Zinc homeostasis in the metabolic syndrome and diabetes

Xiao Miao, Weixia Sun, Yaowen Fu, Lining Miao, Lu Cai

PDF(423 KB)
PDF(423 KB)
Front. Med. ›› 2013, Vol. 7 ›› Issue (1) : 31-52. DOI: 10.1007/s11684-013-0251-9
REVIEW
REVIEW

Zinc homeostasis in the metabolic syndrome and diabetes

Author information +
History +

Abstract

Zinc (Zn) is an essential mineral that is required for various cellular functions. Zn dyshomeostasis always is related to certain disorders such as metabolic syndrome, diabetes and diabetic complications. The associations of Zn with metabolic syndrome, diabetes and diabetic complications, thus, stem from the multiple roles of Zn: (1) a constructive component of many important enzymes or proteins, (2) a requirement for insulin storage and secretion, (3) a direct or indirect antioxidant action, and (4) an insulin-like action. However, whether there is a clear cause-and-effect relationship of Zn with metabolic syndrome, diabetes, or diabetic complications remains unclear. In fact, it is known that Zn deficiency is a common phenomenon in diabetic patients. Chronic low intake of Zn was associated with the increased risk of diabetes and diabetes also impairs Zn metabolism. Theoretically Zn supplementation should prevent the metabolic syndrome, diabetes, and diabetic complications; however, limited available data are not always supportive of the above notion. Therefore, this review has tried to summarize these pieces of available information, possible mechanisms by which Zn prevents the metabolic syndrome, diabetes, and diabetic complications. In the final part, what are the current issues for Zn supplementation were also discussed.

Keywords

zinc / zinc transporters / metallothionein / diabetes / diabetic complications / insulin resistance / antioxidant

Cite this article

Download citation ▾
Xiao Miao, Weixia Sun, Yaowen Fu, Lining Miao, Lu Cai. Zinc homeostasis in the metabolic syndrome and diabetes. Front Med, 2013, 7(1): 31‒52 https://doi.org/10.1007/s11684-013-0251-9

