Decellularized extracellular matrix mediates tissue construction and regeneration
Chuanqi Liu, Ming Pei, Qingfeng Li, Yuanyuan Zhang
Decellularized extracellular matrix mediates tissue construction and regeneration
Contributing to organ formation and tissue regeneration, extracellular matrix (ECM) constituents provide tissue with three-dimensional (3D) structural integrity and cellular-function regulation. Containing the crucial traits of the cellular microenvironment, ECM substitutes mediate cell–matrix interactions to prompt stem-cell proliferation and differentiation for 3D organoid construction in vitro or tissue regeneration in vivo. However, these ECMs are often applied generically and have yet to be extensively developed for specific cell types in 3D cultures. Cultured cells also produce rich ECM, particularly stromal cells. Cellular ECM improves 3D culture development in vitro and tissue remodeling during wound healing after implantation into the host as well. Gaining better insight into ECM derived from either tissue or cells that regulate 3D tissue reconstruction or organ regeneration helps us to select, produce, and implant the most suitable ECM and thus promote 3D organoid culture and tissue remodeling for in vivo regeneration. Overall, the decellularization methodologies and tissue/cell-derived ECM as scaffolds or cellular-growth supplements used in cell propagation and differentiation for 3D tissue culture in vitro are discussed. Moreover, current preclinical applications by which ECM components modulate the wound-healing process are reviewed.
decellularized extracellular matrix / 3D culture / organoids / tissue repair
[1] |
Prewitz MC, Seib FP, von Bonin M, Friedrichs J, Stißel A, Niehage C, Müller K, Anastassiadis K, Waskow C, Hoflack B, Bornhäuser M, Werner C. Tightly anchored tissue-mimetic matrices as instructive stem cell microenvironments. Nat Methods 2013; 10(8): 788–794
CrossRef
Pubmed
Google scholar
|
[2] |
Hynes RO. The extracellular matrix: not just pretty fibrils. Science 2009; 326(5957): 1216–1219
CrossRef
Pubmed
Google scholar
|
[3] |
Sart S, Jeske R, Chen X, Ma T, Li Y. Engineering stem cell-derived extracellular matrices: decellularization, characterization, and biological function. Tissue Eng Part B Rev 2020; 26(5): 402–422
CrossRef
Pubmed
Google scholar
|
[4] |
Sart S, Agathos SN, Li Y. Engineering stem cell fate with biochemical and biomechanical properties of microcarriers. Biotechnol Prog 2013; 29(6): 1354–1366
CrossRef
Pubmed
Google scholar
|
[5] |
Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 2014; 15(12): 786–801
CrossRef
Pubmed
Google scholar
|
[6] |
Jin J, Saiding Q, Wang X, Qin M, Xiang Y, Cheng R, Cui W, Chen X. Rapid extracellular matrix remodeling via gene-electrospun fibers as a “Patch” for tissue regeneration. Adv Funct Mater 2021; 31(15): 2009879
CrossRef
Google scholar
|
[7] |
Correa D, Hesse E, Seriwatanachai D, Kiviranta R, Saito H, Yamana K, Neff L, Atfi A, Coillard L, Sitara D, Maeda Y, Warming S, Jenkins NA, Copeland NG, Horne WC, Lanske B, Baron R. Zfp521 is a target gene and key effector of parathyroid hormone-related peptide signaling in growth plate chondrocytes. Dev Cell 2010; 19(4): 533–546
CrossRef
Pubmed
Google scholar
|
[8] |
Wang X, Chang J, Wu C. Bioactive inorganic/organic nanocomposites for wound healing. Appl Mater Today 2018; 11: 308–319
CrossRef
Google scholar
|
[9] |
Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, Boesel LF, Oliveira JM, Santos TC, Marques AP, Neves NM, Reis RL. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 2007; 4(17): 999–1030
CrossRef
Pubmed
Google scholar
|
[10] |
Zhu M, Li W, Dong X, Yuan X, Midgley AC, Chang H, Wang Y, Wang H, Wang K, Ma PX, Wang H, Kong D. In vivo engineered extracellular matrix scaffolds with instructive niches for oriented tissue regeneration. Nat Commun 2019; 10(1): 4620
CrossRef
Pubmed
Google scholar
|
[11] |
Li Y, Xiao Y, Liu C. The horizon of materiobiology: a perspective on material-guided cell behaviors and tissue engineering. Chem Rev 2017; 117(5): 4376–4421
CrossRef
Pubmed
Google scholar
|
[12] |
Zhang W, Zhu Y, Li J, Guo Q, Peng J, Liu S, Yang J, Wang Y. Cell-derived extracellular matrix: basic characteristics and current applications in orthopedic tissue engineering. Tissue Eng Part B Rev 2016; 22(3): 193–207
CrossRef
Pubmed
Google scholar
|
[13] |
Smoak MM, Hogan KJ, Grande-Allen KJ, Mikos AG. Bioinspired electrospun dECM scaffolds guide cell growth and control the formation of myotubes. Sci Adv 2021; 7(20): eabg4123
CrossRef
Pubmed
Google scholar
|
[14] |
Jang J, Park JY, Gao G, Cho DW. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomaterials 2018; 156: 88–106
CrossRef
Pubmed
Google scholar
|
[15] |
Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol 2014; 32(8): 773–785
CrossRef
Pubmed
Google scholar
|
[16] |
Kim BS, Das S, Jang J, Cho DW. Decellularized extracellular matrix-based bioinks for engineering tissue- and organ-specific microenvironments. Chem Rev 2020; 120(19): 10608–10661
CrossRef
Pubmed
Google scholar
|
[17] |
Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, Kim DH, Cho DW. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 2014; 5(1): 3935
CrossRef
Pubmed
Google scholar
|
[18] |
Li Y, Wang J, Qian D, Chen L, Mo X, Wang L, Wang Y, Cui W. Electrospun fibrous sponge via short fiber for mimicking 3D ECM. J Nanobiotechnology 2021; 19(1): 131
CrossRef
Pubmed
Google scholar
|
[19] |
Kishan AP, Cosgriff-Hernandez EM. Recent advancements in electrospinning design for tissue engineering applications: a review. J Biomed Mater Res A 2017; 105(10): 2892–2905
CrossRef
Pubmed
Google scholar
|
[20] |
Su Y, Shi Y, Stolow MA, Shi YB. Thyroid hormone induces apoptosis in primary cell cultures of tadpole intestine: cell type specificity and effects of extracellular matrix. J Cell Biol 1997; 139(6): 1533–1543
CrossRef
Pubmed
Google scholar
|
[21] |
Simon-Assmann P, Kedinger M, De Arcangelis A, Rousseau V, Simo P. Extracellular matrix components in intestinal development. Experientia 1995; 51(9–10): 883–900
CrossRef
Pubmed
Google scholar
|
[22] |
Mahoney ZX, Stappenbeck TS, Miner JH. Laminin α 5 influences the architecture of the mouse small intestine mucosa. J Cell Sci 2008; 121(15): 2493–2502
CrossRef
Pubmed
Google scholar
|
[23] |
Kim HY, Nelson CM. Extracellular matrix and cytoskeletal dynamics during branching morphogenesis. Organogenesis 2012; 8(2): 56–64
CrossRef
Pubmed
Google scholar
|
[24] |
Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci 2010; 123(24): 4195–4200
CrossRef
Pubmed
Google scholar
|
[25] |
Zhen G, Cao X. Targeting TGFβ signaling in subchondral bone and articular cartilage homeostasis. Trends Pharmacol Sci 2014; 35(5): 227–236
CrossRef
Pubmed
Google scholar
|
[26] |
Cheng CW, Solorio LD, Alsberg E. Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering. Biotechnol Adv 2014; 32(2): 462–484
CrossRef
Pubmed
Google scholar
|
[27] |
Özbek S, Balasubramanian PG, Chiquet-Ehrismann R, Tucker RP, Adams JC. The evolution of extracellular matrix. Mol Biol Cell 2010; 21(24): 4300–4305
CrossRef
Pubmed
Google scholar
|
[28] |
Michel G, Tonon T, Scornet D, Cock JM, Kloareg B. The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytol 2010; 188(1): 82–97
CrossRef
Pubmed
Google scholar
|
[29] |
Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev 2016; 97: 4–27
CrossRef
Pubmed
Google scholar
|
[30] |
Li L, Liu G, Timashev P, Sun XS, Criswell T, Atala A, Zhang Y. Biofabrication of tissue-specific extracellular matrix proteins to enhance the expansion and differentiation of skeletal muscle progenitor cells. Appl Phys Rev 2019; 6(2): 021309
CrossRef
Google scholar
|
[31] |
Ricard-Blum S. The collagen family. Cold Spring Harb Perspect Biol 2011; 3(1): a004978
CrossRef
Pubmed
Google scholar
|
[32] |
LeBleu VS, Macdonald B, Kalluri R. Structure and function of basement membranes. Exp Biol Med (Maywood) 2007; 232(9): 1121–1129
CrossRef
Pubmed
Google scholar
|
[33] |
Wagenseil JE, Mecham RP. New insights into elastic fiber assembly. Birth Defects Res C Embryo Today 2007; 81(4): 229–240
CrossRef
Pubmed
Google scholar
|
[34] |
Kjellén L, Lindahl U. Specificity of glycosaminoglycan-protein interactions. Curr Opin Struct Biol 2018; 50: 101–108
CrossRef
Pubmed
Google scholar
|
[35] |
Knudson CB, Knudson W. Hyaluronan-binding proteins in development, tissue homeostasis, and disease. FASEB J 1993; 7(13): 1233–1241
CrossRef
Pubmed
Google scholar
|
[36] |
Niklason LE. Understanding the extracellular matrix to enhance stem cell-based tissue regeneration. Cell Stem Cell 2018; 22(3): 302–305
CrossRef
Pubmed
Google scholar
|
[37] |
Avnur Z, Geiger B. The removal of extracellular fibronectin from areas of cell-substrate contact. Cell 1981; 25(1): 121–132
CrossRef
Pubmed
Google scholar
|
[38] |
