Autophagy in hepatic progenitor cells modulates exosomal miRNAs to inhibit liver fibrosis in schistosomiasis

Yue Yuan, Jiaxuan Li, Xun Lu, Min Chen, Huifang Liang, Xiao-ping Chen, Xin Long, Bixiang Zhang, Song Gong, Xiaowei Huang, Jianping Zhao, Qian Chen

PDF(9573 KB)
PDF(9573 KB)
Front. Med. ›› 2024, Vol. 18 ›› Issue (3) : 538-557. DOI: 10.1007/s11684-024-1079-1
RESEARCH ARTICLE

Autophagy in hepatic progenitor cells modulates exosomal miRNAs to inhibit liver fibrosis in schistosomiasis

Author information +
History +

Abstract

Schistosoma infection is one of the major causes of liver fibrosis. Emerging roles of hepatic progenitor cells (HPCs) in the pathogenesis of liver fibrosis have been identified. Nevertheless, the precise mechanism underlying the role of HPCs in liver fibrosis in schistosomiasis remains unclear. This study examined how autophagy in HPCs affects schistosomiasis-induced liver fibrosis by modulating exosomal miRNAs. The activation of HPCs was verified by immunohistochemistry (IHC) and immunofluorescence (IF) staining in fibrotic liver from patients and mice with Schistosoma japonicum infection. By coculturing HPCs with hepatic stellate cells (HSCs) and assessing the autophagy level in HPCs by proteomic analysis and in vitro phenotypic assays, we found that impaired autophagy degradation in these activated HPCs was mediated by lysosomal dysfunction. Blocking autophagy by the autophagy inhibitor chloroquine (CQ) significantly diminished liver fibrosis and granuloma formation in S. japonicum-infected mice. HPC-secreted extracellular vehicles (EVs) were further isolated and studied by miRNA sequencing. miR-1306-3p, miR-493-3p, and miR-34a-5p were identified, and their distribution into EVs was inhibited due to impaired autophagy in HPCs, which contributed to suppressing HSC activation. In conclusion, we showed that the altered autophagy process upon HPC activation may prevent liver fibrosis by modulating exosomal miRNA release and inhibiting HSC activation in schistosomiasis. Targeting the autophagy degradation process may be a therapeutic strategy for liver fibrosis during Schistosoma infection.

Keywords

schistosomiasis / hepatic progenitor cell / autophagy / extracellular vesicle / fibrosis / miRNA

Cite this article

Download citation ▾
Yue Yuan, Jiaxuan Li, Xun Lu, Min Chen, Huifang Liang, Xiao-ping Chen, Xin Long, Bixiang Zhang, Song Gong, Xiaowei Huang, Jianping Zhao, Qian Chen. Autophagy in hepatic progenitor cells modulates exosomal miRNAs to inhibit liver fibrosis in schistosomiasis. Front. Med., 2024, 18(3): 538‒557 https://doi.org/10.1007/s11684-024-1079-1