References

[1]
Cai L, Li XK, Song Y, Cherian MG. Essentiality, toxicology and chelation therapy of zinc and copper. Curr Med Chem2005; 12(23): 2753-2763
CrossRef Pubmed Google scholar
[2]
Prasad AS. Zinc: an overview. Nutrition1995; 11(1 Suppl): 93-99
Pubmed
[3]
Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes1988; 37(12): 1595-1607
CrossRef Pubmed Google scholar
[4]
Sumner AD, Sardi GL, Reed JF 3rd. Components of the metabolic syndrome differ between young and old adults in the US population. J Clin Hypertens (Greenwich)2012; 14(8): 502-506
CrossRef Pubmed Google scholar
[5]
Bardsley JK, Want LL. Overview of diabetes. Crit Care Nurs Q2004; 27(2): 106-112
Pubmed
[6]
Jayawardena R, Ranasinghe P, Galappatthy P, Malkanthi R, Constantine G, Katulanda P.Effects of zinc supplementation on diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr2012; 4(1): 13
CrossRef Pubmed Google scholar
[7]
Gupta R, Garg VK, Mathur DK, Goyal RK. Oral zinc therapy in diabetic neuropathy. J Assoc Physicians India1998; 46(11): 939-942
Pubmed
[8]
Tapiero H, Tew KD. Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother2003; 57(9): 399-411
CrossRef Pubmed Google scholar
[9]
Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M. Overview of mammalian zinc transporters. Cell Mol Life Sci2004; 61(1): 49-68
CrossRef Pubmed Google scholar
[10]
Cai L, Satoh M, Tohyama C, Cherian MG. Metallothionein in radiation exposure: its induction and protective role. Toxicology 1999; 132(2-3): 85-98
CrossRef Pubmed Google scholar
[11]
Cai L, Klein JB, Kang YJ. Metallothionein inhibits peroxynitrite-induced DNA and lipoprotein damage. J Biol Chem2000; 275(50): 38957-38960
CrossRef Pubmed Google scholar
[12]
Cai L. Metallothionein and cardiomyopathy. In: Zatta P. Metallothioneins in Biochemistry and Pathology. New Jersey: World Scientific, 2008:227-269
[13]
Prasad AS. Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp Gerontol2008; 43(5): 370-377
CrossRef Pubmed Google scholar
[14]
Prasad AS. Discovery of human zinc deficiency: 50 years later. J Trace Elem Med Biol2012; 26(2-3): 66-69
CrossRef Pubmed Google scholar
[15]
Goldman J, Carpenter FH. Zinc binding, circular dichroism, and equilibrium sedimentation studies on insulin (bovine) and several of its derivatives. Biochemistry1974; 13(22): 4566-4574
CrossRef Pubmed Google scholar
[16]
Bakaysa DL, Radziuk J, Havel HA, Brader ML, Li S, Dodd SW, Beals JM, Pekar AH, Brems DN. Physicochemical basis for the rapid time-action of LysB28ProB29-insulin: dissociation of a protein-ligand complex. Protein Sci1996; 5(12): 2521-2531
CrossRef Pubmed Google scholar
[17]
Wang X, Zhou B. Dietary zinc absorption: A play of Zips and ZnTs in the gut. IUBMB Life2010; 62(3): 176-182
CrossRef Pubmed Google scholar
[18]
Fukada T, Kambe T. Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics2011; 3(7): 662-674
CrossRef Pubmed Google scholar
[19]
Kambe T. An overview of a wide range of functions of ZnT and Zip zinc transporters in the secretory pathway. Biosci Biotechnol Biochem2011; 75(6): 1036-1043
CrossRef Pubmed Google scholar
[20]
Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T. Zinc homeostasis and signaling in health and diseases: Zinc signaling. J Biol Inorg Chem2011; 16(7): 1123-1134
CrossRef Pubmed Google scholar
[21]
Chimienti F, Devergnas S, Favier A, Seve M. Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes2004; 53(9): 2330-2337
CrossRef Pubmed Google scholar
[22]
Scotto M, Afonso G, Larger E, Raverdy C, Lemonnier FA, Carel JC, Dubois-Laforgue D, Baz B, Levy D, Gautier JF, Launay O, Bruno G, Boitard C, Sechi LA, Hutton JC, Davidson HW, Mallone R. Zinc transporter (ZnT)8(186-194) is an immunodominant CD8+ T cell epitope in HLA-A2+ type 1 diabetic patients. Diabetologia2012; 55(7): 2026-2031
CrossRef Pubmed Google scholar
[23]
Kawasaki E. ZnT8 and type 1 diabetes. Endocr J2012; 59(7): 531-537
CrossRef Pubmed Google scholar
[24]
Xu J, Wang J, Chen B. SLC30A8 (ZnT8) variations and type 2 diabetes in the Chinese Han population. Genet Mol Res2012; 11(2): 1592-1598
CrossRef Pubmed Google scholar
[25]
Cai L. Metallothionein as an adaptive protein prevents diabetes and its toxicity. Nonlinearity Biol Toxicol Med2004; 2(2): 89-103
CrossRef Pubmed Google scholar
[26]
Cai L. Diabetic cardiomyopathy and its prevention by metallothionein: experimental evidence, possible mechanisms and clinical implications. Curr Med Chem2007; 14(20): 2193-2203
CrossRef Pubmed Google scholar
[27]
Park JH, Grandjean CJ, Hart MH, Erdman SH, Pour P, Vanderhoof JA. Effect of pure zinc deficiency on glucose tolerance and insulin and glucagon levels. Am J Physiol1986; 251(3 Pt 1): E273-E278
Pubmed
[28]
Faure P, Roussel AM, Martinie M, Osman M, Favier A, Halimi S. Insulin sensitivity in zinc-depleted rats: assessment with the euglycaemic hyperinsulinic clamp technique. Diabete Metab1991; 17(3): 325-331
Pubmed
[29]
Jou MY, Philipps AF, Lönnerdal B. Maternal zinc deficiency in rats affects growth and glucose metabolism in the offspring by inducing insulin resistance postnatally. J Nutr2010; 140(9): 1621-1627
CrossRef Pubmed Google scholar
[30]
Singh RB, Niaz MA, Rastogi SS, Bajaj S, Gaoli Z, Shoumin Z. Current zinc intake and risk of diabetes and coronary artery disease and factors associated with insulin resistance in rural and urban populations of North India. J Am Coll Nutr1998; 17(6): 564-570
Pubmed
[31]
Himoto T, Yoneyama H, Kurokochi K, Inukai M, Masugata H, Goda F, Haba R, Watanabe S, Senda S, Masaki T. Contribution of zinc deficiency to insulin resistance in patients with primary biliary cirrhosis. Biol Trace Elem Res2011; 144(1-3): 133-142
CrossRef Pubmed Google scholar
[32]
Chausmer AB. Zinc, insulin and diabetes. J Am Coll Nutr1998; 17(2): 109-115
Pubmed
[33]
Haglund B, Ryckenberg K, Selinus O, Dahlquist G. Evidence of a relationship between childhood-onset type I diabetes and low groundwater concentration of zinc. Diabetes Care1996; 19(8): 873-875
CrossRef Pubmed Google scholar
[34]
Zhao HX, Mold MD, Stenhouse EA, Bird SC, Wright DE, Demaine AG, Millward BA. Drinking water composition and childhood-onset Type 1 diabetes mellitus in Devon and Cornwall, England. Diabet Med2001; 18(9): 709-717
