Nipah virus: epidemiology, pathogenesis, treatment, and prevention
Limei Wang, Denghui Lu, Maosen Yang, Shiqi Chai, Hong Du, Hong Jiang
Nipah virus: epidemiology, pathogenesis, treatment, and prevention
Nipah virus (NiV) is a zoonotic paramyxovirus that has recently emerged as a crucial public health issue. It can elicit severe encephalitis and respiratory diseases in animals and humans, leading to fatal outcomes, exhibiting a wide range of host species tropism, and directly transmitting from animals to humans or through an intermediate host. Human-to-human transmission associated with recurrent NiV outbreaks is a potential global health threat. Currently, the lack of effective therapeutics or licensed vaccines for NiV necessitates the primary utilization of supportive care. In this review, we summarize current knowledge of the various aspects of the NiV, including therapeutics, vaccines, and its biological characteristics, epidemiology, pathogenesis, and clinical features. The objective is to provide valuable information from scientific and clinical research and facilitate the formulation of strategies for preventing and controlling the NiV.
Nipah virus / epidemiology / pathogenesis / treatment / prevention
[1] |
ConroyG. Nipah virus outbreak: what scientists know so far. Nature 2023; [Epub ahead of print] doi:10.1038/d41586-023-02967-x
|
[2] |
Srivastava S, Deb N, Roy P, Jaiswal V, Sah S, Pandey Y, Reddy Edara RS, Mohanty A, Henao-Martinez AF, Sah R. Recent Nipah virus outbreak in India: lessons and imperatives. Ther Adv Infect Dis 2023; 10: 20499361231208535–11
CrossRef
Google scholar
|
[3] |
Soman Pillai V, Krishna G, Valiya Veettil M. Nipah virus: past outbreaks and future containment. Viruses 2020; 12(4): 465
CrossRef
Google scholar
|
[4] |
Arunkumar G, Chandni R, Mourya DT, Singh SK, Sadanandan R, Sudan P, Bhargava B; Nipah Investigators People, Health Study Group. Outbreak investigation of Nipah virus disease in Kerala, India, 2018. J Infect Dis 2019; 219(12): 1867–1878
CrossRef
Google scholar
|
[5] |
Goh KJ, Tan CT, Chew NK, Tan PS, Kamarulzaman A, Sarji SA, Wong KT, Abdullah BJ, Chua KB, Lam SK. Clinical features of Nipah virus encephalitis among pig farmers in Malaysia. N Engl J Med 2000; 342(17): 1229–1235
CrossRef
Google scholar
|
[6] |
Chadha MS, Comer JA, Lowe L, Rota PA, Rollin PE, Bellini WJ, Ksiazek TG, Mishra A. Nipah virus-associated encephalitis outbreak, Siliguri, India. Emerg Infect Dis 2006; 12(2): 235–240
CrossRef
Google scholar
|
[7] |
Rahman M, Chakraborty A. Nipah virus outbreaks in Bangladesh: a deadly infectious disease. WHO South-East Asia J Public Health 2012; 1(2): 208–212
CrossRef
Google scholar
|
[8] |
Nikolay B, Salje H, Hossain MJ, Khan A, Sazzad HMS, Rahman M, Daszak P, Stroher U, Pulliam JRC, Kilpatrick AM, Nichol ST, Klena JD, Sultana S, Afroj S, Luby SP, Cauchemez S, Gurley ES. Transmission of Nipah virus–14 years of investigations in Bangladesh. N Engl J Med 2019; 380(19): 1804–1814
CrossRef
Google scholar
|
[9] |
Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS, Ksiazek TG, Zaki SR, Paul G, Lam SK, Tan CT. Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 1999; 354(9186): 1257–1259
CrossRef
Google scholar