Vasvani S, Kulkarni P, Rawtani D. Hyaluronic acid: a review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int J Biol Macromol 2020; 151: 1012–1029
CrossRef
Pubmed
Google scholar
|
[39] |
Vigetti D, Viola M, Karousou E, Deleonibus S, Karamanou K, De Luca G, Passi A. Epigenetics in extracellular matrix remodeling and hyaluronan metabolism. FEBS J 2014; 281(22): 4980–4992
CrossRef
Pubmed
Google scholar
|
[40] |
Huleihel L, Hussey GS, Naranjo JD, Zhang L, Dziki JL, Turner NJ, Stolz DB, Badylak SF. Matrix-bound nanovesicles within ECM bioscaffolds. Sci Adv 2016; 2(6): e1600502
CrossRef
Pubmed
Google scholar
|
[41] |
Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 2006; 22(1): 287–309
CrossRef
Pubmed
Google scholar
|
[42] |
Wei W, Li J, Chen S, Chen M, Xie Q, Sun H, Ruan J, Zhou H, Bi X, Zhuang A, You Z, Gu P, Fan X. In vitro osteogenic induction of bone marrow mesenchymal stem cells with a decellularized matrix derived from human adipose stem cells and in vivo implantation for bone regeneration. J Mater Chem B Mater Biol Med 2017; 5(13): 2468–2482
CrossRef
Pubmed
Google scholar
|
[43] |
Choudhury D, Tun HW, Wang T, Naing MW. Organ-derived decellularized extracellular matrix: a game changer for bioink manufacturing? Trends Biotechnol 2018; 36(8): 787–805
CrossRef
Pubmed
Google scholar
|
[44] |
Satyam A, Tsokos MG, Tresback JS, Zeugolis DI, Tsokos GC. Cell derived extracellular matrix-rich biomimetic substrate supports podocyte proliferation, differentiation and maintenance of native phenotype. Adv Funct Mater 2020; 30(44): 1908752
CrossRef
Pubmed
Google scholar
|
[45] |
Legate KR, Wickström SA, Fässler R. Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev 2009; 23(4): 397–418
CrossRef
Pubmed
Google scholar
|
[46] |
Li Y, Gautam A, Yang J, Qiu L, Melkoumian Z, Weber J, Telukuntla L, Srivastava R, Whiteley EM, Brandenberger R. Differentiation of oligodendrocyte progenitor cells from human embryonic stem cells on vitronectin-derived synthetic peptide acrylate surface. Stem Cells Dev 2013; 22(10): 1497–1505
CrossRef
Pubmed
Google scholar
|
[47] |
Mathews S, Bhonde R, Gupta PK, Totey S. Extracellular matrix protein mediated regulation of the osteoblast differentiation of bone marrow derived human mesenchymal stem cells. Differentiation 2012; 84(2): 185–192
CrossRef
Pubmed
Google scholar
|
[48] |
Kanatsu-Shinohara M, Takehashi M, Takashima S, Lee J, Morimoto H, Chuma S, Raducanu A, Nakatsuji N, Fässler R, Shinohara T. Homing of mouse spermatogonial stem cells to germline niche depends on β1-integrin. Cell Stem Cell 2008; 3(5): 533–542
CrossRef
Pubmed
Google scholar
|
[49] |
Brafman DA, Phung C, Kumar N, Willert K. Regulation of endodermal differentiation of human embryonic stem cells through integrin-ECM interactions. Cell Death Differ 2013; 20(3): 369–381
CrossRef
Pubmed
Google scholar
|
[50] |
Lu M, Xue R, Wang P, Wang X, Tian X, Liu Y, Wang S, Cui A, Xie J, Le L, Zhao M, Quan J, Li N, Meng D, Wang X, Sun N, Chen AF, Xiang M, Chen S. Induced pluripotent stem cells attenuate chronic allogeneic vasculopathy in an integrin beta-1-dependent manner. Am J Transplant 2020; 20(10): 2755–2767
CrossRef
Pubmed
Google scholar
|
[51] |
Han S, Kang B, Son HY, Choi Y, Shin MK, Park J, Min JK, Park D, Lim EK, Huh YM, Haam S. In vivo monitoring platform of transplanted human stem cells using magnetic resonance imaging. Biosens Bioelectron 2021; 178: 113039
CrossRef
Pubmed
Google scholar
|
[52] |
Brizzi MF, Tarone G, Defilippi P. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr Opin Cell Biol 2012; 24(5): 645–651
CrossRef
Pubmed
Google scholar
|
[53] |
Ghaedi M, Duan Y, Zern MA, Revzin A. Hepatic differentiation of human embryonic stem cells on growth factor-containing surfaces. J Tissue Eng Regen Med 2014; 8(11): 886–895
CrossRef
Pubmed
Google scholar
|
[54] |
Ullah I, Abu-Dawud R, Busch JF, Rabien A, Erguen B, Fischer I, Reinke P, Kurtz A. VEGF-supplemented extracellular matrix is sufficient to induce endothelial differentiation of human iPSC. Biomaterials 2019; 216: 119283
CrossRef
Pubmed
Google scholar
|
[55] |
Giamblanco N, Martines E, Marletta G. Laminin adsorption on nanostructures: switching the molecular orientation by local curvature changes. Langmuir 2013; 29(26): 8335–8342
CrossRef
Pubmed
Google scholar
|
[56] |
González-García C, Sousa SR, Moratal D, Rico P, Salmerón-Sánchez M. Effect of nanoscale topography on fibronectin adsorption, focal adhesion size and matrix organisation. Colloids Surf B Biointerfaces 2010; 77(2): 181–190
CrossRef
Pubmed
Google scholar
|
[57] |
Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126(4): 677–689
CrossRef
Pubmed
Google scholar
|
[58] |
Sthanam LK, Barai A, Rastogi A, Mistari VK, Maria A, Kauthale R, Gatne M, Sen S. Biophysical regulation of mouse embryonic stem cell fate and genomic integrity by feeder derived matrices. Biomaterials 2017; 119: 9–22
CrossRef
Pubmed
Google scholar
|
[59] |
Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 2010; 329(5995): 1078–1081
CrossRef
Pubmed
Google scholar
|
[60] |
Gobaa S, Hoehnel S, Roccio M, Negro A, Kobel S, Lutolf MP. Artificial niche microarrays for probing single stem cell fate in high throughput. Nat Methods 2011; 8(11): 949–955
CrossRef
Pubmed
Google scholar
|
[61] |
Shih YR, Tseng KF, Lai HY, Lin CH, Lee OK. Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res 2011; 26(4): 730–738
CrossRef
Pubmed
Google scholar
|
[62] |
Hirata M, Yamaoka T. Effect of stem cell niche elasticity/ECM protein on the self-beating cardiomyocyte differentiation of induced pluripotent stem (iPS) cells at different stages. Acta Biomater 2018; 65: 44–52
CrossRef
Pubmed
Google scholar
|
[63] |
Muncie JM, Ayad NME, Lakins JN, Xue X, Fu J, Weaver VM. Mechanical tension promotes formation of gastrulation-like nodes and patterns mesoderm specification in human embryonic stem cells. Dev Cell 2020; 55(6): 679–694.e11
CrossRef
Pubmed
Google scholar
|
[64] |
Guo H, Deng N, Dou L, Ding H, Criswell T, Atala A, Furdui CM, Zhang Y. 3-D human renal tubular organoids generated from urine-derived stem cells for nephrotoxicity screening. ACS Biomater Sci Eng 2020; 6(12): 6701–6709
CrossRef
Pubmed
Google scholar
|
[65] |
Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 2008; 132(4): 598–611
CrossRef
Pubmed
Google scholar
|
[66] |
Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell 2004; 116(6): 769–778
CrossRef
Pubmed
Google scholar
|
[67] |
Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 2011; 13(1): 27–53
CrossRef
Pubmed
Google scholar
|
[68] |
Ngangan AV, McDevitt TC. Acellularization of embryoid bodies via physical disruption methods. Biomaterials 2009; 30(6): 1143–1149
CrossRef
Pubmed
Google scholar
|
[69] |
Hirata M, Yamaoka T. Hepatocytic differentiation of iPS cells on decellularized liver tissue. J Artif Organs 2017; 20(4): 318–325
CrossRef
Pubmed
Google scholar
|
[70] |
Lu H, Hoshiba T, Kawazoe N, Chen G. Autologous extracellular matrix scaffolds for tissue engineering. Biomaterials 2011; 32(10): 2489–2499
CrossRef
Pubmed
Google scholar
|
[71] |
Nair R, Shukla S, McDevitt TC. Acellular matrices derived from differentiating embryonic stem cells. J Biomed Mater Res A 2008; 87A(4): 1075–1085
CrossRef
Pubmed
Google scholar
|
[72] |
Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, Kotton D, Vacanti JP. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med 2010; 16(8): 927–933
CrossRef
Pubmed
Google scholar
|
[73] |
Reing JE, Brown BN, Daly KA, Freund JM, Gilbert TW, Hsiong SX, Huber A, Kullas KE, Tottey S, Wolf MT, Badylak SF. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials 2010; 31(33): 8626–8633
CrossRef
Pubmed
Google scholar
|
[74] |
Haas R, Culp LA. Binding of fibronectin to gelatin and heparin: effect of surface denaturation and detergents. FEBS Lett 1984; 174(2): 279–283
CrossRef
Pubmed
Google scholar
|
[75] |
Sart S, Ma T, Li Y. Extracellular matrices decellularized from embryonic stem cells maintained their structure and signaling specificity. Tissue Eng Part A 2014; 20(1–2): 54–66
CrossRef
Pubmed
Google scholar
|
[76] |
Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials 2011; 32(12): 3233–3243
CrossRef
Pubmed
Google scholar
|
[77] |
Parmaksiz M, Elçin AE, Elçin YM. Decellularized cell culture ECMs act as cell differentiation inducers. Stem Cell Rev Rep 2020; 16(3): 569–584
CrossRef
Pubmed
Google scholar
|
[78] |
Freytes DO, Stoner RM, Badylak SF. Uniaxial and biaxial properties of terminally sterilized porcine urinary bladder matrix scaffolds. J Biomed Mater Res B Appl Biomater 2008; 84B(2): 408–414
CrossRef
Pubmed
Google scholar
|
[79] |
Yang B, Zhang Y, Zhou L, Sun Z, Zheng J, Chen Y, Dai Y. Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering. Tissue Eng Part C Methods 2010; 16(5): 1201–1211
CrossRef
Pubmed
Google scholar
|
[80] |
Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials 2006; 27(19): 3675–3683