CrossRef Pubmed Google scholar
[35]
Benson VS, Vanleeuwen JA, Taylor J, Somers GS, McKinney PA, Van Til L. Type 1 diabetes mellitus and components in drinking water and diet: a population-based, case-control study in Prince Edward Island, Canada. J Am Coll Nutr2010; 29(6): 612-624
Pubmed
[36]
Samuelsson U, Oikarinen S, Hyöty H, Ludvigsson J. Low zinc in drinking water is associated with the risk of type 1 diabetes in children. Pediatr Diabetes2011; 12(3 Pt 1): 156-164
CrossRef Pubmed Google scholar
[37]
Moltchanova E, Rytkönen M, Kousa A, Taskinen O, Tuomilehto J, Karvonen M. Zinc and nitrate in the ground water and the incidence of Type 1 diabetes in Finland. Diabet Med2004; 21(3): 256-261
CrossRef Pubmed Google scholar
[38]
Goldberg ED, Eshchenko VA, Bovt VD. The diabetogenic and acidotropic effects of chelators. Exp Pathol1991; 42(1): 59-64
CrossRef Pubmed Google scholar
[39]
Goldberg ED, Eshchenko VA, Bovt VD. Diabetogenic activity of chelators in some mammalian species. Endocrinologie1990; 28(2): 51-55
Pubmed
[40]
Kechrid Z, Bouzerna N, Zio MS. Effect of low zinc diet on (65)Zn turnover in non-insulin dependent diabetic mice. Diabetes Metab2001; 27(5 Pt 1): 580-583
Pubmed
[41]
Reiterer G, MacDonald R, Browning JD, Morrow J, Matveev SV, Daugherty A, Smart E, Toborek M, Hennig B. Zinc deficiency increases plasma lipids and atherosclerotic markers in LDL-receptor-deficient mice. J Nutr2005; 135(9): 2114-2118
Pubmed
[42]
Shen H, MacDonald R, Bruemmer D, Stromberg A, Daugherty A, Li XA, Toborek M, Hennig B. Zinc deficiency alters lipid metabolism in LDL receptor deficient mice treated with rosiglitazone. J Nutr2007; 137(11): 2339-2345
Pubmed
[43]
Tomat AL, Weisstaub AR, Jauregui A, Piñeiro A, Balaszczuk AM, Costa MA, Arranz CT. Moderate zinc deficiency influences arterial blood pressure and vascular nitric oxide pathway in growing rats. Pediatr Res2005; 58(4): 672-676
CrossRef Pubmed Google scholar
[44]
Tomat AL, Costa MA, Girgulsky LC, Veiras L, Weisstaub AR, Inserra F, Balaszczuk AM, Arranz CT. Zinc deficiency during growth: influence on renal function and morphology. Life Sci2007; 80(14): 1292-1302
CrossRef Pubmed Google scholar
[45]
Shen H, Oesterling E, Stromberg A, Toborek M, MacDonald R, Hennig B. Zinc deficiency induces vascular pro-inflammatory parameters associated with NF-kappaB and PPAR signaling. J Am Coll Nutr2008; 27(5): 577-587
Pubmed
[46]
Zhao Y, Tan Y, Dai J, Li B, Guo L, Cui J, Wang G, Shi X, Zhang X, Mellen N, Li W, Cai L. Exacerbation of diabetes-induced testicular apoptosis by zinc deficiency is most likely associated with oxidative stress, p38 MAPK activation, and p53 activation in mice. Toxicol Lett2011; 200(1-2): 100-106
CrossRef Pubmed Google scholar
[47]
Zhao Y, Tan Y, Dai J, Wang B, Li B, Guo L, Cui J, Wang G, Li W, Cai L. Zinc deficiency exacerbates diabetic down-regulation of Akt expression and function in the testis: essential roles of PTEN, PTP1B and TRB3. J Nutr Biochem2012; 23(8): 1018-1026
CrossRef Pubmed Google scholar
[48]
Zhang C, Lu X, Tan Y, Li B, Miao X, Jin L, Shi X, Zhang X, Miao L, Li X, Cai L. Diabetes-induced hepatic pathogenic damage, inflammation, oxidative stress, and insulin resistance was exacerbated in zinc deficient mouse model. PLoS ONE2012; 7(12): e49257
CrossRef Pubmed Google scholar
[49]
Soinio M, Marniemi J, Laakso M, Pyörälä K, Lehto S, Rönnemaa T. Serum zinc level and coronary heart disease events in patients with type 2 diabetes. Diabetes Care2007; 30(3): 523-528
CrossRef Pubmed Google scholar
[50]
Terrés-Martos C, Navarro-Alarcón M, Martín-Lagos F, López-G de la Serrana H, Pérez-Valero V, López-Martínez MC. Serum zinc and copper concentrations and Cu/Zn ratios in patients with hepatopathies or diabetes. J Trace Elem Med Biol1998; 12(1): 44-49
CrossRef Pubmed Google scholar
[51]
Anderson RA, Roussel AM, Zouari N, Mahjoub S, Matheau JM, Kerkeni A. Potential antioxidant effects of zinc and chromium supplementation in people with type 2 diabetes mellitus. J Am Coll Nutr2001; 20(3): 212-218
Pubmed
[52]
Anetor JI, Senjobi A, Ajose OA, Agbedana EO. Decreased serum magnesium and zinc levels: atherogenic implications in type-2 diabetes mellitus in Nigerians. Nutr Health2002; 16(4): 291-300
CrossRef Pubmed Google scholar
[53]
Roussel AM, Kerkeni A, Zouari N, Mahjoub S, Matheau JM, Anderson RA. Antioxidant effects of zinc supplementation in Tunisians with type 2 diabetes mellitus. J Am Coll Nutr2003; 22(4): 316-321
Pubmed
[54]
Levine AS, McClain CJ, Handwerger BS, Brown DM, Morley JE. Tissue zinc status of genetically diabetic and streptozotocin-induced diabetic mice. Am J Clin Nutr1983; 37(3): 382-386
Pubmed
[55]
Faure P, Roussel A, Coudray C, Richard MJ, Halimi S, Favier A. Zinc and insulin sensitivity. Biol Trace Elem Res1992;32(1-3): 305-310
CrossRef Google scholar
[56]
el-Yazigi A, Hannan N, Raines DA. Effect of diabetic state and related disorders on the urinary excretion of magnesium and zinc in patients. Diabetes Res1993; 22(2): 67-75
Pubmed
[57]
Golik A, Cohen N, Ramot Y, Maor J, Moses R, Weissgarten J, Leonov Y, Modai D. Type II diabetes mellitus, congestive heart failure, and zinc metabolism. Biol Trace Elem Res1993; 39(2-3): 171-175
CrossRef Pubmed Google scholar
[58]
Williams NR, Rajput-Williams J, West JA, Nigdikar SV, Foote JW, Howard AN. Plasma, granulocyte and mononuclear cell copper and zinc in patients with diabetes mellitus. Analyst (Lond)1995; 120(3): 887-890
CrossRef Pubmed Google scholar
[59]
Blostein-Fujii A, DiSilvestro RA, Frid D, Katz C, Malarkey W. Short-term zinc supplementation in women with non-insulin-dependent diabetes mellitus: effects on plasma 5′-nucleotidase activities, insulin-like growth factor I concentrations, and lipoprotein oxidation rates in vitro. Am J Clin Nutr1997; 66(3): 639-642
Pubmed
[60]
Honnorat J, Accominotti M, Broussolle C, Fleuret AC, Vallon JJ, Orgiazzi J. Effects of diabetes type and treatment on zinc status in diabetes mellitus. Biol Trace Elem Res1992;32(1-3):311-316
CrossRef Google scholar
[61]
Quilliot D, Dousset B, Guerci B, Dubois F, Drouin P, Ziegler O. Evidence that diabetes mellitus favors impaired metabolism of zinc, copper, and selenium in chronic pancreatitis. Pancreas2001; 22(3): 299-306