|
[10] |
Chua KB. Introduction: Nipah virus—discovery and origin. Curr Top Microbiol Immunol 2012; 359: 1–9
CrossRef
Google scholar
|
[11] |
Parashar UD, Sunn LM, Ong F, Mounts AW, Arif MT, Ksiazek TG, Kamaluddin MA, Mustafa AN, Kaur H, Ding LM, Othman G, Radzi HM, Kitsutani PT, Stockton PC, Arokiasamy J, Gary HE Jr, Anderson LJ. Case-control study of risk factors for human infection with a new zoonotic paramyxovirus, Nipah virus, during a 1998–1999 outbreak of severe encephalitis in Malaysia. J Infect Dis 2000; 181(5): 1755–1759
CrossRef
Google scholar
|
[12] |
Skowron K, Bauza-Kaszewska J, Grudlewska-Buda K, Wiktorczyk-Kapischke N, Zacharski M, Bernaciak Z, Gospodarek-Komkowska E. Nipah virus-another threat from the world of zoonotic viruses. Front Microbiol 2021; 12: 811157
CrossRef
Google scholar
|
[13] |
Amarasinghe GK, Ayllon MA, Bao Y, Basler CF, Bavari S, Blasdell KR, Briese T, Brown PA, Bukreyev A, Balkema-Buschmann A, Buchholz UJ, Chabi-Jesus C, Chandran K, Chiapponi C, Crozier I, de Swart RL, Dietzgen RG, Dolnik O, Drexler JF, Dürrwald R, Dundon WG, Duprex WP, Dye JM, Easton AJ, Fooks AR, Formenty PBH, Fouchier RAM, Freitas-Astúa J, Griffiths A, Hewson R, Horie M, Hyndman TH, Jiāng D, Kitajima EW, Kobinger GP, Kondō H, Kurath G, Kuzmin IV, Lamb RA, Lavazza A, Lee B, Lelli D, Leroy EM, Lǐ J, Maes P, Marzano SYL, Moreno A, Mühlberger E, Netesov SV, Nowotny N, Nylund A, Økland AL, Palacios G, Pályi B, Pawęska JT, Payne SL, Prosperi A, Ramos-González PL, Rima BK, Rota P, Rubbenstroth D, Shī M, Simmonds P, Smither SJ, Sozzi E, Spann K, Stenglein MD, Stone DM, Takada A, Tesh RB, Tomonaga K, Tordo N, Towner JS, van den Hoogen B, Vasilakis N, Wahl V, Walker PJ, Wang LF, Whitfield AE, Williams JV, Zerbini FM, Zhāng T, Zhang YZ, Kuhn JH. Taxonomy of the order Mononegavirales: update 2019. Arch Virol 2019; 164(7): 1967–1980
CrossRef
Google scholar
|
[14] |
Ang BSP, Lim TCC, Wang L. Nipah virus infection. J Clin Microbiol 2018; 56(6): e01875–e17
CrossRef
Google scholar
|
[15] |
Mire CE, Satterfield BA, Geisbert JB, Agans KN, Borisevich V, Yan L, Chan YP, Cross RW, Fenton KA, Broder CC, Geisbert TW. Pathogenic differences between Nipah virus Bangladesh and Malaysia strains in primates: implications for antibody therapy. Sci Rep 2016; 6(1): 30916
CrossRef
Google scholar
|
[16] |
Bossart KN, Zhu Z, Middleton D, Klippel J, Crameri G, Bingham J, McEachern JA, Green D, Hancock TJ, Chan YP, Hickey AC, Dimitrov DS, Wang LF, Broder CC. A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute Nipah virus infection. PLoS Pathog 2009; 5(10): e1000642
CrossRef
Google scholar
|
[17] |
Geisbert JB, Borisevich V, Prasad AN, Agans KN, Foster SL, Deer DJ, Cross RW, Mire CE, Geisbert TW, Fenton KA. An intranasal exposure model of lethal Nipah virus infection in African green monkeys. J Infect Dis 2020; 221(Suppl 4): S414–S418
CrossRef
Google scholar
|
[18] |
Cline C, Bell TM, Facemire P, Zeng X, Briese T, Lipkin WI, Shamblin JD, Esham HL, Donnelly GC, Johnson JC, Hensley LE, Honko AN, Johnston SC. Detailed analysis of the pathologic hallmarks of Nipah virus (Malaysia) disease in the African green monkey infected by the intratracheal route. PLoS One 2022; 17(2): e0263834