References

[1]
McManus DP, Dunne DW, Sacko M, Utzinger J, Vennervald BJ, Zhou XN. Schistosomiasis. Nat Rev Dis Primers 2018; 4(1): 13
CrossRef Google scholar
[2]
Kokaliaris C, Garba A, Matuska M, Bronzan RN, Colley DG, Dorkenoo AM, Ekpo UF, Fleming FM, French MD, Kabore A, Mbonigaba JB, Midzi N, Mwinzi PNM, N’Goran EK, Polo MR, Sacko M, Tchuem Tchuenté LA, Tukahebwa EM, Uvon PA, Yang G, Wiesner L, Zhang Y, Utzinger J, Vounatsou P. Effect of preventive chemotherapy with praziquantel on schistosomiasis among school-aged children in sub-Saharan Africa: a spatiotemporal modelling study. Lancet Infect Dis 2022; 22(1): 136–149
CrossRef Google scholar
[3]
Wilson RA. Schistosomiasis then and now: what has changed in the last 100 years?. Parasitology 2020; 147(5): 507–515
CrossRef Google scholar
[4]
Wynn TA, Thompson RW, Cheever AW, Mentink-Kane MM. Immunopathogenesis of schistosomiasis. Immunol Rev 2004; 201(1): 156–167
CrossRef Google scholar
[5]
Wiegand RE, Fleming FM, de Vlas SJ, Odiere MR, Kinung’hi S, King CH, Evans D, French MD, Montgomery SP, Straily A, Utzinger J, Vounatsou P, Secor WE. Defining elimination as a public health problem for schistosomiasis control programmes: beyond prevalence of heavy-intensity infections. Lancet Glob Health 2022; 10(9): e1355–e1359
CrossRef Google scholar
[6]
Kong H, He J, Guo S, Song Q, Xiang D, Tao R, Yu H, Chen G, Huang Z, Ning Q, Huang J. Endothelin receptors promote schistosomiasis-induced hepatic fibrosis via splenic B cells. PLoS Pathog 2020; 16(10): e1008947
CrossRef Google scholar
[7]
Wang X, Lopategi A, Ge X, Lu Y, Kitamura N, Urtasun R, Leung TM, Fiel MI, Nieto N. Osteopontin induces ductular reaction contributing to liver fibrosis. Gut 2014; 63(11): 1805–1818
CrossRef Google scholar
[8]
Ma M, Hua S, Min X, Wang L, Li J, Wu P, Liang H, Zhang B, Chen X, Xiang S. p53 positively regulates the proliferation of hepatic progenitor cells promoted by laminin-521. Signal Transduct Target Ther 2022; 7(1): 290
CrossRef Google scholar
[9]
Kitade M, Kaji K, Yoshiji H. Relationship between hepatic progenitor cell-mediated liver regeneration and non-parenchymal cells. Hepatol Res 2016; 46(12): 1187–1193
CrossRef Google scholar
[10]
Zhang B, Wu X, Li J, Ning A, Zhang B, Liu J, Song L, Yan C, Sun X, Zheng K, Wu Z. Hepatic progenitor cells promote the repair of schistosomiasis liver injury by inhibiting IL-33 secretion in mice. Stem Cell Res Ther 2021; 12(1): 546
CrossRef Google scholar
[11]
EL Andaloussi S, Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 2013; 12(5): 347–357
CrossRef Google scholar
[12]
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020; 367(6478): eaau6977
CrossRef Google scholar
[13]
Yuan Y, Zhao J, Chen M, Liang H, Long X, Zhang B, Chen X, Chen Q. Understanding the pathophysiology of exosomes in schistosomiasis: a new direction for disease control and prevention. Front Immunol 2021; 12: 634138
CrossRef Google scholar
[14]
Hyung S, Jeong J, Shin K, Kim JY, Yim JH, Yu CJ, Jung HS, Hwang KG, Choi D, Hong JW. Exosomes derived from chemically induced human hepatic progenitors inhibit oxidative stress induced cell death. Biotechnol Bioeng 2020; 117(9): 2658–2667
CrossRef Google scholar
[15]