CrossRef Pubmed Google scholar
[62]
Pathak A, Sharma V, Kumar S, Dhawan DK. Supplementation of zinc mitigates the altered uptake and turnover of 65Zn in liver and whole body of diabetic rats. Biometals2011; 24(6): 1027-1034
CrossRef Pubmed Google scholar
[63]
Smidt K, Jessen N, Petersen AB, Larsen A, Magnusson N, Jeppesen JB, Stoltenberg M, Culvenor JG, Tsatsanis A, Brock B, Schmitz O, Wogensen L, Bush AI, Rungby J. SLC30A3 responds to glucose- and zinc variations in beta-cells and is critical for insulin production and in vivo glucose-metabolism during beta-cell stress. PLoS ONE2009; 4(5): e5684
CrossRef Pubmed Google scholar
[64]
Jansen J, Rosenkranz E, Overbeck S, Warmuth S, Mocchegiani E, Giacconi R, Weiskirchen R, Karges W, Rink L. Disturbed zinc homeostasis in diabetic patients by in vitro and in vivo analysis of insulinomimetic activity of zinc. J Nutr Biochem2012; 23(11): 1458-1466
CrossRef Pubmed Google scholar
[65]
Liu BY, Jiang Y, Lu Z, Li S, Lu D, Chen B. Down-regulation of zinc transporter 8 in the pancreas of db/db mice is rescued by Exendin-4 administration. Mol Med Report2011; 4(1): 47-52
Pubmed
[66]
Foster M, Karra M, Picone T, Chu A, Hancock DP, Petocz P, Samman S. Dietary fiber intake increases the risk of zinc deficiency in healthy and diabetic women. Biol Trace Elem Res2012; 149(2): 135-142
CrossRef Pubmed Google scholar
[67]
Failla ML, Kiser RA. Altered tissue content and cytosol distribution of trace metals in experimental diabetes. J Nutr1981; 111(11): 1900-1909
Pubmed
[68]
Failla ML, Kiser RA. Hepatic and renal metabolism of copper and zinc in the diabetic rat. Am J Physiol1983; 244(2): E115-E121
Pubmed
[69]
Craft NE, Failla ML. Zinc, iron, and copper absorption in the streptozotocin-diabetic rat. Am J Physiol1983; 244(2): E122-E128
Pubmed
[70]
Escobar O, Sandoval M, Vargas A, Hempe JM. Role of metallothionein and cysteine-rich intestinal protein in the regulation of zinc absorption by diabetic rats. Pediatr Res1995; 37(3): 321-327
CrossRef Pubmed Google scholar
[71]
Chen ML, Failla ML. Metallothionein metabolism in the liver and kidney of the streptozotocin-diabetic rat. Comp Biochem Physiol B1988; 90(2): 439-445
CrossRef Pubmed Google scholar
[72]
Jin T, Nordberg G, Sehlin J, Vesterberg O. Protection against cadmium-metallothionein nephrotoxicity in streptozotocin-induced diabetic rats: role of increased metallothionein synthesis induced by streptozotocin. Toxicology1996; 106(1-3): 55-63
CrossRef Pubmed Google scholar
[73]
Kennedy ML, Failla ML. Zinc metabolism in genetically obese (ob/ob) mice. J Nutr1987; 117(5): 886-893
Pubmed
[74]
Failla ML, Gardell CY. Influence of spontaneous diabetes on tissue status of zinc, copper, and manganese in the BB Wistar rat. Proc Soc Exp Biol Med1985; 180(2): 317-322
Pubmed
[75]
Cai L, Chen S, Evans T, Cherian MG, Chakrabarti S. Endothelin-1-mediated alteration of metallothionein and trace metals in the liver and kidneys of chronically diabetic rats. Int J Exp Diabetes Res2002; 3(3): 193-198
CrossRef Pubmed Google scholar
[76]
Ayaz M, Turan B. Selenium prevents diabetes-induced alterations in [Zn2+]i and metallothionein level of rat heart via restoration of cell redox cycle. Am J Physiol Heart Circ Physiol2006; 290(3): H1071-H1080
CrossRef Pubmed Google scholar
[77]
Tadros WM, Awadallah R, Doss H, Khalifa K. Protective effect of trace elements (Zn, Mn, Cr, Co) on alloxan-induced diabetes. Indian J Exp Biol1982; 20(1): 93-94
Pubmed
[78]
Yang J, Cherian MG. Protective effects of metallothionein on streptozotocin-induced diabetes in rats. Life Sci 1994; 55(1): 43-51
CrossRef Pubmed Google scholar
[79]
Ho E, Quan N, Tsai YH, Lai W, Bray TM. Dietary zinc supplementation inhibits NFkappaB activation and protects against chemically induced diabetes in CD1 mice. Exp Biol Med (Maywood)2001; 226(2): 103-111
Pubmed
[80]
Ohly P, Dohle C, Abel J, Seissler J, Gleichmann H. Zinc sulphate induces metallothionein in pancreatic islets of mice and protects against diabetes induced by multiple low doses of streptozotocin. Diabetologia2000; 43(8): 1020-1030
CrossRef Pubmed Google scholar
[81]
Sitasawad S, Deshpande M, Katdare M, Tirth S, Parab P. Beneficial effect of supplementation with copper sulfate on STZ-diabetic mice (IDDM). Diabetes Res Clin Pract2001; 52(2): 77-84
CrossRef Pubmed Google scholar
[82]
Marreiro DN, Geloneze B, Tambascia MA, Lerário AC, Halpern A, Cozzolino SM. Effect of zinc supplementation on serum leptin levels and insulin resistance of obese women. Biol Trace Elem Res2006; 112(2): 109-118
CrossRef Pubmed Google scholar
[83]
Hashemipour M, Kelishadi R, Shapouri J, Sarrafzadegan N, Amini M, Tavakoli N, Movahedian-Attar A, Mirmoghtadaee P, Poursafa P. Effect of zinc supplementation on insulin resistance and components of the metabolic syndrome in prepubertal obese children. Hormones (Athens)2009; 8(4): 279-285
Pubmed
[84]
Kim J, Lee S. Effect of zinc supplementation on insulin resistance and metabolic risk factors in obese Korean women. Nurs Res Pract2012; 6(3): 221-225
CrossRef Pubmed Google scholar
[85]
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature2001; 414(6865): 813-820
CrossRef Pubmed Google scholar
[86]
Cai L, Kang YJ. Oxidative stress and diabetic cardiomyopathy: a brief review. Cardiovasc Toxicol2001; 1(3): 181-193
CrossRef Pubmed Google scholar
[87]
Srinivasan S, Hatley ME, Bolick DT, Palmer LA, Edelstein D, Brownlee M, Hedrick CC. Hyperglycaemia-induced superoxide production decreases eNOS expression via AP-1 activation in aortic endothelial cells. Diabetologia2004; 47(10): 1727-1734
CrossRef Pubmed Google scholar
[88]
Zou MH, Shi C, Cohen RA. Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J Clin Invest2002; 109(6): 817-826
Pubmed
[89]
Mooradian AD, Morley JE, Scarpace PJ. The role of zinc status in altered cardiac adenylate cyclase activity in diabetic rats. Acta Endocrinol (Copenh)1988; 119(2): 174-180
Pubmed
[90]
Noh SK, Koo SI. Feeding of a low-zinc diet lowers the tissue concentrations of alpha-tocopherol in adult rats. Biol Trace Elem Res2001; 81(2): 153-168