CrossRef
Google scholar
|
[19] |
Prasad AN, Agans KN, Sivasubramani SK, Geisbert JB, Borisevich V, Mire CE, Lawrence WS, Fenton KA, Geisbert TW. A lethal aerosol exposure model of Nipah virus strain Bangladesh in African green monkeys. J Infect Dis 2020; 221(Suppl 4): S431–S435
CrossRef
Google scholar
|
[20] |
Epstein JH, Field HE, Luby S, Pulliam JR, Daszak P. Nipah virus: impact, origins, and causes of emergence. Curr Infect Dis Rep 2006; 8(1): 59–65
CrossRef
Google scholar
|
[21] |
Banerjee S, Gupta N, Kodan P, Mittal A, Ray Y, Nischal N, Soneja M, Biswas A, Wig N. Nipah virus disease: a rare and intractable disease. Intractable Rare Dis Res 2019; 8(1): 1–8
CrossRef
Google scholar
|
[22] |
Luby SP, Rahman M, Hossain MJ, Blum LS, Husain MM, Gurley E, Khan R, Ahmed BN, Rahman S, Nahar N, Kenah E, Comer J, Ksiazek T. Foodborne transmission of Nipah virus, Bangladesh. Emerg Infect Dis 2006; 12(12): 1888–1894
CrossRef
Google scholar
|
[23] |
Bowden TA, Aricescu AR, Gilbert RJ, Grimes JM, Jones EY, Stuart DI. Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2. Nat Struct Mol Biol 2008; 15(6): 567–572
CrossRef
Google scholar
|
[24] |
Anderson DE, Islam A, Crameri G, Todd S, Islam A, Khan SU, Foord A, Rahman MZ, Mendenhall IH, Luby SP, Gurley ES, Daszak P, Epstein JH, Wang LF. Isolation and full-genome characterization of Nipah viruses from bats, Bangladesh. Emerg Infect Dis 2019; 25(1): 166–170
CrossRef
Google scholar
|
[25] |
Epstein JH, Anthony SJ, Islam A, Kilpatrick AM, Ali Khan S, Balkey MD, Ross N, Smith I, Zambrana-Torrelio C, Tao Y, Islam A, Quan PL, Olival KJ, Khan MSU, Gurley ES, Hossein MJ, Field HE, Fielder MD, Briese T, Rahman M, Broder CC, Crameri G, Wang LF, Luby SP, Lipkin WI, Daszak P. Nipah virus dynamics in bats and implications for spillover to humans. Proc Natl Acad Sci USA 2020; 117(46): 29190–29201
CrossRef
Google scholar
|
[26] |
Luby SP, Hossain MJ, Gurley ES, Ahmed BN, Banu S, Khan SU, Homaira N, Rota PA, Rollin PE, Comer JA, Kenah E, Ksiazek TG, Rahman M. Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001–2007. Emerg Infect Dis 2009; 15(8): 1229–1235
CrossRef
Google scholar
|
[27] |
Chua KB. Nipah virus outbreak in Malaysia. J Clin Virol 2003; 26(3): 265–275
CrossRef
Google scholar
|
[28] |
Luby SP, Gurley ES. Epidemiology of henipavirus disease in humans. Curr Top Microbiol Immunol 2012; 359: 25–40
CrossRef
Google scholar
|
[29] |
Looi LM, Chua KB. Lessons from the Nipah virus outbreak in Malaysia. Malays J Pathol 2007; 29(2): 63–67
|
[30] |
Centers for Disease Control, Prevention (CDC). Outbreak of Hendra-like virus—Malaysia and Singapore, 1998–1999. MMWR Morb Mortal Wkly Rep 1999; 48(16): 339–269
|
[31] |
Chua KB, Wong EM, Cropp BC, Hyatt AD. Role of electron microscopy in Nipah virus outbreak investigation and control. Med J Malaysia 2007; 62(2): 139–142
|
[32] |
Uppal PK. Emergence of Nipah virus in Malaysia. Ann N Y Acad Sci 2000; 916(1): 354–357
CrossRef
Google scholar
|
[33] |
Sherrini BA, Chong TT. Nipah encephalitis—an update. Med J Malaysia 2014; 69(Suppl A): 103–111
|
[34] |
Raval RD, Mehta M. Nipah: an interesting stance. Health Promot Perspect 2020; 10(1): 5–7
CrossRef
Google scholar
|
[35] |