Royo F, Azkargorta M, Lavin JL, Clos-Garcia M, Cortazar AR, Gonzalez-Lopez M, Barcena L, Del Portillo HA, Yáñez-Mó M, Marcilla A, Borras FE, Peinado H, Guerrero I, Váles-Gómez M, Cereijo U, Sardon T, Aransay AM, Elortza F, Falcon-Perez JM. Extracellular vesicles from liver progenitor cells downregulates fibroblast metabolic activity and increase the expression of immune-response related molecules. Front Cell Dev Biol 2021; 8: 613583
CrossRef Google scholar
[16]
Mederacke I, Dapito DH, Affò S, Uchinami H, Schwabe RF. High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers. Nat Protoc 2015; 10(2): 305–315
CrossRef Google scholar
[17]
Hong T, Xiong X, Chen Y, Wang Q, Fu X, Meng Q, Lu Y, Li X. Parathyroid hormone receptor-1 signaling aggravates hepatic fibrosis through upregulating cAMP response element-binding protein-like 2. Hepatology 2023; 78(6): 1763–1776
CrossRef Google scholar
[18]
Meng Y, Zhao Q, An L, Jiao S, Li R, Sang Y, Liao J, Nie P, Wen F, Ju J, Zhou Z, Wei L. A TNFR2-hnRNPK axis promotes primary liver cancer development via activation of YAP signaling in hepatic progenitor cells. Cancer Res 2021; 81(11): 3036–3050
CrossRef Google scholar
[19]
Dong KS, Chen Y, Yang G, Liao ZB, Zhang HW, Liang HF, Chen XP, Dong HH. TGF-β1 accelerates the hepatitis B virus X-induced malignant transformation of hepatic progenitor cells by upregulating miR-199a-3p. Oncogene 2020; 39(8): 1807–1820
CrossRef Google scholar
[20]
Lu X, Yuan Y, Cai N, Rao D, Chen M, Chen X, Zhang B, Liang H, Zhang L. TRIM55 promotes proliferation of hepatocellular carcinoma through stabilizing TRIP6 to activate Wnt/β-catenin signaling. J Hepatocell Carcinoma 2023; 10: 1281–1293
CrossRef Google scholar
[21]
Ma J, Chen T, Wu S, Yang C, Bai M, Shu K, Li K, Zhang G, Jin Z, He F, Hermjakob H, Zhu Y. iProX: an integrated proteome resource. Nucleic Acids Res 2019; 47(D1): D1211–D1217
CrossRef Google scholar
[22]
Chen T, Ma J, Liu Y, Chen Z, Xiao N, Lu Y, Fu Y, Yang C, Li M, Wu S, Wang X, Li D, He F, Hermjakob H, Zhu Y. iProX in 2021: connecting proteomics data sharing with big data. Nucleic Acids Res 2022; 50(D1): D1522–D1527
CrossRef Google scholar
[23]
Eitan E, Suire C, Zhang S, Mattson MP. Impact of lysosome status on extracellular vesicle content and release. Ageing Res Rev 2016; 32: 65–74
CrossRef Google scholar
[24]
Kitada M, Koya D. Autophagy in metabolic disease and ageing. Nat Rev Endocrinol 2021; 17(11): 647–661
CrossRef Google scholar
[25]
Fleming A, Bourdenx M, Fujimaki M, Karabiyik C, Krause GJ, Lopez A, Martín-Segura A, Puri C, Scrivo A, Skidmore J, Son SM, Stamatakou E, Wrobel L, Zhu Y, Cuervo AM, Rubinsztein DC. The different autophagy degradation pathways and neurodegeneration. Neuron 2022; 110(6): 935–966
CrossRef Google scholar
[26]
Chu Y, Kang Y, Yan C, Yang C, Zhang T, Huo H, Liu Y. LUBAC and OTULIN regulate autophagy initiation and maturation by mediating the linear ubiquitination and the stabilization of ATG13. Autophagy 2021; 17(7): 1684–1699
CrossRef Google scholar
[27]
Allaire M, Rautou PE, Codogno P, Lotersztajn S. Autophagy in liver diseases: time for translation?. Hepatol 2019; 70(5): 985–998
CrossRef Google scholar
[28]
Chan H, Li Q, Wang X, Liu WY, Hu W, Zeng J, Xie C, Kwong TNY, Ho IHT, Liu X, Chen H, Yu J, Ko H, Chan RCY, Ip M, Gin T, Cheng ASL, Zhang L, Chan MTV, Wong SH, Wu WKK. Vitamin D3 and carbamazepine protect against Clostridioides difficile infection in mice by restoring macrophage lysosome acidification. Autophagy 2022; 18(9): 2050–2067