Pubmed
|
[81] |
Gafarova ER, Grebenik EA, Lazhko AE, Frolova AA, Kuryanova AS, Kurkov AV, Bazhanov IA, Kapomba BS, Kosheleva NV, Novikov IA, Shekhter AB, Golubeva EN, Soloviova AB, Timashev PS. Evaluation of supercritical CO2-assisted protocols in a model of ovine aortic root decellularization. Molecules 2020; 25(17): 3923
CrossRef
Pubmed
Google scholar
|
[82] |
Seddon AM, Curnow P, Booth PJ. Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 2004; 1666(1–2): 105–117
CrossRef
Pubmed
Google scholar
|
[83] |
Grauss RW, Hazekamp MG, van Vliet S, Gittenberger-de Groot AC, DeRuiter MC. Decellularization of rat aortic valve allografts reduces leaflet destruction and extracellular matrix remodeling. J Thorac Cardiovasc Surg 2003; 126(6): 2003–2010
CrossRef
Pubmed
Google scholar
|
[84] |
Hopkinson A, Shanmuganathan VA, Gray T, Yeung AM, Lowe J, James DK, Dua HS. Optimization of amniotic membrane (AM) denuding for tissue engineering. Tissue Eng Part C Methods 2008; 14(4): 371–381
CrossRef
Pubmed
Google scholar
|
[85] |
Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, Gavrilov K, Yi T, Zhuang ZW, Breuer C, Herzog E, Niklason LE. Tissue-engineered lungs for in vivo implantation. Science 2010; 329(5991): 538–541
CrossRef
Pubmed
Google scholar
|
[86] |
Gui L, Chan SA, Breuer CK, Niklason LE. Novel utilization of serum in tissue decellularization. Tissue Eng Part C Methods 2010; 16(2): 173–184
CrossRef
Pubmed
Google scholar
|
[87] |
Zhang D, Zhang Y, Zhang Y, Yi H, Wang Z, Wu R, He D, Wei G, Wei S, Hu Y, Deng J, Criswell T, Yoo J, Zhou Y, Atala A. Tissue-specific extracellular matrix enhances skeletal muscle precursor cell expansion and differentiation for potential application in cell therapy. Tissue Eng Part A 2017; 23(15–16): 784–794
CrossRef
Pubmed
Google scholar
|
[88] |
Yi H, Forsythe S, He Y, Liu Q, Xiong G, Wei S, Li G, Atala A, Skardal A, Zhang Y. Tissue-specific extracellular matrix promotes myogenic differentiation of human muscle progenitor cells on gelatin and heparin conjugated alginate hydrogels. Acta Biomater 2017; 62: 222–233
CrossRef
Pubmed
Google scholar
|
[89] |
Buckenmeyer MJ, Meder TJ, Prest TA, Brown BN. Decellularization techniques and their applications for the repair and regeneration of the nervous system. Methods 2020; 171: 41–61
CrossRef
Pubmed
Google scholar
|
[90] |
Crapo PM, Medberry CJ, Reing JE, Tottey S, van der Merwe Y, Jones KE, Badylak SF. Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials 2012; 33(13): 3539–3547
CrossRef
Pubmed
Google scholar
|
[91] |
Jiang T, Ren XJ, Tang JL, Yin H, Wang KJ, Zhou CL. Preparation and characterization of genipin-crosslinked rat acellular spinal cord scaffolds. Mater Sci Eng C 2013; 33(6): 3514–3521
CrossRef
Pubmed
Google scholar
|
[92] |
Brown BN, Valentin JE, Stewart-Akers AM, McCabe GP, Badylak SF. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 2009; 30(8): 1482–1491
CrossRef
Pubmed
Google scholar
|
[93] |
Wainwright JM, Czajka CA, Patel UB, Freytes DO, Tobita K, Gilbert TW, Badylak SF. Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng Part C Methods 2010; 16(3): 525–532
CrossRef
Pubmed
Google scholar
|
[94] |
Cortiella J, Niles J, Cantu A, Brettler A, Pham A, Vargas G, Winston S, Wang J, Walls S, Nichols JE. Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng Part A 2010; 16(8): 2565–2580
CrossRef
Pubmed
Google scholar
|
[95] |
Prasertsung I, Kanokpanont S, Bunaprasert T, Thanakit V, Damrongsakkul S. Development of acellular dermis from porcine skin using periodic pressurized technique. J Biomed Mater Res B Appl Biomater 2008; 85B(1): 210–219
CrossRef
Pubmed
Google scholar
|
[96] |
Montoya CV, McFetridge PS. Preparation of ex vivo-based biomaterials using convective flow decellularization. Tissue Eng Part C Methods 2009; 15(2): 191–200
CrossRef
Pubmed
Google scholar
|
[97] |
Bolland F, Korossis S, Wilshaw SP, Ingham E, Fisher J, Kearney JN, Southgate J. Development and characterisation of a full-thickness acellular porcine bladder matrix for tissue engineering. Biomaterials 2007; 28(6): 1061–1070
CrossRef
Pubmed
Google scholar
|
[98] |
Sano MB, Neal RE 2nd, Garcia PA, Gerber D, Robertson J, Davalos RV. Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion. Biomed Eng Online 2010; 9(1): 83
CrossRef
Pubmed
Google scholar
|
[99] |
Phillips M, Maor E, Rubinsky B. Nonthermal irreversible electroporation for tissue decellularization. J Biomech Eng 2010; 132(9): 091003
CrossRef
Pubmed
Google scholar
|
[100] |
Dong X, Wei X, Yi W, Gu C, Kang X, Liu Y, Li Q, Yi D. RGD-modified acellular bovine pericardium as a bioprosthetic scaffold for tissue engineering. J Mater Sci Mater Med 2009; 20(11): 2327–2336
CrossRef
Pubmed
Google scholar
|
[101] |
Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, Milwid J, Kobayashi N, Tilles A, Berthiaume F, Hertl M, Nahmias Y, Yarmush ML, Uygun K. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 2010; 16(7): 814–820
CrossRef
Pubmed
Google scholar
|
[102] |
Nakayama KH, Batchelder CA, Lee CI, Tarantal AF. Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A 2010; 16(7): 2207–2216
CrossRef
Pubmed
Google scholar
|
[103] |
McFetridge PS, Daniel JW, Bodamyali T, Horrocks M, Chaudhuri JB. Preparation of porcine carotid arteries for vascular tissue engineering applications. J Biomed Mater Res A 2004; 70A(2): 224–234
CrossRef
Pubmed
Google scholar
|
[104] |
Teebken OE, Bader A, Steinhoff G, Haverich A. Tissue engineering of vascular grafts: human cell seeding of decellularised porcine matrix. Eur J Vasc Endovasc Surg 2000; 19(4): 381–386
CrossRef
Pubmed
Google scholar
|
[105] |
Gamba PG, Conconi MT, Lo Piccolo R, Zara G, Spinazzi R, Parnigotto PP. Experimental abdominal wall defect repaired with acellular matrix. Pediatr Surg Int 2002; 18(5–6): 327–331
CrossRef
Pubmed
Google scholar
|
[106] |
Chen RN, Ho HO, Tsai YT, Sheu MT. Process development of an acellular dermal matrix (ADM) for biomedical applications. Biomaterials 2004; 25(13): 2679–2686
CrossRef
Pubmed
Google scholar
|
[107] |
Rieder E, Kasimir MT, Silberhumer G, Seebacher G, Wolner E, Simon P, Weigel G. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg 2004; 127(2): 399–405
CrossRef
Pubmed
Google scholar
|
[108] |
Dahl SLM, Koh J, Prabhakar V, Niklason LE. Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant 2003; 12(6): 659–666
CrossRef
Google scholar
|
[109] |
Woods T, Gratzer PF. Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligament-bone graft. Biomaterials 2005; 26(35): 7339–7349
CrossRef
Pubmed
Google scholar
|
[110] |
Shakouri-Motlagh A, O’Connor AJ, Brennecke SP, Kalionis B, Heath DE. Native and solubilized decellularized extracellular matrix: a critical assessment of their potential for improving the expansion of mesenchymal stem cells. Acta Biomater 2017; 55: 1–12
CrossRef
Pubmed
Google scholar
|
[111] |
Assunção M, Dehghan-Baniani D, Yiu CHK, Später T, Beyer S, Blocki A. Cell-derived extracellular matrix for tissue engineering and regenerative medicine. Front Bioeng Biotechnol 2020; 8: 602009
CrossRef
Pubmed
Google scholar
|
[112] |
Pei M, Li JT, Shoukry M, Zhang Y. A review of decellularized stem cell matrix: a novel cell expansion system for cartilage tissue engineering. Eur Cell Mater 2011; 22: 333–343
CrossRef
Pubmed
Google scholar
|
[113] |
Pei M. Environmental preconditioning rejuvenates adult stem cells’ proliferation and chondrogenic potential. Biomaterials 2017; 117: 10–23
CrossRef
Pubmed
Google scholar
|
[114] |
Sun Y, Yan L, Chen S, Pei M. Functionality of decellularized matrix in cartilage regeneration: a comparison of tissue versus cell sources. Acta Biomater 2018; 74: 56–73
CrossRef
Pubmed
Google scholar
|
[115] |
He F, Chen X, Pei M. Reconstruction of an in vitro tissue-specific microenvironment to rejuvenate synovium-derived stem cells for cartilage tissue engineering. Tissue Eng Part A 2009; 15(12): 3809–3821
CrossRef
Pubmed
Google scholar
|
[116] |
Li J, Pei M. Optimization of an in vitro three-dimensional microenvironment to reprogram synovium-derived stem cells for cartilage tissue engineering. Tissue Eng Part A 2011; 17(5–6): 703–712
CrossRef
Pubmed
Google scholar
|
[117] |
Li J, He F, Pei M. Creation of an in vitro microenvironment to enhance human fetal synovium-derived stem cell chondrogenesis. Cell Tissue Res 2011; 345(3): 357–365
CrossRef
Pubmed
Google scholar
|
[118] |
Li J, He F, Pei M. Chondrogenic priming of human fetal synovium-derived stem cells in an adult stem cell matrix microenvironment. Genes Dis 2015; 2(4): 337–346
CrossRef
Pubmed
Google scholar
|
[119] |
Li J, Narayanan K, Zhang Y, Hill RC, He F, Hansen KC, Pei M. Role of lineage-specific matrix in stem cell chondrogenesis. Biomaterials 2020; 231: 119681
CrossRef
Pubmed
Google scholar
|
[120] |
Pei M, Zhang Y, Li J, Chen D. Antioxidation of decellularized stem cell matrix promotes human synovium-derived stem cell-based chondrogenesis. Stem Cells Dev 2013; 22(6): 889–900
