholar
[45]
Franco MC, Ye Y, Refakis CA, Feldman JL, Stokes AL, Basso M, Melero Fernández de Mera RM, Sparrow NA, Calingasan NY, Kiaei M, Rhoads TW, Ma TC, Grumet M, Barnes S, Beal MF, Beckman JS, Mehl R, Estévez AG. Nitration of Hsp90 induces cell death. Proc Natl Acad Sci USA 2013; 110(12): E1102–E1111
CrossRef Pubmed Google scholar
[46]
Shadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis. Cell 2015; 163(3): 560–569
CrossRef Pubmed Google scholar
[47]
Ekstedt B. Substrate specificity of the different forms of monoamine oxidase in rat liver mitochondria. Biochem Pharmacol 1976; 25(10): 1133–1138
CrossRef Pubmed Google scholar
[48]
Orsini F, Migliaccio E, Moroni M, Contursi C, Raker VA, Piccini D, Martin-Padura I, Pelliccia G, Trinei M, Bono M, Puri C, Tacchetti C, Ferrini M, Mannucci R, Nicoletti I, Lanfrancone L, Giorgio M, Pelicci PG. The life span determinant p66Shc localizes to mitochondria where it associates with mitochondrial heat shock protein 70 and regulates trans-membrane potential. J Biol Chem 2004; 279(24): 25689–25695
CrossRef Pubmed Google scholar
[49]
Mráček T, Pecinová A, Vrbacký M, Drahota Z, Houstek J. High efficiency of ROS production by glycerophosphate dehydrogenase in mammalian mitochondria. Arch Biochem Biophys 2009; 481(1): 30–36
CrossRef Pubmed Google scholar
[50]
Boveris A, Oshino N, Chance B. The cellular production of hydrogen peroxide. Biochem J 1972; 128(3): 617–630
Pubmed
[51]
Gardner PR, Fridovich I. Inactivation-reactivation of aconitase in Escherichia coli. a sensitive measure of superoxide radical. J Biol Chem 1992; 267(13): 8757–8763
Pubmed
[52]
Rivera J, Sobey CG, Walduck AK, Drummond GR. Nox isoforms in vascular pathophysiology: insights from transgenic and knockout mouse models. Redox Rep 2010; 15(2): 50–63
CrossRef Pubmed Google scholar
[53]
Kayama Y, Raaz U, Jagger A, Adam M, Schellinger IN, Sakamoto M, Suzuki H, Toyama K, Spin JM, Tsao PS. Diabetic cardiovascular disease induced by oxidative stress. Int J Mol Sci 2015; 16(10): 25234–25263
CrossRef Pubmed Google scholar
[54]
Kietzmann T, Petry A, Shvetsova A, Gerhold JM, Görlach A. The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system. Br J Pharmacol 2017; 174(12): 1533–1554
CrossRef Pubmed Google scholar
[55]
Butler R, Morris AD, Belch JJ, Hill A, Struthers AD. Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension. Hypertension 2000; 35(3): 746–751
CrossRef Pubmed Google scholar
[56]
Brandes RP, Weissmann N, Schröder K. Redox-mediated signal transduction by cardiovascular Nox NADPH oxidases. J Mol Cell Cardiol 2014; 73: 70–79
CrossRef Pubmed Google scholar
[57]
Baum C, Johannsen SS, Zeller T, Atzler D, Ojeda FM, Wild PS, Sinning CR, Lackner KJ, Gori T, Schwedhelm E, Böger RH, Blankenberg S, Münzel T, Schnabel RB; Gutenberg Health Study investigators. ADMA and arginine derivatives in relation to non-invasive vascular function in the general population. Atherosclerosis 2016; 244: 149–156
CrossRef Pubmed Google scholar
[58]
Drummond GR, Selemidis S, Griendling KK, Sobey CG. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov 2011; 10(6): 453–471
CrossRef Pubmed Google scholar
[59]
Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2000; 86(5): 494–501
CrossRef Pubmed Google scholar