Paton NI, Leo YS, Zaki SR, Auchus AP, Lee KE, Ling AE, Chew SK, Ang B, Rollin PE, Umapathi T, Sng I, Lee CC, Lim E, Ksiazek TG. Outbreak of Nipah-virus infection among abattoir workers in Singapore. Lancet 1999; 354(9186): 1253–1256
CrossRef
Google scholar
|
[36] |
Chew MH, Arguin PM, Shay DK, Goh KT, Rollin PE, Shieh WJ, Zaki SR, Rota PA, Ling AE, Ksiazek TG, Chew SK, Anderson LJ. Risk factors for Nipah virus infection among abattoir workers in Singapore. J Infect Dis 2000; 181(5): 1760–1763
CrossRef
Google scholar
|
[37] |
Chan KP, Rollin PE, Ksiazek TG, Leo YS, Goh KT, Paton NI, Sng EH, Ling AE. A survey of Nipah virus infection among various risk groups in Singapore. Epidemiol Infect 2002; 128(1): 93–98
CrossRef
Google scholar
|
[38] |
McLean RK, Graham SP. Vaccine development for Nipah virus infection in pigs. Front Vet Sci 2019; 4;6: 16
CrossRef
Google scholar
|
[39] |
Hsu VP, Hossain MJ, Parashar UD, Ali MM, Ksiazek TG, Kuzmin I, Niezgoda M, Rupprecht C, Bresee J, Breiman RF. Nipah virus encephalitis reemergence, Bangladesh. Emerg Infect Dis 2004; 10(12): 2082–2087
CrossRef
Google scholar
|
[40] |
Gurley ES, Montgomery JM, Hossain MJ, Bell M, Azad AK, Islam MR, Molla MA, Carroll DS, Ksiazek TG, Rota PA, Lowe L, Comer JA, Rollin P, Czub M, Grolla A, Feldmann H, Luby SP, Woodward JL, Breiman RF. Person-to-person transmission of Nipah virus in a Bangladeshi community. Emerg Infect Dis 2007; 13(7): 1031–1037
CrossRef
Google scholar
|
[41] |
Luby SP, Gurley ES, Hossain MJ. Transmission of human infection with Nipah virus. Clin Infect Dis 2009; 49(11): 1743–1748
CrossRef
Google scholar
|
[42] |
Blum LS, Khan R, Nahar N, Breiman RF. In-depth assessment of an outbreak of Nipah encephalitis with person-to-person transmission in Bangladesh: implications for prevention and control strategies. Am J Trop Med Hyg 2009; 80(1): 96–102
CrossRef
Google scholar
|
[43] |
Chua KB, Lam SK, Goh KJ, Hooi PS, Ksiazek TG, Kamarulzaman A, Olson J, Tan CT. The presence of Nipah virus in respiratory secretions and urine of patients during an outbreak of Nipah virus encephalitis in Malaysia. J Infect 2001; 42(1): 40–43
CrossRef
Google scholar
|
[44] |
McKee CD, Islam A, Rahman MZ, Khan SU, Rahman M, Satter SM, Islam A, Yinda CK, Epstein JH, Daszak P, Munster VJ, Hudson PJ, Plowright RK, Luby SP, Gurley ES. Nipah virus detection at bat roosts after spillover events, Bangladesh, 2012–2019. Emerg Infect Dis 2022; 28(7): 1384–1392
CrossRef
Google scholar
|
[45] |
Institute of Epidemiology, Disease Control and Research: NIPAH Virus Update (04 March, 2023). 2023. Available at the website of iedcr.gov.bd
|
[46] |
SatterSAquibWNazneenARahmanDEmaFAAlamANRahmanMRahmanMQayumMOAlamMRIslamAChoudhurySChowdhuryNIbne NomanMZMahmoodAMuntasirIMilySHaqueSBaruaSAlamMS. A Comprehensive Review of Clinical Presentations of Nipah Virus Infection: Evidence Generated from Nipah Virus Outbreaks of 2023, Bangladesh. 2023. Available at the website of researchgate.net
|
[47] |
Sharma V, Kaushik S, Kumar R, Yadav JP, Kaushik S. Emerging trends of Nipah virus: A review. Rev Med Virol 2019; 29(1): e2010
CrossRef
Google scholar
|
[48] |
Kumar S. Inadequate research facilities fail to tackle mystery disease. BMJ 2003; 326: 12
CrossRef