CrossRef
Pubmed
Google scholar
|
[121] |
Zhang Y, Li J, Davis ME, Pei M. Delineation of in vitro chondrogenesis of human synovial stem cells following preconditioning using decellularized matrix. Acta Biomater 2015; 20: 39–50
CrossRef
Pubmed
Google scholar
|
[122] |
Zhang Y, Pizzute T, Li J, He F, Pei M. sb203580 preconditioning recharges matrix-expanded human adult stem cells for chondrogenesis in an inflammatory environment—a feasible approach for autologous stem cell based osteoarthritic cartilage repair. Biomaterials 2015; 64: 88–97
CrossRef
Pubmed
Google scholar
|
[123] |
He F, Liu X, Xiong K, Chen S, Zhou L, Cui W, Pan G, Luo ZP, Pei M, Gong Y. Extracellular matrix modulates the biological effects of melatonin in mesenchymal stem cells. J Endocrinol 2014; 223(2): 167–180
CrossRef
Pubmed
Google scholar
|
[124] |
Pei M, He F, Kish VL. Expansion on extracellular matrix deposited by human bone marrow stromal cells facilitates stem cell proliferation and tissue-specific lineage potential. Tissue Eng Part A 2011; 17(23–24): 3067–3076
CrossRef
Pubmed
Google scholar
|
[125] |
Pei M, Li J, Zhang Y, Liu G, Wei L, Zhang Y. Expansion on a matrix deposited by nonchondrogenic urine stem cells strengthens the chondrogenic capacity of repeated-passage bone marrow stromal cells. Cell Tissue Res 2014; 356(2): 391–403
CrossRef
Pubmed
Google scholar
|
[126] |
Liu X, Zhou L, Chen X, Liu T, Pan G, Cui W, Li M, Luo ZP, Pei M, Yang H, Gong Y, He F. Culturing on decellularized extracellular matrix enhances antioxidant properties of human umbilical cord-derived mesenchymal stem cells. Mater Sci Eng C 2016; 61: 437–448
CrossRef
Pubmed
Google scholar
|
[127] |
Zhou L, Chen X, Liu T, Zhu C, Si M, Jargstorf J, Li M, Pan G, Gong Y, Luo ZP, Yang H, Pei M, He F. SIRT1-dependent anti-senescence effects of cell-deposited matrix on human umbilical cord mesenchymal stem cells. J Tissue Eng Regen Med 2018; 12(2): e1008–e1021
CrossRef
Pubmed
Google scholar
|
[128] |
He F, Pei M. Extracellular matrix enhances differentiation of adipose stem cells from infrapatellar fat pad toward chondrogenesis. J Tissue Eng Regen Med 2013; 7(1): 73–84
CrossRef
Pubmed
Google scholar
|
[129] |
Wang Y, Fu Y, Yan Z, Zhang XB, Pei M. Impact of fibronectin knockout on proliferation and differentiation of human infrapatellar fat pad-derived stem cells. Front Bioeng Biotechnol 2019; 7: 321
CrossRef
Pubmed
Google scholar
|
[130] |
Wang Y, Hu G, Hill RC, Dzieciatkowska M, Hansen KC, Zhang XB, Yan Z, Pei M. Matrix reverses immortalization-mediated stem cell fate determination. Biomaterials 2021; 265: 120387
CrossRef
Pubmed
Google scholar
|
[131] |
Goh SK, Olsen P, Banerjee I. Extracellular matrix aggregates from differentiating embryoid bodies as a scaffold to support ESC proliferation and differentiation. PLoS One 2013; 8(4): e61856
CrossRef
Pubmed
Google scholar
|
[132] |
Xiong X, Yang X, Dai H, Feng G, Zhang Y, Zhou J, Zhou W. Extracellular matrix derived from human urine-derived stem cells enhances the expansion, adhesion, spreading, and differentiation of human periodontal ligament stem cells. Stem Cell Res Ther 2019; 10(1): 396
CrossRef
Pubmed
Google scholar
|
[133] |
Hoshiba T, Sugano Y, Yokoyama N. Murine neural stem cell (NSC) line, MEB5-derived decellularized matrix as an in vitro extracellular matrix model in NSC niche. Chem Lett 2018; 47(12): 1498–1501
CrossRef
Google scholar
|
[134] |
Pei M, He F. Extracellular matrix deposited by synovium-derived stem cells delays replicative senescent chondrocyte dedifferentiation and enhances redifferentiation. J Cell Physiol 2012; 227(5): 2163–2174
CrossRef
Pubmed
Google scholar
|
[135] |
Yan J, Chen X, Pu C, Zhao Y, Liu X, Liu T, Pan G, Lin J, Pei M, Yang H, He F. Synovium stem cell-derived matrix enhances anti-inflammatory properties of rabbit articular chondrocytes via the SIRT1 pathway. Mater Sci Eng C 2020; 106: 110286
CrossRef
Pubmed
Google scholar
|
[136] |
He F, Pei M. Rejuvenation of nucleus pulposus cells using extracellular matrix deposited by synovium-derived stem cells. Spine 2012; 37(6): 459–469
CrossRef
Pubmed
Google scholar
|
[137] |
Pei M, Shoukry M, Li J, Daffner SD, France JC, Emery SE. Modulation of in vitro microenvironment facilitates synovium-derived stem cell-based nucleus pulposus tissue regeneration. Spine 2012; 37(18): 1538–1547
CrossRef
Pubmed
Google scholar
|
[138] |
Kanninen LK, Porola P, Niklander J, Malinen MM, Corlu A, Guguen-Guillouzo C, Urtti A, Yliperttula ML, Lou YR. Hepatic differentiation of human pluripotent stem cells on human liver progenitor HepaRG-derived acellular matrix. Exp Cell Res 2016; 341(2): 207–217
CrossRef
Pubmed
Google scholar
|
[139] |
Pei M, He F, Li J, Tidwell JE, Jones AC, McDonough EB. Repair of large animal partial-thickness cartilage defects through intraarticular injection of matrix-rejuvenated synovium-derived stem cells. Tissue Eng Part A 2013; 19(9–10): 1144–1154
CrossRef
Pubmed
Google scholar
|
[140] |
Li J, Hansen KC, Zhang Y, Dong C, Dinu CZ, Dzieciatkowska M, Pei M. Rejuvenation of chondrogenic potential in a young stem cell microenvironment. Biomaterials 2014; 35(2): 642–653
CrossRef
Pubmed
Google scholar
|
[141] |
Ng CP, Sharif AR, Heath DE, Chow JW, Zhang CB, Chan-Park MB, Hammond PT, Chan JK, Griffith LG. Enhanced ex vivo expansion of adult mesenchymal stem cells by fetal mesenchymal stem cell ECM. Biomaterials 2014; 35(13): 4046–4057
CrossRef
Pubmed
Google scholar
|
[142] |
Xu Y, Xu GY, Tang C, Wei B, Pei X, Gui JC, Min BH, Jin CZ, Wang LM. Preparation and characterization of bone marrow mesenchymal stem cell-derived extracellular matrix scaffolds. J Biomed Mater Res B Appl Biomater 2015; 103(3): 670–678
CrossRef
Pubmed
Google scholar
|
[143] |
Chen XD, Dusevich V, Feng JQ, Manolagas SC, Jilka RL. Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts. J Bone Miner Res 2007; 22(12): 1943–1956
CrossRef
Pubmed
Google scholar
|
[144] |
Lai Y, Sun Y, Skinner CM, Son EL, Lu Z, Tuan RS, Jilka RL, Ling J, Chen XD. Reconstitution of marrow-derived extracellular matrix ex vivo: a robust culture system for expanding large-scale highly functional human mesenchymal stem cells. Stem Cells Dev 2010; 19(7): 1095–1107
CrossRef
Pubmed
Google scholar
|
[145] |
Gu Y, Zhu J, Xue C, Li Z, Ding F, Yang Y, Gu X. Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps. Biomaterials 2014; 35(7): 2253–2263
CrossRef
Pubmed
Google scholar
|
[146] |
Kwon SH, Lee TJ, Park J, Hwang JE, Jin M, Jang HK, Hwang NS, Kim BS. Modulation of BMP-2-induced chondrogenic versus osteogenic differentiation of human mesenchymal stem cells by cell-specific extracellular matrices. Tissue Eng Part A 2013; 19(1–2): 49–58
CrossRef
Pubmed
Google scholar
|
[147] |
Zhang Y, He Y, Bharadwaj S, Hammam N, Carnagey K, Myers R, Atala A, Van Dyke M. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype. Biomaterials 2009; 30(23–24): 4021–4028
CrossRef
Pubmed
Google scholar
|
[148] |
Thibault RA, Scott Baggett L, Mikos AG, Kasper FK. Osteogenic differentiation of mesenchymal stem cells on pregenerated extracellular matrix scaffolds in the absence of osteogenic cell culture supplements. Tissue Eng Part A 2010; 16(2): 431–440
CrossRef
Pubmed
Google scholar
|
[149] |
De Waele J, Reekmans K, Daans J, Goossens H, Berneman Z, Ponsaerts P. 3D culture of murine neural stem cells on decellularized mouse brain sections. Biomaterials 2015; 41: 122–131
CrossRef
Pubmed
Google scholar
|
[150] |
Navarro-Tableros V, Herrera Sanchez MB, Figliolini F, Romagnoli R, Tetta C, Camussi G. Recellularization of rat liver scaffolds by human liver stem cells. Tissue Eng Part A 2015; 21(11–12): 1929–1939
CrossRef
Pubmed
Google scholar
|
[151] |
Yao Q, Zheng YW, Lan QH, Kou L, Xu HL, Zhao YZ. Recent development and biomedical applications of decellularized extracellular matrix biomaterials. Mater Sci Eng C 2019; 104: 109942
CrossRef
Pubmed
Google scholar
|
[152] |
Imle A, Kumberger P, Schnellbächer ND, Fehr J, Carrillo-Bustamante P, Ales J, Schmidt P, Ritter C, Godinez WJ, Müller B, Rohr K, Hamprecht FA, Schwarz US, Graw F, Fackler OT. Experimental and computational analyses reveal that environmental restrictions shape HIV-1 spread in 3D cultures. Nat Commun 2019; 10(1): 2144
CrossRef
Pubmed
Google scholar
|
[153] |
Saldin LT, Cramer MC, Velankar SS, White LJ, Badylak SF. Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomater 2017; 49: 1–15
CrossRef
Pubmed
Google scholar
|
[154] |
González-Díaz EC, Varghese S. Hydrogels as extracellular matrix analogs. Gels 2016; 2(3): 20
CrossRef
Pubmed
Google scholar
|
[155] |
Zhang Y, He Y, Bharadwaj S, Hammam N, Carnagey K, Myers R, Atala A, Van Dyke M. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype. Biomaterials 2009; 30(23–24): 4021–4028
CrossRef
Pubmed
Google scholar
|
[156] |