CrossRef Pubmed Google scholar
[91]
Chvapil M, Owen JA. Effect of zinc on acute and chronic isoproterenol induced heart injury. J Mol Cell Cardiol1977; 9(2): 151-159
CrossRef Pubmed Google scholar
[92]
Singal PK, Dhillon KS, Beamish RE, Dhalla NS. Protective effect of zinc against catecholamine-induced myocardial changes electrocardiographic and ultrastructural studies. Lab Invest1981; 44(5): 426-433
Pubmed
[93]
Satoh M, Naganuma A, Imura N. Modulation of adriamycin toxicity by tissue-specific induction of metallothionein synthesis in mice. Life Sci 2000; 67(6): 627-634
CrossRef Pubmed Google scholar
[94]
Fushimi H, Inoue T, Yamada Y, Horie H, Kameyama M, Inoue K, Minami T, Okazaki Y. Zinc deficiency exaggerates diabetic osteoporosis. Diabetes Res Clin Pract1993; 20(3): 191-196
CrossRef Pubmed Google scholar
[95]
Faure P, Benhamou PY, Perard A, Halimi S, Roussel AM. Lipid peroxidation in insulin-dependent diabetic patients with early retina degenerative lesions: effects of an oral zinc supplementation. Eur J Clin Nutr1995; 49(4): 282-288
Pubmed
[96]
Kajanachumpol S, Srisurapanon S, Supanit I, Roongpisuthipong C, Apibal S. Effect of zinc supplementation on zinc status, copper status and cellular immunity in elderly patients with diabetes mellitus. J Med Assoc Thai1995; 78(7): 344-349
Pubmed
[97]
de Sena KC, Arrais RF, das Graças Almeida M, de Araújo DM, dos Santos MM, de Lima VT, de Fãtima Campos Pedrosa L. Effects of zinc supplementation in patients with type 1 diabetes. Biol Trace Elem Res2005; 105(1-3): 1-9
CrossRef Pubmed Google scholar
[98]
Seet RC, Lee CY, Lim EC, Quek AM, Huang H, Huang SH, Looi WF, Long LH, Halliwell B. Oral zinc supplementation does not improve oxidative stress or vascular function in patients with type 2 diabetes with normal zinc levels. Atherosclerosis2011; 219(1): 231-239
CrossRef Pubmed Google scholar
[99]
Evans SA, Overton JM, Alshingiti A, Levenson CW. Regulation of metabolic rate and substrate utilization by zinc deficiency. Metabolism2004; 53(6): 727-732
CrossRef Pubmed Google scholar
[100]
Simon SF, Taylor CG. Dietary zinc supplementation attenuates hyperglycemia in db/db mice. Exp Biol Med (Maywood)2001; 226(1): 43-51
Pubmed
[101]
Mantzoros CS, Prasad AS, Beck FW, Grabowski S, Kaplan J, Adair C, Brewer GJ. Zinc may regulate serum leptin concentrations in humans. J Am Coll Nutr1998; 17(3): 270-275
Pubmed
[102]
Chen MD, Song YM, Lin PY. Zinc effects on hyperglycemia and hypoleptinemia in streptozotocin-induced diabetic mice. Horm Metab Res2000; 32(3): 107-109
CrossRef Pubmed Google scholar
[103]
Chen MD, Song YM, Lin PY. Zinc may be a mediator of leptin production in humans. Life Sci2000; 66(22): 2143-2149
CrossRef Pubmed Google scholar
[104]
Canesi L, Betti M, Ciacci C, Gallo G. Insulin-like effect of zinc in mytilus digestive gland cells: modulation of tyrosine kinase-mediated cell signaling. Gen Comp Endocrinol2001; 122(1): 60-66
CrossRef Pubmed Google scholar
[105]
Tang X, Shay NF. Zinc has an insulin-like effect on glucose transport mediated by phosphoinositol-3-kinase and Akt in 3T3-L1 fibroblasts and adipocytes. J Nutr2001; 131(5): 1414-1420
Pubmed
[106]
Haase H, Maret W. Intracellular zinc fluctuations modulate protein tyrosine phosphatase activity in insulin/insulin-like growth factor-1 signaling. Exp Cell Res2003; 291(2): 289-298
CrossRef Pubmed Google scholar
[107]
Miranda ER, Dey CS. Effect of chromium and zinc on insulin signaling in skeletal muscle cells. Biol Trace Elem Res2004; 101(1): 19-36
CrossRef Pubmed Google scholar
[108]
May JM, Contoreggi CS. The mechanism of the insulin-like effects of ionic zinc. J Biol Chem1982; 257(8): 4362-4368
Pubmed
[109]
Chen MD, Liou SJ, Lin PY, Yang VC, Alexander PS, Lin WH. Effects of zinc supplementation on the plasma glucose level and insulin activity in genetically obese (ob/ob) mice. Biol Trace Elem Res1998; 61(3): 303-311
CrossRef Pubmed Google scholar
[110]
Kolaczynski JW, Caro JF. Insulin-like growth factor-1 therapy in diabetes: physiologic basis, clinical benefits, and risks. Ann Intern Med1994; 120(1): 47-55
Pubmed
[111]
McCusker RH, Mateski RL, Novakofski J. Zinc alters the kinetics of IGF-II binding to cell surface receptors and binding proteins. Endocrine2003; 21(3): 279-288
CrossRef Pubmed Google scholar
[112]
McCusker RH, Novakofski J. Zinc partitions IGFs from soluble IGF binding proteins (IGFBP)-5, but not soluble IGFBP-4, to myoblast IGF type 1 receptors. J Endocrinol2004; 180(2): 227-246
CrossRef Pubmed Google scholar
[113]
Ilouz R, Kaidanovich O, Gurwitz D, Eldar-Finkelman H. Inhibition of glycogen synthase kinase-3beta by bivalent zinc ions: insight into the insulin-mimetic action of zinc. Biochem Biophys Res Commun2002; 295(1): 102-106
CrossRef Pubmed Google scholar
[114]
Chanoit G, Lee S, Xi J, Zhu M, McIntosh RA, Mueller RA, Norfleet EA, Xu Z. Exogenous zinc protects cardiac cells from reperfusion injury by targeting mitochondrial permeability transition pore through inactivation of glycogen synthase kinase-3beta. Am J Physiol Heart Circ Physiol2008; 295(3): H1227-H1233
CrossRef Pubmed Google scholar
[115]
Lee S, Chanoit G, McIntosh R, Zvara DA, Xu Z. Molecular mechanism underlying Akt activation in zinc-induced cardioprotection. Am J Physiol Heart Circ Physiol2009; 297(2): H569-H575
CrossRef Pubmed Google scholar
[116]
Haase H, Maret W. Protein tyrosine phosphatases as targets of the combined insulinomimetic effects of zinc and oxidants. Biometals2005; 18(4): 333-338
CrossRef Pubmed Google scholar
[117]
Haase H, Maret W. Fluctuations of cellular, available zinc modulate insulin signaling via inhibition of protein tyrosine phosphatases. J Trace Elem Med Biol2005; 19(1): 37-42
CrossRef Pubmed Google scholar
[118]
Wu W, Wang X, Zhang W, Reed W, Samet JM, Whang YE, Ghio AJ. Zinc-induced PTEN protein degradation through the proteasome pathway in human airway epithelial cells. J Biol Chem2003; 278(30): 28258-28263
CrossRef Pubmed Google scholar
[119]
Cameron AR, Anil S, Sutherland E, Harthill J, Rena G. Zinc-dependent effects of small molecules on the insulin-sensitive transcription factor FOXO1a and gluconeogenic genes. Metallomics2010; 2(3): 195-203