Google scholar
|
[49] |
Kulkarni DD, Tosh C, Venkatesh G, Senthil Kumar D. Nipah virus infection: current scenario. Indian J Virol 2013; 24(3): 398–408
CrossRef
Google scholar
|
[50] |
Arankalle VA, Bandyopadhyay BT, Ramdasi AY, Jadi R, Patil DR, Rahman M, Majumdar M, Banerjee PS, Hati AK, Goswami RP, Neogi DK, Mishra AC. Genomic characterization of Nipah virus, West Bengal, India. Emerg Infect Dis 2011; 17(5): 907–909
CrossRef
Google scholar
|
[51] |
Plowright RK, Becker DJ, Crowley DE, Washburne AD, Huang T, Nameer PO, Gurley ES, Han BA. Prioritizing surveillance of Nipah virus in India. PLoS Negl Trop Dis 2019; 13(6): e0007393
CrossRef
Google scholar
|
[52] |
Sudeep AB, Yadav PD, Gokhale MD, Balasubramanian R, Gupta N, Shete A, Jain R, Patil S, Sahay RR, Nyayanit DA, Gopale S, Pardeshi PG, Majumdar TD, Patil DR, Sugunan AP, Mourya DT. Detection of Nipah virus in Pteropus medius in 2019 outbreak from Ernakulam district, Kerala, India. BMC Infect Dis 2021; 21(1): 162
CrossRef
Google scholar
|
[53] |
Yadav PD, Sahay RR, Balakrishnan A, Mohandas S, Radhakrishnan C, Gokhale MD, Balasubramanian R, Abraham P, Gupta N, Sugunan AP, Khobragade R, George K, Shete A, Patil S, Thankappan UP, Dighe H, Koshy J, Vijay V, Gayathri R, Kumar PJ, Rahim A, Naveen A, Nair S, Rajendran VR, Jayasree V, Majumdar T, Jain R, Viswanathan P, Patil DY, Kumar A, Nyayanit DA, Sarkale P, Waghmare A, Baradkar S, Gawande P, Bodke P, Kalele K, Yemul J, Dhaigude S, Holepannawar M, Gopale S, Chopade G, Ray S, Waghmare P, Narayan J, Mathapati B, Kadam M, Kumar A, Suryawanshi A, Jose BP, Sivadas S, Akash NP, Vimisha TV, Keerthi KV. Nipah virus outbreak in Kerala State, India Amidst of COVID-19 Pandemic. Front Public Health 2022; 10: 818545
CrossRef
Google scholar
|
[54] |
Uwishema O, Wellington J, Berjaoui C, Muoka KO, Onyeaka CVP, Onyeaka H. A short communication of Nipah virus outbreak in India: an urgent rising concern. Ann Med Surg (Lond) 2022; 82: 104599
CrossRef
Google scholar
|
[55] |
Thiagarajan K. Nipah virus: India’s Kerala state moves quickly to control fresh outbreak. BMJ 2023; 382: 2117
CrossRef
Google scholar
|
[56] |
World Health Organization. Nipah Virus Infection—India. 2018. Available at the website of WHO
|
[57] |
Ching PK, de los Reyes VC, Sucaldito MN, Tayag E, Columna-Vingno AB, Malbas FF Jr, Bolo GC Jr, Sejvar JJ, Eagles D, Playford G, Dueger E, Kaku Y, Morikawa S, Kuroda M, Marsh GA, McCullough S, Foxwell AR. Outbreak of henipavirus infection, Philippines, 2014. Emerg Infect Dis 2015; 21(2): 328–331
CrossRef
Google scholar
|
[58] |
Bruno L, Nappo MA, Ferrari L, Di Lecce R, Guarnieri C, Cantoni AM, Corradi A. Nipah virus disease: epidemiological, clinical, diagnostic and legislative aspects of this unpredictable emerging zoonosis. Animals (Basel) 2022; 13(1): 159
CrossRef
Google scholar
|
[59] |
Yob JM, Field H, Rashdi AM, Morrissy C, van der Heide B, Rota P, bin Adzhar A, White J, Daniels P, Jamaluddin A, Ksiazek T. Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia. Emerg Infect Dis 2001; 7(3): 439–441
CrossRef
Google scholar
|
[60] |
World Health Organization. Nipah virus. 2018. Available at the website of WHO
|
[61] |