Yi H, S. F, Zhang Y, Skardal A. Bio-functionalized alginate hydrogels for improved cell-matrix interactions and growth factor sequestration kinetics. Tissue Eng Part A 2015; 21(Suppl 1): S187
|
[157] |
Skardal A, Smith L, Bharadwaj S, Atala A, Soker S, Zhang Y. Tissue specific synthetic ECM hydrogels for 3-D in vitro maintenance of hepatocyte function. Biomaterials 2012; 33(18): 4565–4575
CrossRef
Pubmed
Google scholar
|
[158] |
Lang R, Stern MM, Smith L, Liu Y, Bharadwaj S, Liu G, Baptista PM, Bergman CR, Soker S, Yoo JJ, Atala A, Zhang Y. Three-dimensional culture of hepatocytes on porcine liver tissue-derived extracellular matrix. Biomaterials 2011; 32(29): 7042–7052
CrossRef
Pubmed
Google scholar
|
[159] |
Xiong G, Tang W, Zhang D, He D, Wei G, Atala A, Liang XJ, Bleyer AJ, Bleyer ME, Yu J, Aloi JA, Ma JX, Furdui CM, Zhang Y. Impaired regeneration potential in urinary stem cells diagnosed from the patients with diabetic nephropathy. Theranostics 2019; 9(14): 4221–4232
CrossRef
Pubmed
Google scholar
|
[160] |
Hussey GS, Dziki JL, Badylak SF. Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater 2018; 3(7): 159–173
CrossRef
Google scholar
|
[161] |
Juhasz I, Kiss B, Lukacs L, Erdei I, Peter Z, Remenyik E. Long-term followup of dermal substitution with acellular dermal implant in burns and postburn scar corrections. Dermatol Res Pract 2010; 2010(1): 210150
CrossRef
Pubmed
Google scholar
|
[162] |
Landsman AS, Cook J, Cook E, Landsman AR, Garrett P, Yoon J, Kirkwood A, Desman E. A retrospective clinical study of 188 consecutive patients to examine the effectiveness of a biologically active cryopreserved human skin allograft (TheraSkin®) on the treatment of diabetic foot ulcers and venous leg ulcers. Foot Ankle Spec 2011; 4(1): 29–41
CrossRef
Pubmed
Google scholar
|
[163] |
Wainwright DJ. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns 1995; 21(4): 243–248
CrossRef
Pubmed
Google scholar
|
[164] |
Yoeruek E, Bayyoud T, Maurus C, Hofmann J, Spitzer MS, Bartz-Schmidt KU, Szurman P. Reconstruction of corneal stroma with decellularized porcine xenografts in a rabbit model. Acta Ophthalmol 2012; 90(3): e206–e210
CrossRef
Pubmed
Google scholar
|
[165] |
Hashimoto Y, Hattori S, Sasaki S, Honda T, Kimura T, Funamoto S, Kobayashi H, Kishida A. Ultrastructural analysis of the decellularized cornea after interlamellar keratoplasty and microkeratome-assisted anterior lamellar keratoplasty in a rabbit model. Sci Rep 2016; 6(1): 27734
CrossRef
Pubmed
Google scholar
|
[166] |
Liu Y, Ma W, Liu B, Wang Y, Chu J, Xiong G, Shen L, Long C, Lin T, He D, Butnaru D, Alexey L, Zhang Y, Zhang D, Wei G. Urethral reconstruction with autologous urine-derived stem cells seeded in three-dimensional porous small intestinal submucosa in a rabbit model. Stem Cell Res Ther 2017; 8(1): 63
CrossRef
Pubmed
Google scholar
|
[167] |
Zhang Y, Liu G, Kropp BP. Re-epithelialization of demucosalized stomach patch with tissue-engineered urothelial mucosa combined with Botox A in bladder augmentation. BJU Int 2012; 110(2b): E106–E112
CrossRef
Pubmed
Google scholar
|
[168] |
Zhang Y, Lin HK, Frimberger D, Epstein RB, Kropp BP. Growth of bone marrow stromal cells on small intestinal submucosa: an alternative cell source for tissue engineered bladder. BJU Int 2005; 96(7): 1120–1125
CrossRef
Pubmed
Google scholar
|
[169] |
Nherera LM, Romanelli M, Trueman P, Dini V. An overview of clinical and health economic evidence regarding porcine small intestine submucosa extracellular matrix in the management of chronic wounds and burns. Ostomy Wound Manage 2017; 63(12): 38–47
Pubmed
|
[170] |
Hashimoto Y, Funamoto S, Sasaki S, Honda T, Hattori S, Nam K, Kimura T, Mochizuki M, Fujisato T, Kobayashi H, Kishida A. Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering. Biomaterials 2010; 31(14): 3941–3948
CrossRef
Pubmed
Google scholar
|
[171] |
Matsumoto T, Holmes RHO, Burdick CO, Heisterkamp CA 3rd, O’Connell TJ Jr. Replacement of large veins with free inverted segments of small bowel: autografts of submucosal membrane in dogs and clinical use. Ann Surg 1966; 164(5): 845–848
CrossRef
Pubmed
Google scholar
|
[172] |
Matsumoto T, Holmes RH, Burdick CO, Heisterkamp CA 3rd, O’Connell TJ Jr. The fate of the inverted segment of small bowel used for the replacement of major veins. Surgery 1966; 60(3): 739–743
Pubmed
|
[173] |
Matsumoto T, Holmes RH, Burdick CO, Metzger JF, Heisterkamp CA 3rd, O’Connell TJ Jr. A study of inverted intestinal graft in the major veins. Angiology 1966; 17(11): 842–850
CrossRef
Pubmed
Google scholar
|
[174] |
Badylak SF, Lantz GC, Coffey A, Geddes LA. Small intestinal submucosa as a large diameter vascular graft in the dog. J Surg Res 1989; 47(1): 74–80
CrossRef
Pubmed
Google scholar
|
[175] |
Hiles MC, Badylak SF, Lantz GC, Kokini K, Geddes LA, Morff RJ. Mechanical properties of xenogeneic small-intestinal submucosa when used as an aortic graft in the dog. J Biomed Mater Res 1995; 29(7): 883–891
CrossRef
Pubmed
Google scholar
|
[176] |
Bader A, Steinhoff G, Strobl K, Schilling T, Brandes G, Mertsching H, Tsikas D, Froelich J, Haverich A. Engineering of human vascular aortic tissue based on a xenogeneic starter matrix. Transplantation 2000; 70(1): 7–14
Pubmed
|
[177] |
Taylor DA, Sampaio LC, Ferdous Z, Gobin AS, Taite LJ. Decellularized matrices in regenerative medicine. Acta Biomater 2018; 74: 74–89
CrossRef
Pubmed
Google scholar
|
[178] |
Kimicata M, Allbritton-King JD, Navarro J, Santoro M, Inoue T, Hibino N, Fisher JP. Assessment of decellularized pericardial extracellular matrix and poly(propylene fumarate) biohybrid for small-diameter vascular graft applications. Acta Biomater 2020; 110: 68–81
CrossRef
Pubmed
Google scholar
|
[179] |
Badylak S, Meurling S, Chen M, Spievack A, Simmons-Byrd A. Resorbable bioscaffold for esophageal repair in a dog model. J Pediatr Surg 2000; 35(7): 1097–1103
CrossRef
Pubmed
Google scholar
|
[180] |
Badylak SF, Hoppo T, Nieponice A, Gilbert TW, Davison JM, Jobe BA. Esophageal preservation in five male patients after endoscopic inner-layer circumferential resection in the setting of superficial cancer: a regenerative medicine approach with a biologic scaffold. Tissue Eng Part A 2011; 17(11–12): 1643–1650
CrossRef
Pubmed
Google scholar
|
[181] |
Clough A, Ball J, Smith GS, Leibman S. Porcine small intestine submucosa matrix (Surgisis) for esophageal perforation. Ann Thorac Surg 2011; 91(2): e99–e100
CrossRef
Pubmed
Google scholar
|
[182] |
Syed O, Walters NJ, Day RM, Kim HW, Knowles JC. Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. Acta Biomater 2014; 10(12): 5043–5054
CrossRef
Pubmed
Google scholar
|
[183] |
Luc G, Charles G, Gronnier C, Cabau M, Kalisky C, Meulle M, Bareille R, Roques S, Couraud L, Rannou J, Bordenave L, Collet D, Durand M. Decellularized and matured esophageal scaffold for circumferential esophagus replacement: proof of concept in a pig model. Biomaterials 2018; 175: 1–18
CrossRef
Pubmed
Google scholar
|
[184] |
Arakelian L, Caille C, Faivre L, Corté L, Bruneval P, Shamdani S, Flageollet C, Albanese P, Domet T, Jarraya M, Setterblad N, Kellouche S, Larghero J, Cattan P, Vanneaux V. A clinical-grade acellular matrix for esophageal replacement. J Tissue Eng Regen Med 2019; 13(12): 2191–2203
CrossRef
Pubmed
Google scholar
|
[185] |
Zhang Y, Frimberger D, Cheng EY, Lin HK, Kropp BP. Challenges in a larger bladder replacement with cell-seeded and unseeded small intestinal submucosa grafts in a subtotal cystectomy model. BJU Int 2006; 98(5): 1100–1105
CrossRef
Pubmed
Google scholar
|
[186] |
Kropp BP, Eppley BL, Prevel CD, Rippy MK, Harruff RC, Badylak SF, Adams MC, Rink RC, Keating MA. Experimental assessment of small intestinal submucosa as a bladder wall substitute. Urology 1995; 46(3): 396–400
CrossRef
Pubmed
Google scholar
|
[187] |
Zhang XZ, Jiang YL, Hu JG, Zhao LM, Chen QZ, Liang Y, Zhang Y, Lei XX, Wang R, Lei Y, Zhang QY, Li-Ling J, Xie HQ. Procyanidins-crosslinked small intestine submucosa: a bladder patch promotes smooth muscle regeneration and bladder function restoration in a rabbit model. Bioact Mater 2021; 6(6): 1827–1838
CrossRef
Pubmed
Google scholar
|
[188] |
Kropp BP, Ludlow JK, Spicer D, Rippy MK, Badylak SF, Adams MC, Keating MA, Rink RC, Birhle R, Thor KB. Rabbit urethral regeneration using small intestinal submucosa onlay grafts. Urology 1998; 52(1): 138–142
CrossRef
Pubmed
Google scholar
|
[189] |
Davis NF, Callanan A, McGuire BB, Flood HD, McGloughlin TM. Evaluation of viability and proliferative activity of human urothelial cells cultured onto xenogenic tissue-engineered extracellular matrices. Urology 2011; 77(4): 1007.e1–1007.e7
CrossRef
Pubmed
Google scholar
|
[190] |
Janke HP, de Jonge PKJD, Feitz WFJ, Oosterwijk E. Reconstruction strategies of the ureter and urinary diversion using tissue engineering approaches. Tissue Eng Part B Rev 2019; 25(3): 237–248