[60]
Gray SP, Di Marco E, Okabe J, Szyndralewiez C, Heitz F, Montezano AC, de Haan JB, Koulis C, El-Osta A, Andrews KL, Chin-Dusting JP, Touyz RM, Wingler K, Cooper ME, Schmidt HH, Jandeleit-Dahm KA. NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis. Circulation 2013; 127(18): 1888–1902
CrossRef Pubmed Google scholar
[61]
Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 1995; 377(6546): 239–242
CrossRef Pubmed Google scholar
[62]
Tejero J, Shiva S, Gladwin MT. Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiol Rev 2019; 99(1): 311–379
CrossRef Pubmed Google scholar
[63]
Engineer A, Saiyin T, Greco ER, Feng Q. Say NO to ROS: their roles in embryonic heart development and pathogenesis of congenital heart defects in maternal diabetes. Antioxidants 2019; 8(10): E436
CrossRef Pubmed Google scholar
[64]
Rozoy E, Simard S, Liu Y, Kitts D, Lessard J, Bazinet L. The use of cyclic voltammetry to study the oxidation of l-5-methyltetrahydrofolate and its preservation by ascorbic acid. Food Chem 2012; 132(3): 1429–1435
CrossRef Pubmed Google scholar
[65]
Bazinet L, Doyen A. Antioxidants, mechanisms, and recovery by membrane processes. Crit Rev Food Sci Nutr 2017; 57(4): 677–700
CrossRef Pubmed Google scholar
[66]
Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 2003; 52(1): 102–110
CrossRef Pubmed Google scholar
[67]
Marrazzo G, Barbagallo I, Galvano F, Malaguarnera M, Gazzolo D, Frigiola A, D’Orazio N, Li Volti G. Role of dietary and endogenous antioxidants in diabetes. Crit Rev Food Sci Nutr 2014; 54(12): 1599–1616
CrossRef Pubmed Google scholar
[68]
Banerjee M, Vats P. Reactive metabolites and antioxidant gene polymorphisms in type 2 diabetes mellitus. Redox Biol 2014; 2: 170–177
CrossRef Pubmed Google scholar
[69]
Lykkesfeldt J, Michels AJ, Frei B. Vitamin C. Adv Nutr 2014; 5(1): 16–18
CrossRef Pubmed Google scholar
[70]
López-Burillo S, Tan DX, Mayo JC, Sainz RM, Manchester LC, Reiter RJ. Melatonin, xanthurenic acid, resveratrol, EGCG, vitamin C and α-lipoic acid differentially reduce oxidative DNA damage induced by Fenton reagents: a study of their individual and synergistic actions. J Pineal Res 2003; 34(4): 269–277
CrossRef Pubmed Google scholar
[71]
Jiang Q. Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic Biol Med 2014; 72: 76–90
CrossRef Pubmed Google scholar
[72]
Farhangi MA, Mesgari-Abbasi M, Hajiluian G, Nameni G, Shahabi P. Adipose tissue inflammation and oxidative stress: the ameliorative effects of vitamin D. Inflammation 2017; 40(5): 1688–1697
CrossRef Pubmed Google scholar
[73]
Gerber PA, Rutter GA. The role of oxidative stress and hypoxia in pancreatic β-cell dysfunction in diabetes mellitus. Antioxid Redox Signal 2017; 26(10): 501–518
CrossRef Pubmed Google scholar
[74]
Drews G, Krippeit-Drews P, Düfer M. Oxidative stress and β-cell dysfunction. Pflugers Arch 2010; 460(4): 703–718
CrossRef Pubmed Google scholar
[75]
Maechler P, Jornot L, Wollheim CB. Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic β cells. J Biol Chem 1999; 274(39): 27905–27913
CrossRef Pubmed Google scholar
[76]
Robertson RP, Harmon J, Tran PO, Poitout V. β-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 2004; 53(Suppl 1): S119–S124
CrossRef Pubmed Google scholar