CrossRef Google scholar
[29]
Pellegrini P, Strambi A, Zipoli C, Hägg-Olofsson M, Buoncervello M, Linder S, De Milito A. Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies. Autophagy 2014; 10(4): 562–571
CrossRef Google scholar
[30]
Settembre C, De Cegli R, Mansueto G, Saha PK, Vetrini F, Visvikis O, Huynh T, Carissimo A, Palmer D, Klisch TJ, Wollenberg AC, Di Bernardo D, Chan L, Irazoqui JE, Ballabio A. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol 2013; 15(6): 647–658
CrossRef Google scholar
[31]
Mastoridou EM, Goussia AC, Glantzounis GK, Kanavaros P, Charchanti AV. Autophagy and exosomes: cross-regulated pathways playing major roles in hepatic stellate cells activation and liver fibrosis. Front Physiol 2022; 12: 801340
CrossRef Google scholar
[32]
Raudenska M, Balvan J, Masarik M. Crosstalk between autophagy inhibitors and endosome-related secretory pathways: a challenge for autophagy-based treatment of solid cancers. Mol Cancer 2021; 20(1): 140
CrossRef Google scholar
[33]
Gao J, Wei B, de Assuncao TM, Liu Z, Hu X, Ibrahim S, Cooper SA, Cao S, Shah VH, Kostallari E. Hepatic stellate cell autophagy inhibits extracellular vesicle release to attenuate liver fibrosis. J Hepatol 2020; 73(5): 1144–1154
CrossRef Google scholar
[34]
Nowacki FC, Swain MT, Klychnikov OI, Niazi U, Ivens A, Quintana JF, Hensbergen PJ, Hokke CH, Buck AH, Hoffmann KF. Protein and small non-coding RNA-enriched extracellular vesicles are released by the pathogenic blood fluke Schistosoma mansoni. J Extracell Vesicles 2015; 4(1): 28665
CrossRef Google scholar
[35]
Xu J, Yang KC, Go NE, Colborne S, Ho CJ, Hosseini-Beheshti E, Lystad AH, Simonsen A, Guns ET, Morin GB, Gorski SM. Chloroquine treatment induces secretion of autophagy-related proteins and inclusion of Atg8-family proteins in distinct extracellular vesicle populations. Autophagy 2022; 18(11): 2547–2560
CrossRef Google scholar
[36]
Ferreira JV, da Rosa Soares A, Pereira P. LAMP2A mediates the loading of proteins into endosomes and selects exosomal cargo. Autophagy 2022; 18(9): 2263–2265
CrossRef Google scholar
[37]
Buck AH. Cells choose their words wisely. Cell 2022; 185(7): 1114–1116
CrossRef Google scholar
[38]
Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L, Baldacchino S, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis-Wozowicz S, Boilard E, Boireau W, Bongiovanni A, Borràs FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM, Brennan MA, Brigstock DR, Brisson A, Broekman ML, Bromberg JF, Bryl-Górecka P, Buch S, Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzás EI, Byrd JB, Camussi G, Carter DR, Caruso S, Chamley LW, Chang YT, Chen C, Chen S, Cheng L, Chin AR, Clayton A, Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro-da-Silva A, Couch Y, Coumans FA, Coyle B, Crescitelli R, Criado MF, D’Souza-Schorey C, Das S, Datta Chaudhuri A, de Candia P, De Santana EF, De Wever O, Del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D, Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TA, Duarte FV, Duncan HM, Eichenberger RM, Ekstrm K, El Andaloussi S, Elie-Caille C, Erdbrügger U, Falcón-Pérez JM, Fatima F, Fish JE, Flores-Bellver M, Frsnits A, Frelet-Barrand A, Fricke F, Fuhrmann G, Gabrielsson S, Gámez-Valero A, Gardiner C, Grtner K, Gaudin R, Gho YS, Giebel B, Gilbert C, Gimona M, Giusti I, Goberdhan DC, Grgens A, Gorski SM, Greening DW, Gross JC, Gualerzi A, Gupta GN, Gustafson D, Handberg A, Haraszti RA, Harrison P, Hegyesi H, Hendrix A, Hill AF, Hochberg FH, Hoffmann KF, Holder B, Holthofer H, Hosseinkhani B, Hu G, Huang Y, Huber V, Hunt S, Ibrahim AG, Ikezu T, Inal JM, Isin M, Ivanova A, Jackson HK, Jacobsen S, Jay SM, Jayachandran M, Jenster G, Jiang L, Johnson SM, Jones JC, Jong A, Jovanovic-Talisman T, Jung S, Kalluri R, Kano SI, Kaur S, Kawamura Y, Keller ET, Khamari D, Khomyakova E, Khvorova A, Kierulf P, Kim KP, Kislinger T, Klingeborn M, Klinke DJ 2nd, Kornek M, Kosanović MM, Kovács AF, Krmer-Albers EM, Krasemann S, Krause M, Kurochkin IV, Kusuma GD, Kuypers S, Laitinen S, Langevin SM, Languino LR, Lannigan J, Lsser C, Laurent LC, Lavieu G, Lázaro-Ibáez E, Le Lay S, Lee MS, Lee YXF, Lemos DS, Lenassi M, Leszczynska A, Li IT, Liao K, Libregts SF, Ligeti E, Lim R, Lim SK, Linē A, Linnemannstns K, Llorente A, Lombard CA, Lorenowicz MJ, Lrincz AM, Ltvall J, Lovett J, Lowry MC, Loyer X, Lu Q, Lukomska B, Lunavat TR, Maas SL, Malhi H, Marcilla A, Mariani J, Mariscal J, Martens-Uzunova ES, Martin-Jaular L, Martinez MC, Martins VR, Mathieu M, Mathivanan S, Maugeri M, McGinnis LK, McVey MJ, Meckes DG Jr, Meehan KL, Mertens I, Minciacchi VR, Mller A, Mller Jrgensen M, Morales-Kastresana A, Morhayim J, Mullier F, Muraca M, Musante L, Mussack V, Muth DC, Myburgh KH, Najrana T, Nawaz M, Nazarenko I, Nejsum P, Neri C, Neri T, Nieuwland R, Nimrichter L, Nolan JP, Nolte-’t Hoen EN, Noren Hooten N, O’Driscoll L, O’Grady T, O’Loghlen A, Ochiya T, Olivier M, Ortiz A, Ortiz LA, Osteikoetxea X, stergaard O, Ostrowski M, Park J, Pegtel DM, Peinado H, Perut F, Pfaffl MW, Phinney DG, Pieters BC, Pink RC, Pisetsky DS, Pogge von Strandmann E, Polakovicova I, Poon IK, Powell BH, Prada I, Pulliam L, Quesenberry P, Radeghieri A, Raffai RL, Raimondo S, Rak J, Ramirez MI, Raposo G, Rayyan MS, Regev-Rudzki N, Ricklefs FL, Robbins PD, Roberts DD, Rodrigues SC, Rohde E, Rome S, Rouschop KM, Rughetti A, Russell AE, Saá P, Sahoo S, Salas-Huenuleo E, Sánchez C, Saugstad JA, Saul MJ, Schiffelers RM, Schneider R, Schyen TH, Scott A, Shahaj E, Sharma S, Shatnyeva O, Shekari F, Shelke GV, Shetty AK, Shiba K, Siljander PR, Silva AM, Skowronek A, Snyder OL 2nd, Soares RP, Sódar BW, Soekmadji C, Sotillo J, Stahl PD, Stoorvogel W, Stott SL, Strasser EF, Swift S, Tahara H, Tewari M, Timms K, Tiwari S, Tixeira R, Tkach M, Toh WS, Tomasini R, Torrecilhas AC, Tosar JP, Toxavidis V, Urbanelli L, Vader P, van Balkom BW, van der Grein SG, Van Deun J, van Herwijnen MJ, Van Keuren-Jensen K, van Niel G, van Royen ME, van Wijnen AJ, Vasconcelos MH, Vechetti IJ Jr, Veit TD, Vella LJ, Velot , Verweij FJ, Vestad B, Vias JL, Visnovitz T, Vukman KV, Wahlgren J, Watson DC, Wauben MH, Weaver A, Webber JP, Weber V, Wehman AM, Weiss DJ, Welsh JA, Wendt S, Wheelock AM, Wiener Z, Witte L, Wolfram J, Xagorari A, Xander P, Xu J, Yan X, Yáez-Mó M, Yin H, Yuana Y, Zappulli V, Zarubova J, Žėkas V, Zhang JY, Zhao Z, Zheng L, Zheutlin AR, Zickler AM, Zimmermann P, Zivkovic AM, Zocco D, Zuba-Surma EK. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7(1): 1535750