CrossRef
Pubmed
Google scholar
|
[191] |
Adamowicz J, Van Breda SV, Kloskowski T, Juszczak K, Pokrywczynska M, Drewa T. Constructing artificial urinary conduits: current capabilities and future potential. Expert Rev Med Devices 2019; 16(2): 135–144
CrossRef
Pubmed
Google scholar
|
[192] |
Totonelli G, Maghsoudlou P, Garriboli M, Riegler J, Orlando G, Burns AJ, Sebire NJ, Smith VV, Fishman JM, Ghionzoli M, Turmaine M, Birchall MA, Atala A, Soker S, Lythgoe MF, Seifalian A, Pierro A, Eaton S, De Coppi P. A rat decellularized small bowel scaffold that preserves villus-crypt architecture for intestinal regeneration. Biomaterials 2012; 33(12): 3401–3410
CrossRef
Pubmed
Google scholar
|
[193] |
Arunkalaivanan AS, Barrington JW. Randomized trial of porcine dermal sling (Pelvicol implant) vs. tension-free vaginal tape (TVT) in the surgical treatment of stress incontinence: a questionnaire-based study. Int Urogynecol J Pelvic Floor Dysfunct 2003; 14(1): 17–23
CrossRef
Pubmed
Google scholar
|
[194] |
Andrée B, Bär A, Haverich A, Hilfiker A. Small intestinal submucosa segments as matrix for tissue engineering: review. Tissue Eng Part B Rev 2013; 19(4): 279–291
CrossRef
Pubmed
Google scholar
|
[195] |
Roeder RA, Lantz GC, Geddes LA. Mechanical remodeling of small-intestine submucosa small-diameter vascular grafts—a preliminary report. Biomed Instrum Technol 2001; 35(2): 110–120
Pubmed
|
[196] |
Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 2008; 14(2): 213–221
CrossRef
Pubmed
Google scholar
|
[197] |
Mecham RP. Overview of extracellular matrix. Current Protocols in Cell Biology 2012; Chapter 10: Unit 10.11
|
[198] |
Plunkett N, O'Brien FJ. Bioreactors in tissue engineering. Technol Health Care 2011; 19(1): 55–69
CrossRef
Pubmed
Google scholar
|
[199] |
Scarritt ME, Pashos NC, Bunnell BA. A review of cellularization strategies for tissue engineering of whole organs. Front Bioeng Biotechnol 2015; 3: 43
CrossRef
Pubmed
Google scholar
|
[200] |
Nari GA, Mariana C, Romina C, Laura R, Gustavo J, Ricardo T, Salvatierra NA. Preparation of a three-dimensional extracellular matrix by decellularization of rabbit livers. Rev Esp Enferm Dig 2013; 105(3): 138–143
CrossRef
Pubmed
Google scholar
|
[201] |
Baptista PM, Siddiqui MM, Lozier G, Rodriguez SR, Atala A, Soker S. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 2011; 53(2): 604–617
CrossRef
Pubmed
Google scholar
|
[202] |
Wang Y, Cui CB, Yamauchi M, Miguez P, Roach M, Malavarca R, Costello MJ, Cardinale V, Wauthier E, Barbier C, Gerber DA, Alvaro D, Reid LM. Lineage restriction of human hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatology 2011; 53(1): 293–305
CrossRef
Pubmed
Google scholar
|
[203] |
Soto-Gutierrez A, Zhang L, Medberry C, Fukumitsu K, Faulk D, Jiang H, Reing J, Gramignoli R, Komori J, Ross M, Nagaya M, Lagasse E, Stolz D, Strom SC, Fox IJ, Badylak SF. A whole-organ regenerative medicine approach for liver replacement. Tissue Eng Part C Methods 2011; 17(6): 677–686
CrossRef
Pubmed
Google scholar
|
[204] |
Mazza G, Rombouts K, Rennie Hall A, Urbani L, Vinh Luong T, Al-Akkad W, Longato L, Brown D, Maghsoudlou P, Dhillon AP, Fuller B, Davidson B, Moore K, Dhar D, De Coppi P, Malago M, Pinzani M. Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Sci Rep 2015; 5(1): 13079
CrossRef
Pubmed
Google scholar
|
[205] |
Verstegen MMA, Willemse J, van den Hoek S, Kremers GJ, Luider TM, van Huizen NA, Willemssen FEJA, Metselaar HJ, IJzermans JNM, van der Laan LJW, de Jonge J. Decellularization of whole human liver grafts using controlled perfusion for transplantable organ bioscaffolds. Stem Cells Dev 2017; 26(18): 1304–1315
CrossRef
Pubmed
Google scholar
|
[206] |
Song JJ, Kim SS, Liu Z, Madsen JC, Mathisen DJ, Vacanti JP, Ott HC. Enhanced in vivo function of bioartificial lungs in rats. Ann Thorac Surg 2011; 92(3): 998–1006
CrossRef
Pubmed
Google scholar
|
[207] |
Petersen TH, Calle EA, Colehour MB, Niklason LE. Bioreactor for the long-term culture of lung tissue. Cell Transplant 2011; 20(7): 1117–1126
CrossRef
Pubmed
Google scholar
|
[208] |
Zhou H, Kitano K, Ren X, Rajab TK, Wu M, Gilpin SE, Wu T, Baugh L, Black LD, Mathisen DJ, Ott HC. Bioengineering human lung grafts on porcine matrix. Ann Surg 2018; 267(3): 590–598
CrossRef
Pubmed
Google scholar
|
[209] |
Zambon JP, Ko IK, Abolbashari M, Huling J, Clouse C, Kim TH, Smith C, Atala A, Yoo JJ. Comparative analysis of two porcine kidney decellularization methods for maintenance of functional vascular architectures. Acta Biomater 2018; 75: 226–234
CrossRef
Pubmed
Google scholar
|
[210] |
Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med 2013; 19(5): 646–651
CrossRef
Pubmed
Google scholar
|
[211] |
Mandrycky C, Phong K, Zheng Y. Tissue engineering toward organ-specific regeneration and disease modeling. MRS Commun 2017; 7(3): 332–347
CrossRef
Pubmed
Google scholar
|
[212] |
Tsuji K, Bandyopadhyay A, Harfe BD, Cox K, Kakar S, Gerstenfeld L, Einhorn T, Tabin CJ, Rosen V. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 2006; 38(12): 1424–1429
CrossRef
Pubmed
Google scholar
|
[213] |
Tsuji K, Cox K, Bandyopadhyay A, Harfe BD, Tabin CJ, Rosen V. BMP4 is dispensable for skeletogenesis and fracture-healing in the limb. J Bone Joint Surg Am 2008; 90(Suppl 1): 14–18
CrossRef
Pubmed
Google scholar
|
[214] |
Tsuji K, Cox K, Gamer L, Graf D, Economides A, Rosen V.Conditional deletion of BMP7 from the limb skeleton does not affect bone formation or fracture repair. J Orthop Res 2010; 28(3): 384–389
CrossRef
Pubmed
Google scholar
|
[215] |
Minear S, Leucht P, Jiang J, Liu B, Zeng A, Fuerer C, Nusse R, Helms JA. Wnt proteins promote bone regeneration. Sci Transl Med 2010; 2(29): 29ra30
CrossRef
Pubmed
Google scholar
|
[216] |
Kakar S, Einhorn TA, Vora S, Miara LJ, Hon G, Wigner NA, Toben D, Jacobsen KA, Al-Sebaei MO, Song M, Trackman PC, Morgan EF, Gerstenfeld LC, Barnes GL. Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures. J Bone Miner Res 2007; 22(12): 1903–1912
CrossRef
Pubmed
Google scholar
|
[217] |
Saidak Z, Le Henaff C, Azzi S, Marty C, Da Nascimento S, Sonnet P, Marie PJ. Wnt/β-catenin signaling mediates osteoblast differentiation triggered by peptide-induced α5β1 integrin priming in mesenchymal skeletal cells. J Biol Chem 2015; 290(11): 6903–6912
CrossRef
Pubmed
Google scholar
|
[218] |
Zhu F, Sweetwyne MT, Hankenson KD. PKCδ is required for Jagged-1 induction of human mesenchymal stem cell osteogenic differentiation. Stem Cells 2013; 31(6): 1181–1192
CrossRef
Pubmed
Google scholar
|
[219] |
Dishowitz MI, Zhu F, Sundararaghavan HG, Ifkovits JL, Burdick JA, Hankenson KD. Jagged1 immobilization to an osteoconductive polymer activates the Notch signaling pathway and induces osteogenesis. J Biomed Mater Res A 2014; 102(5): 1558–1567
CrossRef
Pubmed
Google scholar
|
[220] |
Tian Y, Xu Y, Xue T, Chen L, Shi B, Shu B, Xie C, Max Morandi M, Jaeblon T, Marymont JV, Dong Y. Notch activation enhances mesenchymal stem cell sheet osteogenic potential by inhibition of cellular senescence. Cell Death Dis 2017; 8(2): e2595
CrossRef
Pubmed
Google scholar
|
[221] |
Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 2005; 8(5): 739–750
CrossRef
Pubmed
Google scholar
|
[222] |
Ryu JH, Kim SJ, Kim SH, Oh CD, Hwang SG, Chun CH, Oh SH, Seong JK, Huh TL, Chun JS. Regulation of the chondrocyte phenotype by beta-catenin. Development 2002; 129(23): 5541–5550
CrossRef
Pubmed
Google scholar
|
[223] |
Chaly Y, Blair HC, Smith SM, Bushnell DS, Marinov AD, Campfield BT, Hirsch R. Follistatin-like protein 1 regulates chondrocyte proliferation and chondrogenic differentiation of mesenchymal stem cells. Ann Rheum Dis 2015; 74(7): 1467–1473
CrossRef
Pubmed
Google scholar
|
[224] |
Delhon L, Mahaut C, Goudin N, Gaudas E, Piquand K, Le Goff W, Cormier-Daire V, Le Goff C. Impairment of chondrogenesis and microfibrillar network in Adamtsl2 deficiency. FASEB J 2019; 33(2): 2707–2718
CrossRef
Pubmed
Google scholar
|
[225] |
Fischer J, Knoch N, Sims T, Rosshirt N, Richter W. Time-dependent contribution of BMP, FGF, IGF, and HH signaling to the proliferation of mesenchymal stroma cells during chondrogenesis. J Cell Physiol 2018; 233(11): 8962–8970
CrossRef
Pubmed
Google scholar
|
[226] |
Murphy MK, Huey DJ, Hu JC, Athanasiou KA. TGF-β1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells. Stem Cells 2015; 33(3): 762–773
CrossRef
Pubmed
Google scholar
|
[227] |
Kovermann NJ, Basoli V, Della Bella E, Alini M, Lischer C, Schmal H, Kubosch EJ, Stoddart MJ. BMP2 and TGF-β cooperate differently during synovial-derived stem-cell chondrogenesis in a dexamethasone-dependent manner. Cells 2019; 8(6): 636
CrossRef
Pubmed
Google scholar
|
[228] |
Chung UI, Schipani E, McMahon AP, Kronenberg HM. Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development. J Clin Invest 2001; 107(3): 295–304
CrossRef
Pubmed