[77]
Lameloise N, Muzzin P, Prentki M, Assimacopoulos-Jeannet F. Uncoupling protein 2: a possible link between fatty acid excess and impaired glucose-induced insulin secretion? Diabetes 2001; 50(4): 803–809
CrossRef Pubmed Google scholar
[78]
Kaneto H, Xu G, Fujii N, Kim S, Bonner-Weir S, Weir GC. Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression. J Biol Chem 2002; 277(33): 30010–30018
CrossRef Pubmed Google scholar
[79]
Kawamori D, Kajimoto Y, Kaneto H, Umayahara Y, Fujitani Y, Miyatsuka T, Watada H, Leibiger IB, Yamasaki Y, Hori M. Oxidative stress induces nucleo-cytoplasmic translocation of pancreatic transcription factor PDX-1 through activation of c-Jun NH(2)-terminal kinase. Diabetes 2003; 52(12): 2896–2904
CrossRef Pubmed Google scholar
[80]
Kawamori D, Kaneto H, Nakatani Y, Matsuoka TA, Matsuhisa M, Hori M, Yamasaki Y. The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J Biol Chem 2006; 281(2): 1091–1098
CrossRef Pubmed Google scholar
[81]
Matsuoka TA, Artner I, Henderson E, Means A, Sander M, Stein R. The MafA transcription factor appears to be responsible for tissue-specific expression of insulin. Proc Natl Acad Sci USA 2004; 101(9): 2930–2933
CrossRef Pubmed Google scholar
[82]
El Khattabi I, Sharma A. Preventing p38 MAPK-mediated MafA degradation ameliorates β-cell dysfunction under oxidative stress. Mol Endocrinol 2013; 27(7): 1078–1090
CrossRef Pubmed Google scholar
[83]
Kondo T, El Khattabi I, Nishimura W, Laybutt DR, Geraldes P, Shah S, King G, Bonner-Weir S, Weir G, Sharma A. p38 MAPK is a major regulator of MafA protein stability under oxidative stress. Mol Endocrinol 2009; 23(8): 1281–1290
CrossRef Pubmed Google scholar
[84]
Gurzov EN, Eizirik DL. Bcl-2 proteins in diabetes: mitochondrial pathways of β-cell death and dysfunction. Trends Cell Biol 2011; 21(7): 424–431
CrossRef Pubmed Google scholar
[85]
Heimberg H, Heremans Y, Jobin C, Leemans R, Cardozo AK, Darville M, Eizirik DL. Inhibition of cytokine-induced NF-κB activation by adenovirus-mediated expression of a NF-κB super-repressor prevents β-cell apoptosis. Diabetes 2001; 50(10): 2219–2224
CrossRef Pubmed Google scholar
[86]
Henriksen EJ, Diamond-Stanic MK, Marchionne EM. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic Biol Med 2011; 51(5): 993–999
CrossRef Pubmed Google scholar
[87]
Mahadev K, Motoshima H, Wu X, Ruddy JM, Arnold RS, Cheng G, Lambeth JD, Goldstein BJ. The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mol Cell Biol 2004; 24(5): 1844–1854
CrossRef Pubmed Google scholar
[88]
Archuleta TL, Lemieux AM, Saengsirisuwan V, Teachey MK, Lindborg KA, Kim JS, Henriksen EJ. Oxidant stress-induced loss of IRS-1 and IRS-2 proteins in rat skeletal muscle: role of p38 MAPK. Free Radic Biol Med 2009; 47(10): 1486–1493
CrossRef Pubmed Google scholar
[89]
Stuart CA, Howell ME, Cartwright BM, McCurry MP, Lee ML, Ramsey MW, Stone MH. Insulin resistance and muscle insulin receptor substrate-1 serine hyperphosphorylation. Physiol Rep 2014; 2(12): e12236
CrossRef Pubmed Google scholar
[90]
Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance. Science 1996; 271(5249): 665–668
CrossRef Pubmed Google scholar
[91]
Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS. A central role for JNK in obesity and insulin resistance. Nature 2002; 420(6913): 333–336
CrossRef Pubmed Google scholar
[92]
Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, Karin M, Shoelson SE. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of IKKβ. Science 2001; 293(5535): 1673–1677
CrossRef Pubmed Google scholar
[93]
Diamond-Stanic MK, Henriksen EJ. Direct inhibition by angiotensin II of insulin-dependent glucose transport activity in mammalian skeletal muscle involves a ROS-dependent mechanism. Arch Physiol Biochem 2010; 116(2): 88–95
CrossRef Pubmed Google scholar
[94]
Hurrle S, Hsu WH. The etiology of oxidative stress in insulin resistance. Biomed J 2017; 40(5): 257–262
CrossRef Pubmed Google scholar
[95]
Rurali E, Noris M, Chianca A, Donadelli R, Banterla F, Galbusera M, Gherardi G, Gastoldi S, Parvanova A, Iliev I, Bossi A, Haefliger C, Trevisan R, Remuzzi G, Ruggenenti P; BENEDICT Study Group. ADAMTS13 predicts renal and cardiovascular events in type 2 diabetic patients and response to therapy. Diabetes 2013; 62(10): 3599–3609
CrossRef Pubmed Google scholar
[96]
Kaiser N, Sasson S, Feener EP, Boukobza-Vardi N, Higashi S, Moller DE, Davidheiser S, Przybylski RJ, King GL. Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes 1993; 42(1): 80–89
CrossRef Pubmed Google scholar
[97]
Nascimento NR, Lessa LM, Kerntopf MR, Sousa CM, Alves RS, Queiroz MG, Price J, Heimark DB, Larner J, Du X, Brownlee M, Gow A, Davis C, Fonteles MC. Inositols prevent and reverse endothelial dysfunction in diabetic rat and rabbit vasculature metabolically and by scavenging superoxide. Proc Natl Acad Sci USA 2006; 103(1): 218–223
CrossRef Pubmed Google scholar
[98]
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010; 107(9): 1058–1070
CrossRef Pubmed Google scholar
[99]
Wautier JL, Schmidt AM. Protein glycation: a firm link to endothelial cell dysfunction. Circ Res 2004; 95(3): 233–238
CrossRef Pubmed Google scholar
[100]
White PJ, Arita M, Taguchi R, Kang JX, Marette A. Transgenic restoration of long-chain n-3 fatty acids in insulin target tissues improves resolution capacity and alleviates obesity-linked inflammation and insulin resistance in high-fat-fed mice. Diabetes 2010; 59(12): 3066–3073
CrossRef Pubmed Google scholar
[101]
Giannini C, Mohn A, Chiarelli F, Kelnar CJ. Macrovascular angiopathy in children and adolescents with type 1 diabetes. Diabetes Metab Res Rev 2011; 27(5): 436–460
CrossRef Pubmed Google scholar
[102]
Gimbrone MA Jr, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 2016; 118(4): 620–636
CrossRef Pubmed Google scholar
[103]
Engerman RL, Kern TS, Larson ME. Nerve conduction and aldose reductase inhibition during 5 years of diabetes or galactosaemia in dogs. Diabetologia 1994; 37(2): 141–144
CrossRef Pubmed Google scholar
[104]
Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res 2010; 106(8): 1319–1331
CrossRef Pubmed Google scholar
[105]
Isakov N. Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression. Semin Cancer Biol 2018; 48: 36–52
CrossRef Pubmed Google scholar
[106]
Land M, Rubin CS. A calcium- and diacylglycerol-stimulated protein kinase C (PKC), Caenorhabditis elegans PKC-2, links thermal signals to learned behavior by acting in sensory neurons and intestinal cells. Mol Cell Biol 2017; 37(19): e00192-17