[39]
Liu XM, Ma L, Schekman R. Selective sorting of microRNAs into exosomes by phase-separated YBX1 condensates. eLife 2021; 10: e71982
CrossRef Google scholar
[40]
Barman B, Sung BH, Krystofiak E, Ping J, Ramirez M, Millis B, Allen R, Prasad N, Chetyrkin S, Calcutt MW, Vickers K, Patton JG, Liu Q, Weaver AM. VAP-A and its binding partner CERT drive biogenesis of RNA-containing extracellular vesicles at ER membrane contact sites. Dev Cell 2022; 57(8): 974–994.e8
CrossRef Google scholar
[41]
Xin Z, Ma Z, Hu W, Jiang S, Yang Z, Li T, Chen F, Jia G, Yang Y. FOXO1/3: potential suppressors of fibrosis. Ageing Res Rev 2018; 41: 42–52
CrossRef Google scholar
[42]
Tong M, Zheng Q, Liu M, Chen L, Lin YH, Tang SG, Zhu YM. 5-methoxytryptophan alleviates liver fibrosis by modulating FOXO3a/miR-21/ATG5 signaling pathway mediated autophagy. Cell Cycle 2021; 20(7): 676–688
CrossRef Google scholar
[43]
Zhou Y, Wu R, Cai FF, Zhou WJ, Lu YY, Zhang H, Chen QL, Su SB. Xiaoyaosan decoction alleviated rat liver fibrosis via the TGFβ/Smad and Akt/FoxO3 signaling pathways based on network pharmacology analysis. J Ethnopharmacol 2021; 264: 113021
CrossRef Google scholar
[44]
Deretic V. Autophagy in inflammation, infection, and immunometabolism. Immunity 2021; 54(3): 437–453
CrossRef Google scholar
[45]
Filali-Mouncef Y, Hunter C, Roccio F, Zagkou S, Dupont N, Primard C, Proikas-Cezanne T, Reggiori F. The ménage à trois of autophagy, lipid droplets and liver disease. Autophagy 2022; 18(1): 50–72
CrossRef Google scholar
[46]
Zhu J, Zhang W, Zhang L, Xu L, Chen X, Zhou S, Xu Z, Xiao M, Bai H, Liu F, Su C. IL-7 suppresses macrophage autophagy and promotes liver pathology in Schistosoma japonicum-infected mice. J Cell Mol Med 2018; 22(7): 3353–3363
CrossRef Google scholar
[47]
Ren Q, Sun Q, Fu J. Dysfunction of autophagy in high-fat diet-induced nonalcoholic fatty liver disease. Autophagy 2024; 20(2): 221–241
CrossRef Google scholar
[48]
Ding WX, Ni HM, Waguri S, Komatsu M. Lack of hepatic autophagy promotes severity of liver injury but not steatosis. J Hepatol 2022; 77(5): 1458–1459
CrossRef Google scholar
[49]
Hernández-Gea V, Ghiassi-Nejad Z, Rozenfeld R, Gordon R, Fiel MI, Yue Z, Czaja MJ, Friedman SL. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 2012; 142(4): 938–946
CrossRef Google scholar
[50]
Meng D, Li Z, Wang G, Ling L, Wu Y, Zhang C. Carvedilol attenuates liver fibrosis by suppressing autophagy and promoting apoptosis in hepatic stellate cells. Biomed Pharmacother 2018; 108: 1617–1627
CrossRef Google scholar
[51]
Luo X, Wang D, Zhu X, Wang G, You Y, Ning Z, Li Y, Jin S, Huang Y, Hu Y, Chen T, Meng Y, Li X. Autophagic degradation of caveolin-1 promotes liver sinusoidal endothelial cells defenestration. Cell Death Dis 2018; 9(5): 576
CrossRef Google scholar
[52]
Zhang B, Li J, Zong X, Wang J, Xin L, Song H, Zhang W, Koda S, Hua H, Zhang B, Yu Q, Zheng KY, Yan C. FXR deficiency in hepatocytes disrupts the bile acid homeostasis and inhibits autophagy to promote liver injury in Schistosoma japonicum-infected mice. PLoS Negl Trop Dis 2022; 16(8): e0010651
CrossRef Google scholar
[53]
Bai Y, Guan F, Zhu F, Jiang C, Xu X, Zheng F, Liu W, Lei J. IL-33/ST2 axis deficiency exacerbates hepatic pathology by regulating Treg and Th17 cells in murine schistosomiasis japonica. J Inflamm Res 2021; 14: 5981–5998