Google scholar
|
[229] |
Chen L, Liu G, Li W, Wu X. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells following transfection with Indian hedgehog and sonic hedgehog using a rotary cell culture system. Cell Mol Biol Lett 2019; 24(1): 16
CrossRef
Pubmed
Google scholar
|
[230] |
Parisi A, Lacour F, Giordani L, Colnot S, Maire P, Le Grand F. APC is required for muscle stem cell proliferation and skeletal muscle tissue repair. J Cell Biol 2015; 210(5): 717–726
CrossRef
Pubmed
Google scholar
|
[231] |
Zhang K, Zhang Y, Gu L, Lan M, Liu C, Wang M, Su Y, Ge M, Wang T, Yu Y, Liu C, Li L, Li Q, Zhao Y, Yu Z, Wang F, Li N, Meng Q. Islr regulates canonical Wnt signaling-mediated skeletal muscle regeneration by stabilizing Dishevelled-2 and preventing autophagy. Nat Commun 2018; 9(1): 5129
CrossRef
Pubmed
Google scholar
|
[232] |
Rochat A, Fernandez A, Vandromme M, Molès JP, Bouschet T, Carnac G, Lamb NJ. Insulin and wnt1 pathways cooperate to induce reserve cell activation in differentiation and myotube hypertrophy. Mol Biol Cell 2004; 15(10): 4544–4555
CrossRef
Pubmed
Google scholar
|
[233] |
Baghdadi MB, Castel D, Machado L, Fukada SI, Birk DE, Relaix F, Tajbakhsh S, Mourikis P. Reciprocal signalling by Notch-Collagen V-CALCR retains muscle stem cells in their niche. Nature 2018; 557(7707): 714–718
CrossRef
Pubmed
Google scholar
|
[234] |
Pisconti A, Cornelison DD, Olguín HC, Antwine TL, Olwin BB. Syndecan-3 and Notch cooperate in regulating adult myogenesis. J Cell Biol 2010; 190(3): 427–441
CrossRef
Pubmed
Google scholar
|
[235] |
Pollen AA, Bhaduri A, Andrews MG, Nowakowski TJ, Meyerson OS, Mostajo-Radji MA, Di Lullo E, Alvarado B, Bedolli M, Dougherty ML, Fiddes IT, Kronenberg ZN, Shuga J, Leyrat AA, West JA, Bershteyn M, Lowe CB, Pavlovic BJ, Salama SR, Haussler D, Eichler EE, Kriegstein AR. Establishing cerebral organoids as models of human-specific brain evolution. Cell 2019; 176(4): 743–756.e17
CrossRef
Pubmed
Google scholar
|
[236] |
Fiddes IT, Lodewijk GA, Mooring M, Bosworth CM, Ewing AD, Mantalas GL, Novak AM, van den Bout A, Bishara A, Rosenkrantz JL, Lorig-Roach R, Field AR, Haeussler M, Russo L, Bhaduri A, Nowakowski TJ, Pollen AA, Dougherty ML, Nuttle X, Addor MC, Zwolinski S, Katzman S, Kriegstein A, Eichler EE, Salama SR, Jacobs FMJ, Haussler D. Human-specific NOTCH2NL genes affect notch signaling and cortical neurogenesis. Cell 2018; 173(6): 1356–1369.e22
CrossRef
Pubmed
Google scholar
|
[237] |
Andersen J, Revah O, Miura Y, Thom N, Amin ND, Kelley KW, Singh M, Chen X, Thete MV, Walczak EM, Vogel H, Fan HC, Paşca SP. Generation of functional human 3D cortico-motor assembloids. Cell 2020;183(7):1913–1929.e1926
CrossRef
Google scholar
|
[238] |
Gouti M, Tsakiridis A, Wymeersch FJ, Huang Y, Kleinjung J, Wilson V, Briscoe J. In vitro generation of neuromesodermal progenitors reveals distinct roles for wnt signalling in the specification of spinal cord and paraxial mesoderm identity. PLoS Biol 2014; 12(8): e1001937
CrossRef
Pubmed
Google scholar
|
[239] |
Rivetti di Val Cervo P, Romanov RA, Spigolon G, Masini D, Martín-Montañez E, Toledo EM, La Manno G, Feyder M, Pifl C, Ng YH, Sánchez SP, Linnarsson S, Wernig M, Harkany T, Fisone G, Arenas E. Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson’s disease model. Nat Biotechnol 2017; 35(5): 444–452
CrossRef
Pubmed
Google scholar
|
[240] |
Ma JJ, Ju X, Xu RJ, Wang WH, Luo ZP, Liu CM, Yang L, Li B, Chen JQ, Meng B, Yang HL, Zhou FQ, Saijilafu. Telomerase reverse transcriptase and p53 regulate mammalian peripheral nervous system and CNS axon regeneration downstream of c-Myc. J Neurosci 2019; 39(46): 9107–9118
CrossRef
Pubmed
Google scholar
|
[241] |
Mills RJ, Titmarsh DM, Koenig X, Parker BL, Ryall JG, Quaife-Ryan GA, Voges HK, Hodson MP, Ferguson C, Drowley L, Plowright AT, Needham EJ, Wang QD, Gregorevic P, Xin M, Thomas WG, Parton RG, Nielsen LK, Launikonis BS, James DE, Elliott DA, Porrello ER, Hudson JE. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc Natl Acad Sci USA 2017; 114(40): E8372–E8381
CrossRef
Pubmed
Google scholar
|
[242] |
Titmarsh DM, Glass NR, Mills RJ, Hidalgo A, Wolvetang EJ, Porrello ER, Hudson JE, Cooper-White JJ. Induction of human iPSC-derived cardiomyocyte proliferation revealed by combinatorial screening in high density microbioreactor arrays. Sci Rep 2016; 6(1): 24637
CrossRef
Pubmed
Google scholar
|
[243] |
Drakhlis L, Biswanath S, Farr CM, Lupanow V, Teske J, Ritzenhoff K, Franke A, Manstein F, Bolesani E, Kempf H, Liebscher S, Schenke-Layland K, Hegermann J, Nolte L, Meyer H, de la Roche J, Thiemann S, Wahl-Schott C, Martin U, Zweigerdt R. Human heart-forming organoids recapitulate early heart and foregut development. Nat Biotechnol 2021; 39(6): 737–746
CrossRef
Pubmed
Google scholar
|
[244] |
Kodo K, Ong SG, Jahanbani F, Termglinchan V, Hirono K, InanlooRahatloo K, Ebert AD, Shukla P, Abilez OJ, Churko JM, Karakikes I, Jung G, Ichida F, Wu SM, Snyder MP, Bernstein D, Wu JC. iPSC-derived cardiomyocytes reveal abnormal TGF-β signalling in left ventricular non-compaction cardiomyopathy. Nat Cell Biol 2016; 18(10): 1031–1042
CrossRef
Pubmed
Google scholar
|
[245] |
Mohamed TMA, Ang YS, Radzinsky E, Zhou P, Huang Y, Elfenbein A, Foley A, Magnitsky S, Srivastava D. Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell 2018; 173(1): 104–116.e12
CrossRef
Pubmed
Google scholar
|
[246] |
Mikryukov AA, Mazine A, Wei B, Yang D, Miao Y, Gu M, Keller GM. BMP10 signaling promotes the development of endocardial cells from human pluripotent stem cell-derived cardiovascular progenitors. Cell Stem Cell 2021; 28(1): 96–111.e7
CrossRef
Pubmed
Google scholar
|
[247] |
Wimmer RA, Leopoldi A, Aichinger M, Wick N, Hantusch B, Novatchkova M, Taubenschmid J, Hämmerle M, Esk C, Bagley JA, Lindenhofer D, Chen G, Boehm M, Agu CA, Yang F, Fu B, Zuber J, Knoblich JA, Kerjaschki D, Penninger JM. Human blood vessel organoids as a model of diabetic vasculopathy. Nature 2019; 565(7740): 505–510
CrossRef
Pubmed
Google scholar
|
[248] |
Wimmer RA, Leopoldi A, Aichinger M, Kerjaschki D, Penninger JM. Generation of blood vessel organoids from human pluripotent stem cells. Nat Protoc 2019; 14(11): 3082–3100
CrossRef
Pubmed
Google scholar
|
[249] |
Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, Sato T, Stange DE, Begthel H, van den Born M, Danenberg E, van den Brink S, Korving J, Abo A, Peters PJ, Wright N, Poulsom R, Clevers H. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 2010; 6(1): 25–36
CrossRef
Pubmed
Google scholar
|
[250] |
Sigal M, Logan CY, Kapalczynska M, Mollenkopf HJ, Berger H, Wiedenmann B, Nusse R, Amieva MR, Meyer TF. Stromal R-spondin orchestrates gastric epithelial stem cells and gland homeostasis. Nature 2017; 548(7668): 451–455
CrossRef
Pubmed
Google scholar
|
[251] |
Yan KS, Janda CY, Chang J, Zheng GXY, Larkin KA, Luca VC, Chia LA, Mah AT, Han A, Terry JM, Ootani A, Roelf K, Lee M, Yuan J, Li X, Bolen CR, Wilhelmy J, Davies PS, Ueno H, von Furstenberg RJ, Belgrader P, Ziraldo SB, Ordonez H, Henning SJ, Wong MH, Snyder MP, Weissman IL, Hsueh AJ, Mikkelsen TS, Garcia KC, Kuo CJ. Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal. Nature 2017; 545(7653): 238–242
CrossRef
Pubmed
Google scholar
|
[252] |
Kim KA, Kakitani M, Zhao J, Oshima T, Tang T, Binnerts M, Liu Y, Boyle B, Park E, Emtage P, Funk WD, Tomizuka K. Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science 2005; 309(5738): 1256–1259
CrossRef
Pubmed
Google scholar
|
[253] |
Schuijers J, Junker JP, Mokry M, Hatzis P, Koo BK, Sasselli V, van der Flier LG, Cuppen E, van Oudenaarden A, Clevers H. Ascl2 acts as an R-spondin/Wnt-responsive switch to control stemness in intestinal crypts. Cell Stem Cell 2015; 16(2): 158–170
CrossRef
Pubmed
Google scholar
|
[254] |
Yin X, Farin HF, van Es JH, Clevers H, Langer R, Karp JM. Niche-independent high-purity cultures of Lgr5+ intestinal stem cells and their progeny. Nat Methods 2014; 11(1): 106–112
CrossRef
Pubmed
Google scholar
|
[255] |
Serra D, Mayr U, Boni A, Lukonin I, Rempfler M, Challet Meylan L, Stadler MB, Strnad P, Papasaikas P, Vischi D, Waldt A, Roma G, Liberali P. Self-organization and symmetry breaking in intestinal organoid development. Nature 2019; 569(7754): 66–72
CrossRef
Pubmed
Google scholar
|
[256] |
Huch M, Dorrell C, Boj SF, van Es JH, Li VS, van de Wetering M, Sato T, Hamer K, Sasaki N, Finegold MJ, Haft A, Vries RG, Grompe M, Clevers H. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 2013; 494(7436): 247–250
CrossRef
Pubmed
Google scholar
|
[257] |
Lin Y, Fang ZP, Liu HJ, Wang LJ, Cheng Z, Tang N, Li T, Liu T, Han HX, Cao G, Liang L, Ding YQ, Zhou WJ. HGF/R-spondin1 rescues liver dysfunction through the induction of Lgr5+ liver stem cells. Nat Commun 2017; 8(1): 1175
CrossRef
Pubmed
Google scholar
|
[258] |