Field H, Young P, Yob JM, Mills J, Hall L, Mackenzie J. The natural history of Hendra and Nipah viruses. Microbes Infect 2001; 3(4): 307–314
CrossRef
Google scholar
|
[62] |
Yadav PD, Raut CG, Shete AM, Mishra AC, Towner JS, Nichol ST, Mourya DT. Detection of Nipah virus RNA in fruit bat (Pteropus giganteus) from India. Am J Trop Med Hyg 2012; 87(3): 576–578
CrossRef
Google scholar
|
[63] |
Khan MS, Hossain J, Gurley ES, Nahar N, Sultana R, Luby SP. Use of infrared camera to understand bats’ access to date palm sap: implications for preventing Nipah virus transmission. EcoHealth 2010; 7(4): 517–525
CrossRef
Google scholar
|
[64] |
Sahay RR, Yadav PD, Gupta N, Shete AM, Radhakrishnan C, Mohan G, Menon N, Bhatnagar T, Suma K, Kadam AV, Ullas PT, Anu Kumar B, Sugunan AP, Sreekala VK, Khobragade R, Gangakhedkar RR, Mourya DT. Experiential learnings from the Nipah virus outbreaks in Kerala towards containment of infectious public health emergencies in India. Epidemiol Infect 2020; 148: e90
CrossRef
Google scholar
|
[65] |
Sendow I, Field HE, Adjid A, Ratnawati A, Breed AC, Darminto C, Morrissy P. Screening for Nipah virus infection in West Kalimantan province, Indonesia. Zoonoses Public Health 2010; 57(7-8): 499–503
CrossRef
Google scholar
|
[66] |
Negrete OA, Wolf MC, Aguilar HC, Enterlein S, Wang W, Mühlberger E, Su SV, Bertolotti-Ciarlet A, Flick R, Lee B. Two key residues in ephrinB3 are critical for its use as an alternative receptor for Nipah virus. PLoS Pathog 2006; 2(2): e7
CrossRef
Google scholar
|
[67] |
Bonaparte MI, Dimitrov AS, Bossart KN, Crameri G, Mungall BA, Bishop KA, Choudhry V, Dimitrov DS, Wang LF, Eaton BT, Broder CC. Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc Natl Acad Sci USA 2005; 102(30): 10652–10657
CrossRef
Google scholar
|
[68] |
Mills JN, Alim AN, Bunning ML, Lee OB, Wagoner KD, Amman BR, Stockton PC, Ksiazek TG. Nipah virus infection in dogs, Malaysia, 1999. Emerg Infect Dis 2009; 15(6): 950–952
CrossRef
Google scholar
|
[69] |
Hooper P, Zaki S, Daniels P, Middleton D. Comparative pathology of the diseases caused by Hendra and Nipah viruses. Microbes Infect 2001; 3(4): 315–322
CrossRef
Google scholar
|
[70] |
Centers for Disease Control, Prevention (CDC). Update: outbreak of Nipah virus—Malaysia and Singapore, 1999. MMWR Morb Mortal Wkly Rep 1999; 48(16): 335–337
|
[71] |
Chowdhury S, Khan SU, Crameri G, Epstein JH, Broder CC, Islam A, Peel AJ, Barr J, Daszak P, Wang LF, Luby SP. Serological evidence of henipavirus exposure in cattle, goats and pigs in Bangladesh. PLoS Negl Trop Dis 2014; 8(11): e3302
CrossRef
Google scholar
|
[72] |
Middleton DJ, Westbury HA, Morrissy CJ, van der Heide BM, Russell GM, Braun MA, Hyatt AD. Experimental Nipah virus infection in pigs and cats. J Comp Pathol 2002; 126(2–3): 124–136
CrossRef
Google scholar
|
[73] |
Marianneau P, Guillaume V, Wong T, Badmanathan M, Looi RY, Murri S, Loth P, Tordo N, Wild F, Horvat B, Contamin H. Experimental infection of squirrel monkeys with nipah virus. Emerg Infect Dis 2010; 16(3): 507–510
CrossRef
Google scholar
|
[74] |
Wong KT, Grosjean I, Brisson C, Blanquier B, Fevre-Montange M, Bernard A, Loth P, Georges-Courbot MC, Chevallier M, Akaoka H, Marianneau P, Lam SK, Wild TF, Deubel V. A golden hamster model for human acute Nipah virus infection. Am J Pathol 2003; 163(5): 2127–2137