CrossRef Google scholar
[54]
Abou-El-Naga IF. Heat shock protein 70 (Hsp70) in Schistosoma mansoni and its role in decreased adult worm sensitivity to praziquantel. Parasitology 2020; 147(6): 634–642
CrossRef Google scholar
[55]
Mughal MN, Grevelding CG, Haeberlein S. First insights into the autophagy machinery of adult Schistosoma mansoni. Int J Parasitol 2021; 51(7): 571–585
CrossRef Google scholar
[56]
Deng J, Huang Q, Wang Y, Shen P, Guan F, Li J, Huang H, Shi C. Hypoxia-inducible factor-1alpha regulates autophagy to activate hepatic stellate cells. Biochem Biophys Res Commun 2014; 454(2): 328–334
CrossRef Google scholar
[57]
Al-Tamari HM, Dabral S, Schmall A, Sarvari P, Ruppert C, Paik J, DePinho RA, Grimminger F, Eickelberg O, Guenther A, Seeger W, Savai R, Pullamsetti SS. FoxO3 an important player in fibrogenesis and therapeutic target for idiopathic pulmonary fibrosis. EMBO Mol Med 2018; 10(2): 276–293
CrossRef Google scholar
[58]
Chen X, Zhu S, Li HD, Wang JN, Sun LJ, Xu JJ, Hui YR, Li XF, Li LY, Zhao YX, Suo XG, Xu CH, Ji ML, Sun YY, Huang C, Meng XM, Zhang L, Lv XW, Ye DQ, Li J. N6-methyladenosine-modified circIRF2, identified by YTHDF2, suppresses liver fibrosis via facilitating FOXO3 nuclear translocation. Int J Biol Macromol 2023; 248: 125811
CrossRef Google scholar
[59]
Duan Y, Pan J, Chen J, Zhu D, Wang J, Sun X, Chen L, Wu L. Soluble egg antigens of Schistosoma japonicum induce senescence of activated hepatic stellate cells by activation of the FoxO3a/SKP2/P27 pathway. PLoS Negl Trop Dis 2016; 10(12): e0005268
CrossRef Google scholar
[60]
Zhu D, Yang C, Shen P, Chen L, Chen J, Sun X, Duan L, Zhang L, Zhu J, Duan Y. rSjP40 suppresses hepatic stellate cell activation by promoting microRNA-155 expression and inhibiting STAT5 and FOXO3a expression. J Cell Mol Med 2018; 22(11): 5486–5493
CrossRef Google scholar

Acknowledgements

The authors thank Yan Wang and Yuan Sun (Institute of Hydrobiology, Chinese Academy of Sciences) for technical assistance with the in vivo imaging system. This work was financially supported by the National Natural Science Foundation of China (No. 82003403 (Jianping Zhao), No. 81974077, and No. 82170633 (Qian Chen)).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-024-1079-1 and is accessible for authorized users.

Compliance with ethics guidelines

Conflicts of interest Yue Yuan, Jiaxuan Li, Xun Lu, Min Chen, Huifang Liang, Xin Long, Bixiang Zhang, Song Gong, Xiaowei Huang, Jianping Zhao, and Qian Chen declare that they have no conflict of interest. Xiao-ping Chen is one of Editors-in-Chief of Frontiers of Medicine, who was excluded from the peer-review process and all editorial decisions related to the acceptance and publication of this article. Peer-review was handled independently by the other editors to minimise bias.
The study was approved by the Ethics Committee of Tongji Hospital (TJ-IRB20231140) (HUST, Wuhan, China). Additional informed consent was obtained from all patients whose identifying information is included in this article. All institutional and national guidelines for the care and use of laboratory animals were followed.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(9573 KB)

Accesses

Citations

Detail

Sections
Recommended

/