CrossRef Pubmed Google scholar
[120]
Prasad AS, Bao B, Beck FW, Kucuk O, Sarkar FH. Antioxidant effect of zinc in humans. Free Radic Biol Med2004; 37(8): 1182-1190
CrossRef Pubmed Google scholar
[121]
Kakkar R, Mantha SV, Radhi J, Prasad K, Kalra J. Increased oxidative stress in rat liver and pancreas during progression of streptozotocin-induced diabetes. Clin Sci (Lond)1998; 94(6): 623-632
Pubmed
[122]
Collet JF, D’Souza JC, Jakob U, Bardwell JC. Thioredoxin 2, an oxidative stress-induced protein, contains a high affinity zinc binding site. J Biol Chem2003; 278(46): 45325-45332
CrossRef Pubmed Google scholar
[123]
Hagay ZJ, Weiss Y, Zusman I, Peled-Kamar M, Reece EA, Eriksson UJ, Groner Y. Prevention of diabetes-associated embryopathy by overexpression of the free radical scavenger copper zinc superoxide dismutase in transgenic mouse embryos. Am J Obstet Gynecol1995; 173(4): 1036-1041
CrossRef Pubmed Google scholar
[124]
Bray TM, Bettger WJ. The physiological role of zinc as an antioxidant. Free Radic Biol Med1990; 8(3): 281-291
CrossRef Pubmed Google scholar
[125]
Anderson RA, Roussel AM, Zouari N, Mahjoub S, Matheau JM, Kerkeni A. Potential antioxidant effects of zinc and chromium supplementation in people with type 2 diabetes mellitus. J Am Coll Nutr2001; 20(3): 212-218
Pubmed
[126]
Roussel AM, Kerkeni A, Zouari N, Mahjoub S, Matheau JM, Anderson RA. Antioxidant effects of zinc supplementation in Tunisians with type 2 diabetes mellitus. J Am Coll Nutr2003; 22(4): 316-321
Pubmed
[127]
Moi P, Chan K, Asunis I, Cao A, Kan YW. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci USA1994; 91(21): 9926-9930
CrossRef Pubmed Google scholar
[128]
Li B, Liu S, Miao L, Cai L. Prevention of diabetic complications by activation of Nrf2: diabetic cardiomyopathy and nephropathy. Exp Diabetes Res2012; 2012: 216512
CrossRef Pubmed Google scholar
[129]
Mehta AJ, Joshi PC, Fan X, Brown LA, Ritzenthaler JD, Roman J, Guidot DM. Zinc supplementation restores PU.1 and Nrf2 nuclear binding in alveolar macrophages and improves redox balance and bacterial clearance in the lungs of alcohol-fed rats. Alcohol Clin Exp Res2011; 35(8): 1519-1528
Pubmed
[130]
Cortese MM, Suschek CV, Wetzel W, Kröncke KD, Kolb-Bachofen V. Zinc protects endothelial cells from hydrogen peroxide via Nrf2-dependent stimulation of glutathione biosynthesis. Free Radic Biol Med2008; 44(12): 2002-2012
CrossRef Pubmed Google scholar
[131]
Ha KN, Chen Y, Cai J, Sternberg P Jr. Increased glutathione synthesis through an ARE-Nrf2-dependent pathway by zinc in the RPE: implication for protection against oxidative stress. Invest Ophthalmol Vis Sci2006; 47(6): 2709-2715
CrossRef Pubmed Google scholar
[132]
Aguilar MV, Laborda JM, Martínez-Para MC, González MJ, Meseguer I, Bernao A, Mateos CJ. Effect of diabetes on the tissular Zn/Cu ratio. J Trace Elem Med Biol1998; 12(3): 155-158
CrossRef Pubmed Google scholar
[133]
Zargar AH, Shah NA, Masoodi SR, Laway BA, Dar FA, Khan AR, Sofi FA, Wani AI. Copper, zinc, and magnesium levels in non-insulin dependent diabetes mellitus. Postgrad Med J1998; 74(877): 665-668
CrossRef Pubmed Google scholar
[134]
Ripa S, Ripa R, Giustiniani S. Are failured cardiomyopathies a zinc-deficit related disease? A study on Zn and Cu in patients with chronic failured dilated and hypertrophic cardiomyopathies. Minerva Med1998; 89(11-12): 397-403
Pubmed
[135]
Canatan H, Bakan I, Akbulut M, Halifeoglu I, Cikim G, Baydas G, Kilic N. Relationship among levels of leptin and zinc, copper, and zinc/copper ratio in plasma of patients with essential hypertension and healthy normotensive subjects. Biol Trace Elem Res2004; 100(2): 117-123
CrossRef Pubmed Google scholar
[136]
Maldonado Martín A, Gil Extremera B, Fernández Soto M, Ruiz Martínez M, González Jiménez A, Guijarro Morales A, de Dios Luna del Castillo J. Zinc levels after intravenous administration of zinc sulphate in insulin-dependent diabetes mellitus patients. Klin Wochenschr1991; 69(14): 640-644
CrossRef Pubmed Google scholar
[137]
Niewoehner CB, Allen JI, Boosalis M, Levine AS, Morley JE. Role of zinc supplementation in type II diabetes mellitus. Am J Med1986; 81(1): 63-68
CrossRef Pubmed Google scholar
[138]
Mocchegiani E, Boemi M, Fumelli P, Fabris N. Zinc-dependent low thymic hormone level in type I diabetes. Diabetes1989; 38(7): 932-937
CrossRef Pubmed Google scholar
[139]
Kajanachumpol S, Srisurapanon S, Supanit I, Roongpisuthipong C, Apibal S. Effect of zinc supplementation on zinc status, copper status and cellular immunity in elderly patients with diabetes mellitus. J Med Assoc Thai1995; 78(7): 344-349
Pubmed
[140]
Kang YJ. The antioxidant function of metallothionein in the heart. Proceedings of the Society for Experimental Biology and Medicine. Soci Exp Biol Med. 1999; 222(3): 263-273.
[141]
Cai L, Cherian MG. Adaptive response to ionizing radiation-induced chromosome aberrations in rabbit lymphocytes: effect of pre-exposure to zinc, and copper salts. Mutat Res1996; 369(3-4): 233-241
CrossRef Pubmed Google scholar
[142]
Cai L, Cherian MG, Iskander S, Leblanc M, Hammond RR. Metallothionein induction in human CNS in vitro: neuroprotection from ionizing radiation. Int J Radiat Biol2000; 76(7): 1009-1017
CrossRef Pubmed Google scholar
[143]
Cai L, Iskander S, Cherian MG, Hammond RR. Zinc- or cadmium-pre-induced metallothionein protects human central nervous system cells and astrocytes from radiation-induced apoptosis. Toxicol Lett2004; 146(3): 217-226
CrossRef Pubmed Google scholar
[144]
Satoh M, Naganuma A, Imura N. Modulation of adriamycin toxicity by tissue-specific induction of metallothionein synthesis in mice. Life Sci2000; 67(6): 627-634
CrossRef Pubmed Google scholar
[145]
Ali MM, Frei E, Straub J, Breuer A, Wiessler M. Induction of metallothionein by zinc protects from daunorubicin toxicity in rats. Toxicology2002; 179(1-2): 85-93
CrossRef Pubmed Google scholar
[146]
Song Y, Wang J, Li Y, Du Y, Arteel GE, Saari JT, Kang YJ, Cai L. Cardiac metallothionein synthesis in streptozotocin-induced diabetic mice, and its protection against diabetes-induced cardiac injury. Am J Pathol2005; 167(1): 17-26
CrossRef Pubmed Google scholar
[147]
Wang Y, Feng W, Xue W, Tan Y, Hein DW, Li XK, Cai L. Inactivation of GSK-3beta by metallothionein prevents diabetes-related changes in cardiac energy metabolism, inflammation, nitrosative damage, and remodeling. Diabetes2009; 58(6): 1391-1402
CrossRef Pubmed Google scholar
[148]
Xu J, Wang G, Wang Y, Liu Q, Xu W, Tan Y, Cai L. Diabetes- and angiotensin II-induced cardiac endoplasmic reticulum stress and cell death: metallothionein protection. J Cell Mol Med2009; 13(8a 8A): 1499-1512
CrossRef Pubmed Google scholar
[149]
Liang Q, Carlson EC, Donthi RV, Kralik PM, Shen X, Epstein PN. Overexpression of metallothionein reduces diabetic cardiomyopathy. Diabetes2002; 51(1): 174-181
CrossRef Pubmed Google scholar
[150]
Ye G, Metreveli NS, Ren J, Epstein PN. Metallothionein prevents diabetes-induced deficits in cardiomyocytes by inhibiting reactive oxygen species production. Diabetes2003; 52(3): 777-783
CrossRef Pubmed Google scholar
[151]
Cai L. Suppression of nitrative damage by metallothionein in diabetic heart contributes to the prevention of cardiomyopathy. Free Radic Biol Med2006; 41(6): 851-861
CrossRef Pubmed Google scholar
[152]
Cai L, Wang Y, Zhou G, Chen T, Song Y, Li X, Kang YJ. Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. J Am Coll Cardiol2006; 48(8): 1688-1697
CrossRef Pubmed Google scholar
[153]
Wang J, Song Y, Elsherif L, Song Z, Zhou G, Prabhu SD, Saari JT, Cai L. Cardiac metallothionein induction plays the major role in the prevention of diabetic cardiomyopathy by zinc supplementation. Circulation2006; 113(4): 544-554
CrossRef Pubmed Google scholar
[154]
Tang Y, Yang Q, Lu J, Zhang X, Suen D, Tan Y, Jin L, Xiao J, Xie R, Rane M, Li X, Cai L. Zinc supplementation partially prevents renal pathological changes in diabetic rats. J Nutr Biochem2010; 21(3): 237-246
CrossRef Pubmed Google scholar
[155]
Özcelik D, Nazıroglu M, Tunçdemir M, Celik O, Oztürk M, Flores-Arce MF. Zinc supplementation attenuates metallothionein and oxidative stress changes in kidney of streptozotocin-induced diabetic rats. Biol Trace Elem Res2012; 150(1-3): 342-349
CrossRef Pubmed Google scholar
[156]
Salgueiro MJ, Krebs N, Zubillaga MB, Weill R, Postaire E, Lysionek AE, Caro RA, De Paoli T, Hager A, Boccio J. Zinc and diabetes mellitus: is there a need of zinc supplementation in diabetes mellitus patients? Biol Trace Elem Res2001; 81(3): 215-228
CrossRef Pubmed Google scholar
[157]
Foster M, Samman S. Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus. Antioxid Redox Signal2010;13, 1549-1573
CrossRef Pubmed Google scholar
[158]
Yoshikawa Y, Ueda E, Kojima Y, Sakurai H. The action mechanism of zinc(II) complexes with insulinomimetic activity in rat adipocytes. Life Sci2004; 75(6): 741-751
CrossRef Pubmed Google scholar
[159]
Cai L, Li XK, Song Y, Cherian MG. Essentiality, toxicology and chelation therapy of zinc and copper. Curr Med Chem2005; 12(23): 2753-2763
CrossRef Pubmed Google scholar
[160]
Bonham M, O’Connor JM, McAnena LB, Walsh PM, Downes CS, Hannigan BM, Strain JJ. Zinc supplementation has no effect on lipoprotein metabolism, hemostasis, and putative indices of copper status in healthy men. Biol Trace Elem Res2003; 93(1-3): 75-86
CrossRef Pubmed Google scholar
[161]
Bonham M, O’Connor JM, Alexander HD, Coulter J, Walsh PM, McAnena LB, Downes CS, Hannigan BM, Strain JJ. Zinc supplementation has no effect on circulating levels of peripheral blood leucocytes and lymphocyte subsets in healthy adult men. Br J Nutr2003; 89(5): 695-703
CrossRef Pubmed Google scholar
[162]
Alissa EM, Bahijri SM, Lamb DJ, Ferns GA. The effects of coadministration of dietary copper and zinc supplements on atherosclerosis, antioxidant enzymes and indices of lipid peroxidation in the cholesterol-fed rabbit. Int J Exp Pathol2004; 85(5): 265-275
CrossRef Pubmed Google scholar
[163]
Anetor JI, Senjobi A, Ajose OA, Agbedana EO. Decreased serum magnesium and zinc levels: atherogenic implications in type-2 diabetes mellitus in Nigerians. Nutr Health2002; 16(4): 291-300
CrossRef Pubmed Google scholar
[164]
Baydas B, Karagoz S, Meral I. Effects of oral zinc and magnesium supplementation on serum thyroid hormone and lipid levels in experimentally induced diabetic rats. Biol Trace Elem Res2002; 88(3): 247-253
CrossRef Pubmed Google scholar
[165]
Disilvestro RA. Zinc in relation to diabetes and oxidative disease. J Nutrition2000;130(5S Suppl):1509S-1511S
[166]
Coulston L, Dandona P. Insulin-like effect of zinc on adipocytes. Diabetes1980; 29(8): 665-667
CrossRef Pubmed Google scholar
[167]
Moniz T, Amorim MJ, Ferreira R, Nunes A, Silva A, Queirós C, Leite A, Gameiro P, Sarmento B, Remião F, Yoshikawa Y, Sakurai H, Rangel M. Investigation of the insulin-like properties of zinc(II) complexes of 3-hydroxy-4-pyridinones: identification of a compound with glucose lowering effect in STZ-induced type I diabetic animals. J Inorg Biochem2011; 105(12): 1675-1682
CrossRef Pubmed Google scholar
[168]
McClain CJ, McClain M, Barve S, Boosalis MG. Trace metals and the elderly. Clin Geriatr Med2002; 18(4): 801-818, vii-viii (vii-viii.)
CrossRef Pubmed Google scholar
[169]
Sbarbati A, Mocchegiani E, Marzola P, Tibaldi A, Mannucci R, Nicolato E, Osculati F. Effect of dietary supplementation with zinc sulphate on the aging process: a study using high field intensity MRI and chemical shift imaging. Biomed Pharmacother1998; 52(10): 454-458
CrossRef Pubmed Google scholar
[170]
Cunningham JJ, Fu A, Mearkle PL, Brown RG. Hyperzincuria in individuals with insulin-dependent diabetes mellitus: concurrent zinc status and the effect of high-dose zinc supplementation. Metabolism1994; 43(12): 1558-1562
CrossRef Pubmed Google scholar
[171]
Velázquez-Pérez L, Rodríguez-Chanfrau J, García-Rodríguez JC, Sánchez-Cruz G, Aguilera-Rodríguez R, Rodríguez-Labrada R, Rodríguez-Díaz JC, Canales-Ochoa N, Gotay DA, Almaguer Mederos LE, Laffita Mesa JM, Porto-Verdecia M, Triana CG, Pupo NR, Batista IH, López-Hernandez OD, Polanco ID, Novas AJ. Oral zinc sulphate supplementation for six months in SCA2 patients: a randomized, double-blind, placebo-controlled trial. Neurochem Res2011; 36(10): 1793-1800
CrossRef Pubmed Google scholar
[172]
Somi MH, Rezaeifar P, Ostad Rahimi A, Moshrefi B. Effects of low dose zinc supplementation on biochemical markers in non-alcoholic cirrhosis: a randomized clinical trial. Arch Iran Med2012; 15(8): 472-476
Pubmed
[173]
Yang J, Cherian MG. Protective effects of metallothionein on streptozotocin-induced diabetes in rats. Life Sci1994; 55(1): 43-51
CrossRef Pubmed Google scholar
[174]
Chen MD, Lin PY, Cheng V, Lin WH. Zinc supplementation aggravates body fat accumulation in genetically obese mice and dietary-obese mice. Biol Trace Elem Res1996; 52(2): 125-132
CrossRef Pubmed Google scholar
[175]
Tobia MH, Zdanowicz MM, Wingertzahn MA, McHeffey-Atkinson B, Slonim AE, Wapnir RA. The role of dietary zinc in modifying the onset and severity of spontaneous diabetes in the BB Wistar rat. Mol Genet Metab1998; 63(3): 205-213
CrossRef Pubmed Google scholar
[176]
Simon SF, Taylor CG. Dietary zinc supplementation attenuates hyperglycemia in db/db mice. Exp Biol Med (Maywood)2001; 226(1): 43-51
Pubmed
[177]
Ho E, Quan N, Tsai YH, Lai W, Bray TM. Dietary zinc supplementation inhibits NFkappaB activation and protects against chemically induced diabetes in CD1 mice. Exp Biol Med (Maywood)2001; 226(2): 103-111
Pubmed
[178]
im Walde SS, Dohle C, Schott-Ohly P, Gleichmann H. Molecular target structures in alloxan-induced diabetes in mice. Life Sci2002; 71(14): 1681-1694
CrossRef Pubmed Google scholar
[179]
Schott-Ohly P, Lgssiar A, Partke HJ, Hassan M, Friesen N, Gleichmann H. Prevention of spontaneous and experimentally induced diabetes in mice with zinc sulfate-enriched drinking water is associated with activation and reduction of NF-kappa B and AP-1 in islets, respectively. Exp Biol Med (Maywood)2004; 229(11): 1177-1185
Pubmed
[180]
Yoshikawa Y, Adachi Y, Yasui H, Hattori M, Sakurai H. Oral administration of Bis(aspirinato)zinc(II) complex ameliorates hyperglycemia and metabolic syndrome-like disorders in spontaneously diabetic KK-A(y) mice: structure-activity relationship on zinc-salicylate complexes. Chem Pharm Bull (Tokyo)2011; 59(8): 972-977
CrossRef Pubmed Google scholar
[181]
Chen H, Carlson EC, Pellet L, Moritz JT, Epstein PN. Overexpression of metallothionein in pancreatic beta-cells reduces streptozotocin-induced DNA damage and diabetes. Diabetes2001; 50(9): 2040-2046
CrossRef Pubmed Google scholar
[182]
Faure P, Benhamou PY, Perard A, Halimi S, Roussel AM. Lipid peroxidation in insulin-dependent diabetic patients with early retina degenerative lesions: effects of an oral zinc supplementation. Eur J Clin Nutr1995; 49(4): 282-288
Pubmed
[183]
Gupta R, Garg VK, Mathur DK, Goyal RK. Oral zinc therapy in diabetic neuropathy. J Assoc Physicians India1998; 46(11): 939-942
Pubmed
[184]
Parham M, Amini M, Aminorroaya A, Heidarian E. Effect of zinc supplementation on microalbuminuria in patients with type 2 diabetes: a double blind, randomized, placebo-controlled, cross-over trial. Rev Diabet Stud2008; 5(2): 102-109
CrossRef Pubmed Google scholar
[185]
Heidarian E, Amini M, Parham M, Aminorroaya A. Effect of zinc supplementation on serum homocysteine in type 2 diabetic patients with microalbuminuria. Rev Diabet Stud2009; 6(1): 64-70
CrossRef Pubmed Google scholar
[186]
Yamaguchi M, Uchiyama S. Preventive effect of zinc acexamate administration in streptozotocin-diabetic rats: Restoration of bone loss. Int J Mol Med2003; 12(5): 755-761
Pubmed
[187]
Uchiyama S, Yamaguchi M. Alteration in serum and bone component findings induced in streptozotocin-diabetic rats is restored by zinc acexamate. Int J Mol Med2003; 12(6): 949-954
Pubmed
[188]
Moustafa SA. Zinc might protect oxidative changes in the retina and pancreas at the early stage of diabetic rats. Toxicol Appl Pharmacol2004; 201(2): 149-155
CrossRef Pubmed Google scholar
[189]
Kumar SD, Vijaya M, Samy RP, Dheen ST, Ren M, Watt F, Kang YJ, Bay BH, Tay SS. Zinc supplementation prevents cardiomyocyte apoptosis and congenital heart defects in embryos of diabetic mice. Free Radic Biol Med2012; 53(8): 1595-1606
CrossRef Pubmed Google scholar
[190]
Karatug A, Kaptan E, Bolkent S, Mutlu O, Yanardag R. Alterations in kidney tissue following zinc supplementation to stz-induced diabetic rats. J Trace Elem Med Biol 2012 Aug 31. [Epub ahead of print]
CrossRef Pubmed Google scholar
[191]
Kojima Y, Yoshikawa Y, Ueda E, Ueda R, Yamamoto S, Kumekawa K, Yanagihara N, Sakurai H. Insulinomimetic zinc(II) complexes with natural products: in vitro evaluation and blood glucose lowering effect in KK-Ay mice with type 2 diabetes mellitus. Chem Pharm Bull (Tokyo)2003; 51(8): 1006-1008
CrossRef Pubmed Google scholar
[192]
Hwang IK, Go VL, Harris DM, Yip I, Kang KW, Song MK. Effects of cyclo (his-pro) plus zinc on glucose metabolism in genetically diabetic obese mice. Diabetes Obes Metab2003; 5(5): 317-324
CrossRef Pubmed Google scholar
[193]
Song MK, Hwang IK, Rosenthal MJ, Harris DM, Yamaguchi DT, Yip I, Go VL. Anti-hyperglycemic activity of zinc plus cyclo (his-pro) in genetically diabetic Goto-Kakizaki and aged rats. Exp Biol Med (Maywood)2003; 228(11): 1338-1345
Pubmed
[194]
Yoshikawa Y, Ueda E, Sakurai H, Kojima Y. Anti-diabetes effect of Zn(II)/carnitine complex by oral administration. Chem Pharm Bull (Tokyo)2003; 51(2): 230-231
CrossRef Pubmed Google scholar
[195]
Adachi Y, Yoshida J, Kodera Y, Kato A, Yoshikawa Y, Kojima Y, Sakurai H. A new insulin-mimetic bis(allixinato)zinc(II) complex: structure-activity relationship of zinc(II) complexes. J Biol Inorg Chem2004; 9(7): 885-893
CrossRef Pubmed Google scholar
[196]
Saha TK, Yoshikawa Y, Sakurai H. A [meso-tetrakis(4-sulfonatophenyl)porphyrinato]zinc(ii) complex as an oral therapeutic for the treatment of type 2 diabetic KKA(y) mice. ChemMedChem2007; 2(2): 218-225
CrossRef Pubmed Google scholar

Acknowledgements

Studies cited here from the laboratories of the author were supported in part by a Basic Science Award from ADA (1-11-BA-0117) and a Starting-Up Fund for Chinese-American Research Institute for Diabetic Complications from Wenzhou Medical College.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(423 KB)

Accesses

Citations

Detail

Sections
Recommended

/