CrossRef Pubmed Google scholar
[107]
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414(6865): 813–820
CrossRef Pubmed Google scholar
[108]
Brinkmann C, Schwinger RH, Brixius K. Physical activity and endothelial dysfunction in type 2 diabetic patients: the role of nitric oxide and oxidative stress. Wien Med Wochenschr 2011; 161(11-12): 305–314 (in German)
CrossRef Pubmed Google scholar
[109]
Kong L, Shen X, Lin L, Leitges M, Rosario R, Zou YS, Yan SF. PKCβ promotes vascular inflammation and acceleration of atherosclerosis in diabetic ApoE null mice. Arterioscler Thromb Vasc Biol 2013; 33(8): 1779–1787
CrossRef Pubmed Google scholar
[110]
Pieper GM, Riaz-ul-Haq . Activation of nuclear factor-κB in cultured endothelial cells by increased glucose concentration: prevention by calphostin C. J Cardiovasc Pharmacol 1997; 30(4): 528–532
CrossRef Pubmed Google scholar
[111]
Ganz MB, Seftel A. Glucose-induced changes in protein kinase C and nitric oxide are prevented by vitamin E. Am J Physiol Endocrinol Metab 2000; 278(1): E146–E152
CrossRef Pubmed Google scholar
[112]
Kuboki K, Jiang ZY, Takahara N, Ha SW, Igarashi M, Yamauchi T, Feener EP, Herbert TP, Rhodes CJ, King GL. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo : a specific vascular action of insulin. Circulation 2000; 101(6): 676–681
CrossRef Pubmed Google scholar
[113]
Federici M, Menghini R, Mauriello A, Hribal ML, Ferrelli F, Lauro D, Sbraccia P, Spagnoli LG, Sesti G, Lauro R. Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation 2002; 106(4): 466–472
CrossRef Pubmed Google scholar
[114]
Martínez-Ruiz A, Cadenas S, Lamas S. Nitric oxide signaling: classical, less classical, and nonclassical mechanisms. Free Radic Biol Med 2011; 51(1): 17–29
CrossRef Pubmed Google scholar
[115]
Wang K, Zhang T, Dong Q, Nice EC, Huang C, Wei Y. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation. Cell Death Dis 2013; 4(3): e537
CrossRef Pubmed Google scholar
[116]
Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012; 24(5): 981–990
CrossRef Pubmed Google scholar
[117]
Thamsen M, Jakob U. The redoxome: proteomic analysis of cellular redox networks. Curr Opin Chem Biol 2011; 15(1): 113–119
CrossRef Pubmed Google scholar
[118]
Reddie KG, Carroll KS. Expanding the functional diversity of proteins through cysteine oxidation. Curr Opin Chem Biol 2008; 12(6): 746–754
CrossRef Pubmed Google scholar
[119]
May MJ, Ghosh S. Signal transduction through NF-κB. Immunol Today 1998; 19(2): 80–88
CrossRef Pubmed Google scholar
[120]
Korn SH, Wouters EF, Vos N, Janssen-Heininger YM. Cytokine-induced activation of nuclear factor-κB is inhibited by hydrogen peroxide through oxidative inactivation of IκB kinase. J Biol Chem 2001; 276(38): 35693–35700
CrossRef Pubmed Google scholar
[121]
Jaspers I, Zhang W, Fraser A, Samet JM, Reed W. Hydrogen peroxide has opposing effects on IKK activity and IκBα breakdown in airway epithelial cells. Am J Respir Cell Mol Biol 2001; 24(6):769–777
CrossRef Pubmed Google scholar
[122]
Kapahi P, Takahashi T, Natoli G, Adams SR, Chen Y, Tsien RY, Karin M. Inhibition of NF-κB activation by arsenite through reaction with a critical cysteine in the activation loop of IκB kinase. J Biol Chem 2000; 275(46): 36062–36066