Ochoa B, Syn WK, Delgado I, Karaca GF, Jung Y, Wang J, Zubiaga AM, Fresnedo O, Omenetti A, Zdanowicz M, Choi SS, Diehl AM. Hedgehog signaling is critical for normal liver regeneration after partial hepatectomy in mice. Hepatology 2010; 51(5): 1712–1723
CrossRef
Pubmed
Google scholar
|
[259] |
Langiewicz M, Graf R, Humar B, Clavien PA. JNK1 induces hedgehog signaling from stellate cells to accelerate liver regeneration in mice. J Hepatol 2018; 69(3): 666–675
CrossRef
Pubmed
Google scholar
|
[260] |
Barker N, Rookmaaker MB, Kujala P, Ng A, Leushacke M, Snippert H, van de Wetering M, Tan S, Van Es JH, Huch M, Poulsom R, Verhaar MC, Peters PJ, Clevers H. Lgr5+ve stem/progenitor cells contribute to nephron formation during kidney development. Cell Rep 2012; 2(3): 540–552
CrossRef
Pubmed
Google scholar
|
[261] |
Low JH, Li P, Chew EGY, Zhou B, Suzuki K, Zhang T, Lian MM, Liu M, Aizawa E, Rodriguez Esteban C, Yong KSM, Chen Q, Campistol JM, Fang M, Khor CC, Foo JN, Izpisua Belmonte JC, Xia Y. Generation of human PSC-derived kidney organoids with patterned nephron segments and a de novo vascular network. Cell Stem Cell 2019; 25(3): 373–387.e9
CrossRef
Pubmed
Google scholar
|
[262] |
Wu H, Uchimura K, Donnelly EL, Kirita Y, Morris SA, Humphreys BD. Comparative analysis and refinement of human PSC-derived kidney organoid differentiation with single-cell transcriptomics. Cell Stem Cell 2018; 23(6): 869–881.e8
CrossRef
Pubmed
Google scholar
|
[263] |
Forbes TA, Howden SE, Lawlor K, Phipson B, Maksimovic J, Hale L, Wilson S, Quinlan C, Ho G, Holman K, Bennetts B, Crawford J, Trnka P, Oshlack A, Patel C, Mallett A, Simons C, Little MH. Patient-iPSC-derived kidney organoids show functional validation of a ciliopathic renal phenotype and reveal underlying pathogenetic mechanisms. Am J Hum Genet 2018; 102(5): 816–831
CrossRef
Pubmed
Google scholar
|
[264] |
Shin K, Lee J, Guo N, Kim J, Lim A, Qu L, Mysorekar IU, Beachy PA. Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature 2011; 472(7341): 110–114
CrossRef
Pubmed
Google scholar
|
[265] |
Kim E, Choi S, Kang B, Kong J, Kim Y, Yoon WH, Lee HR, Kim S, Kim HM, Lee H, Yang C, Lee YJ, Kang M, Roh TY, Jung S, Kim S, Ku JH, Shin K. Creation of bladder assembloids mimicking tissue regeneration and cancer. Nature 2020; 588(7839): 664–669
CrossRef
Pubmed
Google scholar
|
[266] |
Santos CP, Lapi E, Martínez de Villarreal J, Álvaro-Espinosa L, Fernández-Barral A, Barbáchano A, Domínguez O, Laughney AM, Megías D, Muñoz A, Real FX. Urothelial organoids originating from Cd49fhigh mouse stem cells display Notch-dependent differentiation capacity. Nat Commun 2019; 10(1): 4407
CrossRef
Pubmed
Google scholar
|
[267] |
Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S, Toelle B, Berger H, Mollenkopf HJ, Mangler M, Sehouli J, Fotopoulou C, Meyer TF. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun 2015; 6(1): 8989
CrossRef
Pubmed
Google scholar
|
[268] |
Xie Y, Park ES, Xiang D, Li Z. Long-term organoid culture reveals enrichment of organoid-forming epithelial cells in the fimbrial portion of mouse fallopian tube. Stem Cell Res (Amst) 2018; 32: 51–60
CrossRef
Pubmed
Google scholar
|
[269] |
Boretto M, Maenhoudt N, Luo X, Hennes A, Boeckx B, Bui B, Heremans R, Perneel L, Kobayashi H, Van Zundert I, Brems H, Cox B, Ferrante M, Uji-I H, Koh KP, D’Hooghe T, Vanhie A, Vergote I, Meuleman C, Tomassetti C, Lambrechts D, Vriens J, Timmerman D, Vankelecom H. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nat Cell Biol 2019; 21(8): 1041–1051
CrossRef
Pubmed
Google scholar
|
[270] |
Boretto M, Cox B, Noben M, Hendriks N, Fassbender A, Roose H, Amant F, Timmerman D, Tomassetti C, Vanhie A, Meuleman C, Ferrante M, Vankelecom H. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development 2017; 144(10): 1775–1786
CrossRef
Pubmed
Google scholar
|
[271] |
Ali A, Syed SM, Jamaluddin MFB, Colino-Sanguino Y, Gallego-Ortega D, Tanwar PS. Cell lineage tracing identifies hormone-regulated and Wnt-responsive vaginal epithelial stem cells. Cell Rep 2020; 30(5): 1463–1477.e7
CrossRef
Pubmed
Google scholar
|
[272] |
Zhang B, Ci X, Tao R, Ni JJ, Xuan X, King JL, Xia S, Li Y, Frierson HF, Lee DK, Xu J, Osunkoya AO, Dong JT. Klf5 acetylation regulates luminal differentiation of basal progenitors in prostate development and regeneration. Nat Commun 2020; 11(1): 997
CrossRef
Pubmed
Google scholar
|
[273] |
Wang Y, Yu A, Yu FX. The Hippo pathway in tissue homeostasis and regeneration. Protein Cell 2017; 8(5): 349–359
CrossRef
Pubmed
Google scholar
|
[274] |
Moya IM, Halder G. Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat Rev Mol Cell Biol 2019; 20(4): 211–226
CrossRef
Pubmed
Google scholar
|
[275] |
Lian I, Kim J, Okazawa H, Zhao J, Zhao B, Yu J, Chinnaiyan A, Israel MA, Goldstein LS, Abujarour R, Ding S, Guan KL. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev 2010; 24(11): 1106–1118
CrossRef
Pubmed
Google scholar
|
[276] |
Qin H, Blaschke K, Wei G, Ohi Y, Blouin L, Qi Z, Yu J, Yeh RF, Hebrok M, Ramalho-Santos M. Transcriptional analysis of pluripotency reveals the Hippo pathway as a barrier to reprogramming. Hum Mol Genet 2012; 21(9): 2054–2067
CrossRef
Pubmed
Google scholar
|
[277] |
Qin H, Hejna M, Liu Y, Percharde M, Wossidlo M, Blouin L, Durruthy-Durruthy J, Wong P, Qi Z, Yu J, Qi LS, Sebastiano V, Song JS, Ramalho-Santos M. YAP induces human naive pluripotency. Cell Rep 2016; 14(10): 2301–2312
CrossRef
Pubmed
Google scholar
|
[278] |
Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, Fussenegger M, Deng X. Role of YAP/TAZ in cell lineage fate determination and related signaling pathways. Front Cell Dev Biol 2020; 8: 735
CrossRef
Pubmed
Google scholar
|
[279] |
Hong AW, Meng Z, Guan KL. The Hippo pathway in intestinal regeneration and disease. Nat Rev Gastroenterol Hepatol 2016; 13(6): 324–337
CrossRef
Pubmed
Google scholar
|
[280] |
Driskill JH, Pan D. The Hippo pathway in liver homeostasis and pathophysiology. Annu Rev Pathol 2021; 16(1): 299–322
CrossRef
Pubmed
Google scholar
|
[281] |
Elbediwy A, Vincent-Mistiaen ZI, Spencer-Dene B, Stone RK, Boeing S, Wculek SK, Cordero J, Tan EH, Ridgway R, Brunton VG, Sahai E, Gerhardt H, Behrens A, Malanchi I, Sansom OJ, Thompson BJ. Integrin signalling regulates YAP and TAZ to control skin homeostasis. Development 2016; 143(10): 1674–1687
Pubmed
|
[282] |
Wang J, Liu S, Heallen T, Martin JF. The Hippo pathway in the heart: pivotal roles in development, disease, and regeneration. Nat Rev Cardiol 2018; 15(11): 672–684
CrossRef
Pubmed
Google scholar
|
[283] |
He X, Zhang L, Queme LF, Liu X, Lu A, Waclaw RR, Dong X, Zhou W, Kidd G, Yoon SO, Buonanno A, Rubin JB, Xin M, Nave KA, Trapp BD, Jankowski MP, Lu QR. A histone deacetylase 3-dependent pathway delimits peripheral myelin growth and functional regeneration. Nat Med 2018; 24(3): 338–351
CrossRef
Pubmed
Google scholar
|
[284] |
Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer. Cancer Cell 2016; 29(6): 783–803
CrossRef
Pubmed
Google scholar
|
[285] |
Erickson JR, Echeverri K. Learning from regeneration research organisms: the circuitous road to scar free wound healing. Dev Biol 2018; 433(2): 144–154
CrossRef
Pubmed
Google scholar
|
[286] |
Taha IN, Naba A. Exploring the extracellular matrix in health and disease using proteomics. Essays Biochem 2019; 63(3): 417–432
CrossRef
Pubmed
Google scholar
|
[287] |
Doyle JJ, Gerber EE, Dietz HC. Matrix-dependent perturbation of TGFβ signaling and disease. FEBS Lett 2012; 586(14): 2003–2015
CrossRef
Pubmed
Google scholar
|
[288] |
Argyropoulos AJ, Robichaud P, Balimunkwe RM, Fisher GJ, Hammerberg C, Yan Y, Quan T. Alterations of dermal connective tissue collagen in diabetes: molecular basis of aged-appearing skin. PLoS One 2016; 11(4): e0153806
CrossRef
Pubmed
Google scholar
|
[289] |
Vigneswari S, Chai JM, Kamarudin KH, Amirul AA, Focarete ML, Ramakrishna S. Elucidating the surface functionality of biomimetic RGD peptides immobilized on nano-P(3HB-co-4HB) for H9c2 myoblast cell proliferation. Front Bioeng Biotechnol 2020; 8: 567693
CrossRef
Pubmed
Google scholar
|
[290] |
Masaeli E, Nasr-Esfahani MH. An in vivo evaluation of induced chondrogenesis by decellularized extracellular matrix particles. J Biomed Mater Res A 2021; 109(5): 627–636
CrossRef
Pubmed
Google scholar
|
[291] |
Yen YH, Pu CM, Liu CW, Chen YC, Chen YC, Liang CJ, Hsieh JH, Huang HF, Chen YL. Curcumin accelerates cutaneous wound healing via multiple biological actions: the involvement of TNF-α, MMP-9, α-SMA, and collagen. Int Wound J 2018; 15(4): 605–617
CrossRef
Pubmed
Google scholar
|
[292] |
Fisher MB, Liang R, Jung HJ, Kim KE, Zamarra G, Almarza AJ, McMahon PJ, Woo SL. Potential of healing a transected anterior cruciate ligament with genetically modified extracellular matrix bioscaffolds in a goat model. Knee Surg Sports Traumatol Arthrosc 2012; 20(7): 1357–1365
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |