Natural killer cell lines in tumor immunotherapy

Min Cheng, Jian Zhang, Wen Jiang, Yongyan Chen, Zhigang Tian

PDF(187 KB)
PDF(187 KB)
Front. Med. ›› 2012, Vol. 6 ›› Issue (1) : 56-66. DOI: 10.1007/s11684-012-0177-7
REVIEW
REVIEW

Natural killer cell lines in tumor immunotherapy

Author information +
History +

Abstract

Natural killer (NK) cells are considered to be critical players in anticancer immunity. However, cancers are able to develop mechanisms to escape NK cell attack or to induce defective NK cells. Current NK cell-based cancer immunotherapy is aimed at overcoming NK cell paralysis through several potential approaches, including activating autologous NK cells, expanding allogeneic NK cells, usage of stable allogeneic NK cell lines and genetically modifying fresh NK cells or NK cell lines. The stable allogeneic NK cell line approach is more practical for quality-control and large-scale production. Additionally, genetically modifying NK cell lines by increasing their expression of cytokines and engineering chimeric tumor antigen receptors could improve their specificity and cytotoxicity. In this review, NK cells in tumor immunotherapy are discussed, and a list of therapeutic NK cell lines currently undergoing preclinical and clinical trials of several kinds of tumors are reviewed.

Keywords

natural killer cell / natural killer cell line / tumor immunotherapy / genetic modification

Cite this article

Download citation ▾
Min Cheng, Jian Zhang, Wen Jiang, Yongyan Chen, Zhigang Tian. Natural killer cell lines in tumor immunotherapy. Front Med, 2012, 6(1): 56‒66 https://doi.org/10.1007/s11684-012-0177-7

References

[1]
Herberman RB, Nunn ME, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer 1975; 16(2): 216-229
CrossRef Pubmed Google scholar
[2]
Kiessling R, Klein E, Wigzell H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 1975; 5(2): 112-117
CrossRef Pubmed Google scholar
[3]
Di Santo JP. Natural killer cell developmental pathways: a question of balance. Annu Rev Immunol 2006; 24(1): 257-286
CrossRef Pubmed Google scholar
[4]
Grégoire C, Chasson L, Luci C, Tomasello E, Geissmann F, Vivier E, Walzer T. The trafficking of natural killer cells. Immunol Rev 2007; 220(1): 169-182
CrossRef Pubmed Google scholar
[5]
Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol 2001; 22(11): 633-640
CrossRef Pubmed Google scholar
[6]
Farag SS, Fehniger TA, Ruggeri L, Velardi A, Caligiuri MA. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood 2002; 100(6): 1935-1947
CrossRef Pubmed Google scholar
[7]
Cooper MA, Fehniger TA, Fuchs A, Colonna M, Caligiuri MA. NK cell and DC interactions. Trends Immunol 2004; 25(1): 47-52
CrossRef Pubmed Google scholar
[8]
Peritt D, Robertson S, Gri G, Showe L, Aste-Amezaga M, Trinchieri G. Differentiation of human NK cells into NK1 and NK2 subsets. J Immunol 1998; 161(11): 5821-5824
Pubmed
[9]
Roder JC, Pross HF. The biology of the human natural killer cell. J Clin Immunol 1982; 2(4): 249-263
CrossRef Pubmed Google scholar
[10]
Cerwenka A, Lanier LL. Natural killer cells, viruses and cancer. Nat Rev Immunol 2001; 1(1): 41-49
CrossRef Pubmed Google scholar
[11]
Miller JS. The biology of natural killer cells in cancer, infection, and pregnancy. Exp Hematol 2001; 29(10): 1157-1168
CrossRef Pubmed Google scholar
[12]
Sutlu T, Alici E. Natural killer cell-based immunotherapy in cancer: current insights and future prospects. J Intern Med 2009; 266(2): 154-181
CrossRef Pubmed Google scholar
[13]
Bryceson YT, March ME, Ljunggren HG, Long EO. Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev 2006; 214(1): 73-91
CrossRef Pubmed Google scholar
[14]
Paust S, von Andrian UH. Natural killer cell memory. Nat Immunol 2011; 12(6): 500-508
CrossRef Pubmed Google scholar
[15]
Vitale M, Sivori S, Pende D, Augugliaro R, Di Donato C, Amoroso A, Malnati M, Bottino C, Moretta L, Moretta A. Physical and functional independency of p70 and p58 natural killer (NK) cell receptors for HLA class I: their role in the definition of different groups of alloreactive NK cell clones. Proc Natl Acad Sci USA 1996; 93(4): 1453-1457
CrossRef Pubmed Google scholar
[16]
Karlhofer FM, Ribaudo RK, Yokoyama WM. MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature 1992; 358(6381): 66-70
CrossRef Pubmed Google scholar
[17]
Colonna M, Samaridis J. Cloning of immunoglobulin-superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells. Science 1995; 268(5209): 405-408
CrossRef Pubmed Google scholar
[18]
Carrega P, Morandi B, Costa R, Frumento G, Forte G, Altavilla G, Ratto GB, Mingari MC, Moretta L, Ferlazzo G. Natural killer cells infiltrating human nonsmall-cell lung cancer are enriched in CD56 bright CD16-cells and display an impaired capability to kill tumor cells. Cancer 2008; 112(4): 863-875
CrossRef Pubmed Google scholar
[19]
Jinushi M, Takehara T, Tatsumi T, Hiramatsu N, Sakamori R, Yamaguchi S, Hayashi N. Impairment of natural killer cell and dendritic cell functions by the soluble form of MHC class I-related chain A in advanced human hepatocellular carcinomas. J Hepatol 2005; 43(6): 1013-1020
CrossRef Pubmed Google scholar
[20]
Bauernhofer T, Kuss I, Henderson B, Baum AS, Whiteside TL. Preferential apoptosis of CD56dim natural killer cell subset in patients with cancer. Eur J Immunol 2003; 33(1): 119-124
CrossRef Pubmed Google scholar
[21]
Pierson BA, Miller JS. CD56+bright and CD56+dim natural killer cells in patients with chronic myelogenous leukemia progressively decrease in number, respond less to stimuli that recruit clonogenic natural killer cells, and exhibit decreased proliferation on a per cell basis. Blood 1996; 88(6): 2279-2287
Pubmed
[22]
Fauriat C, Mallet F, Olive D, Costello RT. Impaired activating receptor expression pattern in natural killer cells from patients with multiple myeloma. Leukemia 2006; 20(4): 732-733
CrossRef Pubmed Google scholar
[23]
Kono K, Ressing ME, Brandt RM, Melief CJ, Potkul RK, Andersson B, Petersson M, Kast WM, Kiessling R. Decreased expression of signal-transducing zeta chain in peripheral T cells and natural killer cells in patients with cervical cancer. Clin Cancer Res 1996; 2(11): 1825-1828
Pubmed
[24]
Tajima F, Kawatani T, Endo A, Kawasaki H. Natural killer cell activity and cytokine production as prognostic factors in adult acute leukemia. Leukemia 1996; 10(3): 478-482
Pubmed
[25]
Ljunggren HG, Malmberg KJ. Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol 2007; 7(5): 329-339
CrossRef Pubmed Google scholar
[26]
Semino C, Martini L, Queirolo P, Cangemi G, Costa R, Alloisio A, Ferlazzo G, Sertoli MR, Reali UM, Ratto GB, Melioli G. Adoptive immunotherapy of advanced solid tumors: an eight year clinical experience. Anticancer Res 1999; 19(6C): 5645-5649
Pubmed
[27]
Margolin KA. Interleukin-2 in the treatment of renal cancer. Semin Oncol 2000; 27(2): 194-203
Pubmed
[28]
Rosenberg SA, Lotze MT, Yang JC, Topalian SL, Chang AE, Schwartzentruber DJ, Aebersold P, Leitman S, Linehan WM, Seipp CA, White DE, Steinberg SM. Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J Natl Cancer Inst 1993; 85(8): 622-632
CrossRef Pubmed Google scholar
[29]
Chan JK, Hamilton CA, Cheung MK, Karimi M, Baker J, Gall JM, Schulz S, Thorne SH, Teng NN, Contag CH, Lum LG, Negrin RS. Enhanced killing of primary ovarian cancer by retargeting autologous cytokine-induced killer cells with bispecific antibodies: a preclinical study. Clin Cancer Res 2006; 12(6): 1859-1867
CrossRef Pubmed Google scholar
[30]
Farag SS, Caligiuri MA. Cytokine modulation of the innate immune system in the treatment of leukemia and lymphoma. Adv Pharmacol 2004; 51: 295-318
CrossRef Pubmed Google scholar
[31]
Smyth MJ, Cretney E, Kershaw MH, Hayakawa Y. Cytokines in cancer immunity and immunotherapy. Immunol Rev 2004; 202(1): 275-293
CrossRef Pubmed Google scholar
[32]
Becknell B, Caligiuri MA. Interleukin-2, interleukin-15, and their roles in human natural killer cells. Adv Immunol 2005; 86: 209-239
CrossRef Pubmed Google scholar
[33]
Rosenberg SA. Interleukin-2 and the development of immunotherapy for the treatment of patients with cancer. Cancer J Sci Am 2000; 6(Suppl 1): S2-S7
Pubmed
[34]
Colombo MP, Trinchieri G. Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev 2002; 13(2): 155-168
CrossRef Pubmed Google scholar
[35]
Bottino C, Moretta L, Pende D, Vitale M, Moretta A. Learning how to discriminate between friends and enemies, a lesson from Natural Killer cells. Mol Immunol 2004; 41(6-7): 569-575
CrossRef Pubmed Google scholar
[36]
Moretta L, Bottino C, Pende D, Vitale M, Mingari MC, Moretta A. Different checkpoints in human NK-cell activation. Trends Immunol 2004; 25(12): 670-676
CrossRef Pubmed Google scholar
[37]
Trinchieri G. Biology of natural killer cells. Adv Immunol 1989; 47: 187-376
CrossRef Pubmed Google scholar
[38]
Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003; 3(2): 133-146
CrossRef Pubmed Google scholar
[39]
Medvedev AE, Johnsen AC, Haux J, Steinkjer B, Egeberg K, Lynch DH, Sundan A, Espevik T. Regulation of Fas and Fas-ligand expression in NK cells by cytokines and the involvement of Fas-ligand in NK/LAK cell-mediated cytotoxicity. Cytokine 1997; 9(6): 394-404
CrossRef Pubmed Google scholar
[40]
Johnsen AC, Haux J, Steinkjer B, Nonstad U, Egeberg K, Sundan A, Ashkenazi A, Espevik T. Regulation of APO-2 ligand/trail expression in NK cells-involvement in NK cell-mediated cytotoxicity. Cytokine 1999; 11(9): 664-672
CrossRef Pubmed Google scholar
[41]
Mirandola P, Ponti C, Gobbi G, Sponzilli I, Vaccarezza M, Cocco L, Zauli G, Secchiero P, Manzoli FA, Vitale M. Activated human NK and CD8+ T cells express both TNF-related apoptosis-inducing ligand (TRAIL) and TRAIL receptors but are resistant to TRAIL-mediated cytotoxicity. Blood 2004; 104(8): 2418-2424
CrossRef Pubmed Google scholar
[42]
Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES, Perussia B. Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med 1998; 188(12): 2375-2380
CrossRef Pubmed Google scholar
[43]
Fehniger TA, Cooper MA, Caligiuri MA. Interleukin-2 and interleukin-15: immunotherapy for cancer. Cytokine Growth Factor Rev 2002; 13(2): 169-183
CrossRef Pubmed Google scholar
[44]
van der Vliet HJ, Koon HB, Yue SC, Uzunparmak B, Seery V, Gavin MA, Rudensky AY, Atkins MB, Balk SP, Exley MA. Effects of the administration of high-dose interleukin-2 on immunoregulatory cell subsets in patients with advanced melanoma and renal cell cancer. Clin Cancer Res 2007; 13(7): 2100-2108
CrossRef Pubmed Google scholar
[45]
Ghiringhelli F, Ménard C, Martin F, Zitvogel L. The role of regulatory T cells in the control of natural killer cells: relevance during tumor progression. Immunol Rev 2006; 214(1): 229-238
CrossRef Pubmed Google scholar
[46]
Berg M, Lundqvist A, McCoy P Jr, Samsel L, Fan Y, Tawab A, Childs R. Clinical-grade exvivo-expanded human natural killer cells up-regulate activating receptors and death receptor ligands and have enhanced cytolytic activity against tumor cells. Cytotherapy 2009; 11(3): 341-355
CrossRef Pubmed Google scholar
[47]
Escudier B, Farace F, Angevin E, Charpentier F, Nitenberg G, Triebel F, Hercend T. Immunotherapy with interleukin-2 (IL2) and lymphokine-activated natural killer cells: improvement of clinical responses in metastatic renal cell carcinoma patients previously treated with IL2. Eur J Cancer 1994; 30A(8): 1078-1083
CrossRef Pubmed Google scholar
[48]
Ishikawa E, Tsuboi K, Saijo K, Harada H, Takano S, Nose T, Ohno T. Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Res 2004; 24(3b): 1861-1871
Pubmed
[49]
deMagalhaes-Silverman M, Donnenberg A, Lembersky B, Elder E, Lister J, Rybka W, Whiteside T, Ball E. Posttransplant adoptive immunotherapy with activated natural killer cells in patients with metastatic breast cancer. J Immunother 2000; 23(1): 154-160
CrossRef Pubmed Google scholar
[50]
Miller JS, Tessmer-Tuck J, Pierson BA, Weisdorf D, McGlave P, Blazar BR, Katsanis E, Verfaillie C, Lebkowski J, Radford J Jr, Burns LJ. Low dose subcutaneous interleukin-2 after autologous transplantation generates sustained in vivo natural killer cell activity. Biol Blood Marrow Transplant 1997; 3(1): 34-44
Pubmed
[51]
Burns LJ, Weisdorf DJ, DeFor TE, Vesole DH, Repka TL, Blazar BR, Burger SR, Panoskaltsis-Mortari A, Keever-Taylor CA, Zhang MJ, Miller JS. IL-2-based immunotherapy after autologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release: a phase I/II trial. Bone Marrow Transplant 2003; 32(2): 177-186
CrossRef Pubmed Google scholar
[52]
Igarashi T, Wynberg J, Srinivasan R, Becknell B, McCoy JP Jr, Takahashi Y, Suffredini DA, Linehan WM, Caligiuri MA, Childs RW. Enhanced cytotoxicity of allogeneic NK cells with killer immunoglobulin-like receptor ligand incompatibility against melanoma and renal cell carcinoma cells. Blood 2004; 104(1): 170-177
CrossRef Pubmed Google scholar
[53]
Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, Defor TE, Burns LJ, Orchard PJ, Blazar BR, Wagner JE, Slungaard A, Weisdorf DJ, Okazaki IJ, McGlave PB. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005; 105(8): 3051-3057
CrossRef Pubmed Google scholar
[54]
Iliopoulou EG, Kountourakis P, Karamouzis MV, Doufexis D, Ardavanis A, Baxevanis CN, Rigatos G, Papamichail M, Perez SA. A phase I trial of adoptive transfer of allogeneic natural killer cells in patients with advanced non-small cell lung cancer. Cancer Immunol Immunother 2010; 59(12): 1781-1789
CrossRef Pubmed Google scholar
[55]
Kobayashi N. Artificial cells for the development of cell therapy. Cell Transplant 2008; 17(1): 3-9
CrossRef Pubmed Google scholar
[56]
Tonn T, Becker S, Esser R, Schwabe D, Seifried E. Cellular immunotherapy of malignancies using the clonal natural killer cell line NK-92. J Hematother Stem Cell Res 2001; 10(4): 535-544
CrossRef Pubmed Google scholar
[57]
Smyth MJ, Hayakawa Y, Takeda K, Yagita H. New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2002; 2(11): 850-861
CrossRef Pubmed Google scholar
[58]
Drexler HG, Matsuo Y. Malignant hematopoietic cell lines: in vitro models for the study of natural killer cell leukemia-lymphoma. Leukemia 2000; 14(5): 777-782
CrossRef Pubmed Google scholar
[59]
Cheng M, Ma J, Chen Y, Zhang J, Zhao W, Wei H, Ling B, Sun R, Tian Z. Establishment, characterization and successful adaptive therapy against human tumors of NKG cell, a new human NK cell line. Cell Transplant2011 Jun 7. [Epub ahead of print].
CrossRef Pubmed Google scholar
[60]
Fernandez LA, Pope B, Lee C, Zayed E. Aggressive natural killer cell leukemia in an adult with establishment of an NK cell line. Blood 1986; 67(4): 925-930
Pubmed
[61]
Yodoi J, Teshigawara K, Nikaido T, Fukui K, Noma T, Honjo T, Takigawa M, Sasaki M, Minato N, Tsudo M. TCGF (IL 2)-receptor inducing factor(s). I. Regulation of IL 2 receptor on a natural killer-like cell line (YT cells). J Immunol 1985; 134(3): 1623-1630
Pubmed
[62]
Gong JH, Maki G, Klingemann HG. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia 1994; 8(4): 652-658
Pubmed
[63]
Robertson MJ, Cochran KJ, Cameron C, Le JM, Tantravahi R, Ritz J. Characterization of a cell line, NKL, derived from an aggressive human natural killer cell leukemia. Exp Hematol 1996; 24(3): 406-415
Pubmed
[64]
Yoneda N, Tatsumi E, Kawano S, Teshigawara K, Oka T, Fukuda M, Yamaguchi N. Detection of Epstein-Barr virus genome in natural-killer-like cell line, YT. Leukemia 1992; 6(2): 136-141
Pubmed
[65]
Tsuchiyama J, Yoshino T, Mori M, Kondoh E, Oka T, Akagi T, Hiraki A, Nakayama H, Shibuya A, Ma Y, Kawabata T, Okada S, Harada M. Characterization of a novel human natural killer-cell line (NK-YS) established from natural killer cell lymphoma/leukemia associated with Epstein-Barr virus infection. Blood 1998; 92(4): 1374-1383
Pubmed
[66]
Kagami Y, Nakamura S, Suzuki R, Iida S, Yatabe Y, Okada Y, Kobayashi T, Tsurumi T, Seto M, Ogura M, Taguchi O, Morishima Y. Establishment of an IL-2-dependent cell line derived from ‘nasal-type’ NK/T-cell lymphoma of CD2+, sCD3-, CD3e+, CD56+ phenotype and associated with the Epstein-Barr virus. Br J Haematol 1998; 103(3): 669-677
CrossRef Pubmed Google scholar
[67]
Yagita M, Huang CL, Umehara H, Matsuo Y, Tabata R, Miyake M, Konaka Y, Takatsuki K. A novel natural killer cell line (KHYG-1) from a patient with aggressive natural killer cell leukemia carrying a p53 point mutation. Leukemia 2000; 14(5): 922-930
CrossRef Pubmed Google scholar
[68]
Yan Y, Steinherz P, Klingemann HG, Dennig D, Childs BH, McGuirk J, O’Reilly RJ. Antileukemia activity of a natural killer cell line against human leukemias. Clin Cancer Res 1998; 4(11): 2859-2868
Pubmed
[69]
Tam YK, Miyagawa B, Ho VC, Klingemann HG. Immunotherapy of malignant melanoma in a SCID mouse model using the highly cytotoxic natural killer cell line NK-92. J Hematother 1999; 8(3): 281-290
CrossRef Pubmed Google scholar
[70]
Maki G, Klingemann HG, Martinson JA, Tam YK. Factors regulating the cytotoxic activity of the human natural killer cell line, NK-92. J Hematother Stem Cell Res 2001; 10(3): 369-383
CrossRef Pubmed Google scholar
[71]
Komatsu F, Kajiwara M. Relation of natural killer cell line NK-92-mediated cytolysis (NK-92-lysis) with the surface markers of major histocompatibility complex class I antigens, adhesion molecules, and Fas of target cells. Oncol Res 1998; 10(10): 483-489
Pubmed
[72]
Klingemann HG, Wong E, Maki G. A cytotoxic NK-cell line (NK-92) for ex vivo purging of leukemia from blood. Biol Blood Marrow Transplant 1996; 2(2): 68-75
Pubmed
[73]
Maki G, Tam YK, Berkahn L, Klingemann HG. Ex vivo purging with NK-92 prior to autografting for chronic myelogenous leukemia. Bone Marrow Transplant 2003; 31(12): 1119-1125
CrossRef Pubmed Google scholar
[74]
Arai S, Meagher R, Swearingen M, Myint H, Rich E, Martinson J, Klingemann H. Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial. Cytotherapy 2008; 10(6): 625-632
CrossRef Pubmed Google scholar
[75]
Klingemann HG. Natural killer cell-based immunotherapeutic strategies. Cytotherapy 2005; 7(1): 16-22
CrossRef Pubmed Google scholar
[76]
Malmberg KJ, Bryceson YT, Carlsten M, Andersson S, Björklund A, Björkström NK, Baumann BC, Fauriat C, Alici E, Dilber MS, Ljunggren HG. NK cell-mediated targeting of human cancer and possibilities for new means of immunotherapy. Cancer Immunol Immunother 2008; 57(10): 1541-1552
CrossRef Pubmed Google scholar
[77]
Tam YK, Maki G, Miyagawa B, Hennemann B, Tonn T, Klingemann HG. Characterization of genetically altered, interleukin 2-independent natural killer cell lines suitable for adoptive cellular immunotherapy. Hum Gene Ther 1999; 10(8): 1359-1373
CrossRef Pubmed Google scholar
[78]
Suck G, Branch DR, Smyth MJ, Miller RG, Vergidis J, Fahim S, Keating A. KHYG-1, a model for the study of enhanced natural killer cell cytotoxicity. Exp Hematol 2005; 33(10): 1160-1171
CrossRef Pubmed Google scholar
[79]
Suck G, Branch DR, Keating A. Irradiated KHYG-1 retains cytotoxicity: potential for adoptive immunotherapy with a natural killer cell line. Int J Radiat Biol 2006; 82(5): 355-361
CrossRef Pubmed Google scholar
[80]
Zhang C, Zhang J, Niu J, Zhang J, Tian Z. Interleukin-15 improves cytotoxicity of natural killer cells via up-regulating NKG2D and cytotoxic effector molecule expression as well as STAT1 and ERK1/2 phosphorylation. Cytokine 2008; 42(1): 128-136
CrossRef Pubmed Google scholar
[81]
García-Lora A, Martinez M, Pedrinaci S, Garrido F. Different regulation of PKC isoenzymes and MAPK by PSK and IL-2 in the proliferative and cytotoxic activities of the NKL human natural killer cell line. Cancer Immunol Immunother 2003; 52(1): 59-64
Pubmed
[82]
Pedrinaci S, Algarra I, Garrido F. Protein-bound polysaccharide (PSK) induces cytotoxic activity in the NKL human natural killer cell line. Int J Clin Lab Res 1999; 29(4): 135-140
CrossRef Pubmed Google scholar
[83]
Velardi A, Ruggeri L, Mancusi A, Aversa F, Christiansen FT. Natural killer cell allorecognition of missing self in allogeneic hematopoietic transplantation: a tool for immunotherapy of leukemia. Curr Opin Immunol 2009; 21(5): 525-530
CrossRef Pubmed Google scholar
[84]
Nagashima S, Mailliard R, Kashii Y, Reichert TE, Herberman RB, Robbins P, Whiteside TL. Stable transduction of the interleukin-2 gene into human natural killer cell lines and their phenotypic and functional characterization in vitro and in vivo. Blood 1998; 91(10): 3850-3861
Pubmed
[85]
Konstantinidis KV, Alici E, Aints A, Christensson B, Ljunggren HG, Dilber MS. Targeting IL-2 to the endoplasmic reticulum confines autocrine growth stimulation to NK-92 cells. Exp Hematol 2005; 33(2): 159-164
CrossRef Pubmed Google scholar
[86]
Cooper MA, Bush JE, Fehniger TA, VanDeusen JB, Waite RE, Liu Y, Aguila HL, Caligiuri MA. In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood 2002; 100(10): 3633-3638
CrossRef Pubmed Google scholar
[87]
Fehniger TA, Caligiuri MA. Interleukin 15: biology and relevance to human disease. Blood 2001; 97(1): 14-32
CrossRef Pubmed Google scholar
[88]
He YG, Mayhew E, Mellon J, Niederkorn JY. Expression and possible function of IL-2 and IL-15 receptors on human uveal melanoma cells. Invest Ophthalmol Vis Sci 2004; 45(12): 4240-4246
CrossRef Pubmed Google scholar
[89]
Waldmann TA, Dubois S, Tagaya Y. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 2001; 14(2): 105-110
Pubmed
[90]
Rodella L, Zamai L, Rezzani R, Artico M, Peri G, Falconi M, Facchini A, Pelusi G, Vitale M. Interleukin 2 and interleukin 15 differentially predispose natural killer cells to apoptosis mediated by endothelial and tumour cells. Br J Haematol 2001; 115(2): 442-450
CrossRef Pubmed Google scholar
[91]
Zhang J, Sun R, Wei H, Zhang J, Tian Z. Characterization of interleukin-15 gene-modified human natural killer cells: implications for adoptive cellular immunotherapy. Haematologica 2004; 89(3): 338-347
Pubmed
[92]
Jiang W, Zhang J, Tian Z. Functional characterization of interleukin-15 gene transduction into the human natural killer cell line NKL. Cytotherapy 2008; 10(3): 265-274
CrossRef Pubmed Google scholar
[93]
Zhang J, Sun R, Wei H, Zhang J, Tian Z. Characterization of stem cell factor gene-modified human natural killer cell line, NK-92 cells: implication in NK cell-based adoptive cellular immunotherapy. Oncol Rep 2004; 11(5): 1097-1106
Pubmed
[94]
Kuwana Y, Asakura Y, Utsunomiya N, Nakanishi M, Arata Y, Itoh S, Nagase F, Kurosawa Y. Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochem Biophys Res Commun 1987; 149(3): 960-968
CrossRef Pubmed Google scholar
[95]
Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 1989; 86(24): 10024-10028
CrossRef Pubmed Google scholar
[96]
Eshhar Z. Tumor-specific T-bodies: towards clinical application. Cancer Immunol Immunother 1997; 45(3-4): 131-136
CrossRef Pubmed Google scholar
[97]
Uherek C, Groner B, Wels W. Chimeric antigen receptors for the retargeting of cytotoxic effector cells. J Hematother Stem Cell Res 2001; 10(4): 523-534
CrossRef Pubmed Google scholar
[98]
Roberts MR, Qin L, Zhang D, Smith DH, Tran AC, Dull TJ, Groopman JE, Capon DJ, Byrn RA, Finer MH. Targeting of human immunodeficiency virus-infected cells by CD8+ T lymphocytes armed with universal T-cell receptors. Blood 1994; 84(9): 2878-2889
Pubmed
[99]
Tran AC, Zhang D, Byrn R, Roberts MR. Chimeric zeta-receptors direct human natural killer (NK) effector function to permit killing of NK-resistant tumor cells and HIV-infected T lymphocytes. J Immunol 1995; 155(2): 1000-1009
Pubmed
[100]
Müller T, Uherek C, Maki G, Chow KU, Schimpf A, Klingemann HG, Tonn T, Wels WS. Expression of a CD20-specific chimeric antigen receptor enhances cytotoxic activity of NK cells and overcomes NK-resistance of lymphoma and leukemia cells. Cancer Immunol Immunother 2008; 57(3): 411-423
CrossRef Pubmed Google scholar
[101]
Esser R, Muller T, Stefes D, Kloess S, Seidel D, Gillies SD, Aperlo-Iffland C, Huston JS, Uherek C, Schonfeld K, Tonn T, Huebener N, Lode HN, Koehl U, Wels WS. NK cells engineered to express a GD(2) -specific antigen receptor display built-in ADCC-like activity against tumor cells of neuroectodermal origin. J Cell Mol Med2011<month>May</month><day>20</day>. [Epub ahead of print]
CrossRef Pubmed Google scholar
[102]
Demirtzoglou FJ, Papadopoulos S, Zografos G. Cytolytic and cytotoxic activity of a human natural killer cell line genetically modified to specifically recognize HER-2/neu overexpressing tumor cells. Immunopharmacol Immunotoxicol 2006; 28(4): 571-590
CrossRef Pubmed Google scholar
[103]
Uherek C, Tonn T, Uherek B, Becker S, Schnierle B, Klingemann HG, Wels W. Retargeting of natural killer-cell cytolytic activity to ErbB2-expressing cancer cells results in efficient and selective tumor cell destruction. Blood 2002; 100(4): 1265-1273
Pubmed
[104]
Boissel L, Betancur M, Wels WS, Tuncer H, Klingemann H. Transfection with mRNA for CD19 specific chimeric antigen receptor restores NK cell mediated killing of CLL cells. Leuk Res 2009; 33(9): 1255-1259
CrossRef Pubmed Google scholar
[105]
Tam YK, Martinson JA, Doligosa K, Klingemann HG. Ex vivo expansion of the highly cytotoxic human natural killer-92 cell-line under current good manufacturing practice conditions for clinical adoptive cellular immunotherapy. Cytotherapy 2003; 5(3): 259-272
CrossRef Pubmed Google scholar
[106]
Klingemann HG, Miyagawa B. Purging of malignant cells from blood after short ex vivo incubation with NK-92 cells. Blood 1996; 87(11): 4913-4914
Pubmed
[107]
Liu XC, Liang H, Tian Z, Ruan YS, Zhang L, Chen Y. Proteomic analysis of human NK-92 cells after NK cell-mediated cytotoxicity against K562 cells. Biochemistry (Mosc) 2007; 72(7): 716-727
CrossRef Pubmed Google scholar

Acknowledgements

Our research was supported by Important National Science and Technology Specific Projects (2009ZX09503-012, 2009ZX09102-222, 2012ZX10002-014), Knowledge Innovation Project of the Chinese Academy of Sciences (KSCX1-YW-22), Ministry of Health Special Fund for Healthy Industry (200902002-2), Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 31021061), National Natural Science Foundation of China (Grant No. 81102221), and the Fundamental Research Funds for the Central Universities (WK 2070000014).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(187 KB)

Accesses

Citations

Detail

Sections
Recommended

/