CrossRef Pubmed Google scholar
[123]
Thallas-Bonke V, Jha JC, Gray SP, Barit D, Haller H, Schmidt HH, Coughlan MT, Cooper ME, Forbes JM, Jandeleit-Dahm KA. Nox-4 deletion reduces oxidative stress and injury by PKC-α-associated mechanisms in diabetic nephropathy. Physiol Rep 2014; 2(11): e12192
CrossRef Pubmed Google scholar
[124]
Gopalakrishna R, Jaken S. Protein kinase C signaling and oxidative stress. Free Radic Biol Med 2000; 28(9): 1349–1361
CrossRef Pubmed Google scholar
[125]
Stäuble B, Boscoboinik D, Tasinato A, Azzi A. Modulation of activator protein-1 (AP-1) transcription factor and protein kinase C by hydrogen peroxide and D-α-tocopherol in vascular smooth muscle cells. Eur J Biochem 1994; 226(2): 393–402
CrossRef Pubmed Google scholar
[126]
Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP, Rumsey WL, Attucks OC, Franklin S, Levonen AL, Kensler TW, Dinkova-Kostova AT. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov 2019; 18(4): 295–317
CrossRef Pubmed Google scholar
[127]
McMahon M, Lamont DJ, Beattie KA, Hayes JD. Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proc Natl Acad Sci USA 2010; 107(44): 18838–18843
CrossRef Pubmed Google scholar
[128]
Takaya K, Suzuki T, Motohashi H, Onodera K, Satomi S, Kensler TW, Yamamoto M. Validation of the multiple sensor mechanism of the Keap1-Nrf2 system. Free Radic Biol Med 2012; 53(4): 817–827
CrossRef Pubmed Google scholar
[129]
Saito R, Suzuki T, Hiramoto K, Asami S, Naganuma E, Suda H, Iso T, Yamamoto H, Morita M, Baird L, Furusawa Y, Negishi T, Ichinose M, Yamamoto M. Characterizations of three major cysteine sensors of Keap1 in stress response. Mol Cell Biol 2015; 36(2): 271–284
CrossRef Pubmed Google scholar
[130]
Uruno A, Furusawa Y, Yagishita Y, Fukutomi T, Muramatsu H, Negishi T, Sugawara A, Kensler TW, Yamamoto M. The Keap1-Nrf2 system prevents onset of diabetes mellitus. Mol Cell Biol 2013; 33(15): 2996–3010
CrossRef Pubmed Google scholar
[131]
Zheng H, Whitman SA, Wu W, Wondrak GT, Wong PK, Fang D, Zhang DD. Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. Diabetes 2011; 60(11): 3055–3066
CrossRef Pubmed Google scholar
[132]
Chuengsamarn S, Rattanamongkolgul S, Luechapudiporn R, Phisalaphong C, Jirawatnotai S. Curcumin extract for prevention of type 2 diabetes. Diabetes Care 2012; 35(11): 2121–2127
CrossRef Pubmed Google scholar
[133]
Golbidi S, Ebadi SA, Laher I. Antioxidants in the treatment of diabetes. Curr Diabetes Rev 2011; 7(2): 106–125
CrossRef Pubmed Google scholar
[134]
Belch J, MacCuish A, Campbell I, Cobbe S, Taylor R, Prescott R, Lee R, Bancroft J, MacEwan S, Shepherd J, Macfarlane P, Morris A, Jung R, Kelly C, Connacher A, Peden N, Jamieson A, Matthews D, Leese G, McKnight J, O’Brien I, Semple C, Petrie J, Gordon D, Pringle S, MacWalter R; Prevention of Progression of Arterial Disease and Diabetes Study Group; Diabetes Registry Group; Royal College of Physicians Edinburgh. The prevention of progression of arterial disease and diabetes (POPADAD) trial: factorial randomised placebo controlled trial of aspirin and antioxidants in patients with diabetes and asymptomatic peripheral arterial disease. BMJ 2008; 337: a1840
CrossRef Pubmed Google scholar
[135]
Bhagavan HN, Chopra RK. Coenzyme Q10: absorption, tissue uptake, metabolism and pharmacokinetics. Free Radic Res 2006; 40(5): 445–453
CrossRef Pubmed Google scholar
[136]
Armstrong JS. Mitochondrial medicine: pharmacological targeting of mitochondria in disease. Br J Pharmacol 2007; 151(8): 1154–1165
CrossRef Pubmed Google scholar
[137]
Umpierre D, Ribeiro PA, Kramer CK, Leitão CB, Zucatti AT, Azevedo MJ, Gross JL, Ribeiro JP, Schaan BD. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA 2011; 305(17): 1790–1799
CrossRef Pubmed Google scholar
[138]
Church TS, Blair SN, Cocreham S, Johannsen N, Johnson W, Kramer K, Mikus CR, Myers V, Nauta M, Rodarte RQ, Sparks L, Thompson A, Earnest CP. Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: a randomized controlled trial. JAMA 2010; 304(20): 2253–2262
CrossRef Pubmed Google scholar
[139]
Sigal RJ, Kenny GP, Boulé NG, Wells GA, Prud’homme D, Fortier M, Reid RD, Tulloch H, Coyle D, Phillips P, Jennings A, Jaffey J. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med 2007; 147(6): 357–369
CrossRef Pubmed Google scholar
[140]
Moe B, Eilertsen E, Nilsen TI. The combined effect of leisure-time physical activity and diabetes on cardiovascular mortality: the Nord-Trondelag Health (HUNT) cohort study, Norway. Diabetes Care 2013; 36(3): 690–695
CrossRef Pubmed Google scholar
[141]
Yamashita N, Hoshida S, Otsu K, Asahi M, Kuzuya T, Hori M. Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation. J Exp Med 1999; 189(11): 1699–1706
CrossRef Pubmed Google scholar
[142]
Haffner SM; American Diabetes Association. Management of dyslipidemia in adults with diabetes. Diabetes Care 2003; 26(Suppl 1): S83–S86
CrossRef Pubmed Google scholar
[143]
Lee S, Yang SC, Heffernan MJ, Taylor WR, Murthy N. Polyketal microparticles: a new delivery vehicle for superoxide dismutase. Bioconjug Chem 2007; 18(1): 4–7
CrossRef Pubmed Google scholar
[144]
Grama CN, Suryanarayana P, Patil MA, Raghu G, Balakrishna N, Kumar MN, Reddy GB. Efficacy of biodegradable curcumin nanoparticles in delaying cataract in diabetic rat model. PLoS One 2013; 8(10): e78217
CrossRef Pubmed Google scholar
[145]
Takahashi M, Uechi S, Takara K, Asikin Y, Wada K. Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-encapsulated curcumin. J Agric Food Chem 2009; 57(19): 9141–9146
CrossRef Pubmed Google scholar
[146]
Dikalova AE, Bikineyeva AT, Budzyn K, Nazarewicz RR, McCann L, Lewis W, Harrison DG, Dikalov SI. Therapeutic targeting of mitochondrial superoxide in hypertension. Circ Res 2010; 107(1): 106–116
CrossRef Pubmed Google scholar
[147]
Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RA, Cochemé HM, Murphy MP, Dominiczak AF. Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension 2009; 54(2): 322–328
CrossRef Pubmed Google scholar
[148]
Jiao W, Ji J, Li F, Guo J, Zheng Y, Li S, Xu W. Activation of the NotchNox4 reactive oxygen species signaling pathway induces cell death in high glucosetreated human retinal endothelial cells. Mol Med Rep 2019; 19(1): 667–677
Pubmed
[149]
Peng JJ, Xiong SQ, Ding LX, Peng J, Xia XB. Diabetic retinopathy: focus on NADPH oxidase and its potential as therapeutic target. Eur J Pharmacol 2019; 853: 381–387
CrossRef Pubmed Google scholar
[150]
Pergola PE, Raskin P, Toto RD, Meyer CJ, Huff JW, Grossman EB, Krauth M, Ruiz S, Audhya P, Christ-Schmidt H, Wittes J, Warnock DG; BEAM Study Investigators. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med 2011; 365(4): 327–336
CrossRef Pubmed Google scholar
[151]
Zhong Q, Mishra M, Kowluru RA. Transcription factor Nrf2-mediated antioxidant defense system in the development of diabetic retinopathy. Invest Ophthalmol Vis Sci 2013; 54(6): 3941–3948
CrossRef Pubmed Google scholar
[152]
Gopalakrishna R, Jaken S. Protein kinase C signaling and oxidative stress. Free Radic Biol Med 2000; 28(9): 1349–1361
CrossRef Pubmed Google scholar
[153]
Gopalakrishna R, Gundimeda U. Protein kinase C as a molecular target for cancer prevention by selenocompounds. Nutr Cancer 2001; 40(1): 55–63
CrossRef Pubmed Google scholar
[154]
Gopalakrishna R, Chen ZH, Gundimeda U. Selenocompounds induce a redox modulation of protein kinase C in the cell, compartmentally independent from cytosolic glutathione: its role in inhibition of tumor promotion. Arch Biochem Biophys 1997; 348(1): 37–48
CrossRef Pubmed Google scholar
[155]
Alam F, Islam MA, Gan SH, Mohamed M, Sasongko TH. DNA methylation: an epigenetic insight into type 2 diabetes mellitus. Curr Pharm Des 2016; 22(28): 4398–4419
CrossRef Pubmed Google scholar
[156]
Lei XW, Li Q, Zhang JZ, Zhang YM, Liu Y, Yang KH. The protective roles of folic acid in preventing diabetic retinopathy are potentially associated with suppressions on angiogenesis, inflammation, and oxidative stress. Ophthalmic Res 2019; 62(2): 80–92
CrossRef Pubmed Google scholar
[157]
Beard KM, Shangari N, Wu B, O’Brien PJ. Metabolism, not autoxidation, plays a role in α-oxoaldehyde- and reducing sugar-induced erythrocyte GSH depletion: relevance for diabetes mellitus. Mol Cell Biochem 2003; 252(1-2): 331–338
CrossRef Pubmed Google scholar
[158]
Shukla S, Dubey KK. CoQ10 a super-vitamin: review on application and biosynthesis. 3 Biotech 2018; 8(5):249
CrossRef Google scholar
[159]
Lasram MM, Dhouib IB, Annabi A, El Fazaa S, Gharbi N. A review on the possible molecular mechanism of action of N-acetylcysteine against insulin resistance and type-2 diabetes development. Clin Biochem 2015; 48(16-17): 1200–1208
CrossRef Pubmed Google scholar
[160]
Kamenova P. Improvement of insulin sensitivity in patients with type 2 diabetes mellitus after oral administration of α-lipoic acid. Hormones (Athens) 2006; 5(4): 251–258
CrossRef Pubmed Google scholar
[161]
Kiens B. Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol Rev 2006; 86(1): 205–243
CrossRef Pubmed Google scholar
[162]
Tauskela JS. MitoQ—a mitochondria-targeted antioxidant. IDrugs 2007; 10(6): 399–412
Pubmed
[163]
Wilcox CS. Effects of tempol and redox-cycling nitroxides in models of oxidative stress. Pharmacol Ther 2010; 126(2): 119–145
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Nos. 81770580, 81430071, 81821002, and 81790251) and Sichuan Science and Technology Program (No. 2018RZ0133).

Compliance with ethics guidelines

Pengju Zhang, Tao Li, Xingyun Wu, Edouard C. Nice, Canhua Huang, and Yuanyuan Zhang declare no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(1404 KB)

Accesses

Citations

Detail

Sections
Recommended

/