CrossRef
Google scholar
|
[75] |
Field H, Young P, Yob JM, Mills J, Hall L, Mackenzie J. The natural history of Hendra and Nipah viruses. Microbes Infect 2001; 3(4): 307–314
CrossRef
Google scholar
|
[76] |
Halpin K, Hyatt AD, Fogarty R, Middleton D, Bingham J, Epstein JH, Rahman SA, Hughes T, Smith C, Field HE, Daszak P. Pteropid bats are confirmed as the reservoir hosts of henipaviruses: a comprehensive experimental study of virus transmission. Am J Trop Med Hyg 2011; 85(5): 946–951
CrossRef
Google scholar
|
[77] |
Wacharapluesadee S, Boongird K, Wanghongsa S, Ratanasetyuth N, Supavonwong P, Saengsen D, Gongal GN, Hemachudha T. A longitudinal study of the prevalence of Nipah virus in Pteropus lylei bats in Thailand: evidence for seasonal preference in disease transmission. Vector Borne Zoonotic Dis 2010; 10(2): 183–190
CrossRef
Google scholar
|
[78] |
Olson JG, Rupprecht C, Rollin PE, An US, Niezgoda M, Clemins T, Walston J, Ksiazek TG. Antibodies to Nipah-like virus in bats (Pteropus lylei), Cambodia. Emerg Infect Dis 2002; 8(9): 987–988
CrossRef
Google scholar
|
[79] |
Reynes JM, Counor D, Ong S, Faure C, Seng V, Molia S, Walston J, Georges-Courbot MC, Deubel V, Sarthou JL. Nipah virus in Lyle’s flying foxes, Cambodia. Emerg Infect Dis 2005; 11(7): 1042–1047
CrossRef
Google scholar
|
[80] |
Hasebe F, Thuy NT, Inoue S, Yu F, Kaku Y, Watanabe S, Akashi H, Dat DT, Mai LTQ, Morita K. Serologic evidence of nipah virus infection in bats, Vietnam. Emerg Infect Dis 2012; 18(3): 536–537
CrossRef
Google scholar
|
[81] |
IehléC G, Razafitrimo J, Razainirina N, Andriaholinirina SM, Goodman C, Faure MC, Georges-Courbot D, Rousset JM. Henipavirus and Tioman virus antibodies in pteropodid bats, Madagascar. Emerg Infect Dis 2007; 13(1): 159–161
CrossRef
Google scholar
|
[82] |
Hayman DT, Suu-Ire R, Breed AC, McEachern JA, Wang L, Wood JL, Cunningham AA. Evidence of henipavirus infection in West African fruit bats. PLoS One 2008; 3(7): e2739
CrossRef
Google scholar
|
[83] |
Madera S, Kistler A, Ranaivoson HC, Ahyong V, Andrianiaina A, Andry S, Raharinosy V, Randriambolamanantsoa TH, Ravelomanantsoa NAF, Tato CM, DeRisi JL, Aguilar HC, Lacoste V, Dussart P, Heraud JM, Brook CE. Discovery and genomic characterization of a novel Henipavirus, Angavokely virus, from fruit bats in Madagascar. J Virol 2022; 96(18): e0092122
CrossRef
Google scholar
|
[84] |
Quarleri J, Galvan V, Delpino MV. Henipaviruses: an expanding global public health concern. Geroscience 2022; 44(5): 2447–2459
CrossRef
Google scholar
|
[85] |
Sah R, Mohanty A, Chakraborty S, Dhama K. Langya virus: a newly identified zoonotic henipavirus. J Med Virol 2022; 94(12): 5621–5622
CrossRef
Google scholar
|
[86] |
Diederich S, Maisner A. Molecular characteristics of the Nipah virus glycoproteins. Ann N Y Acad Sci 2007; 1102(1): 39–50
CrossRef
Google scholar
|
[87] |
Mohd-Qawiem F, Nawal-Amani AR, Faranieyza-Afiqah F, Yasmin AR, Arshad SS, Norfitriah MS, Nur-Fazila SH. Paramyxoviruses in rodents: a review. Open Vet J 2022; 12(6): 868–876
CrossRef
Google scholar
|
[88] |
Thibault PA, Watkinson RE, Moreira-Soto A, Drexler JF, Lee B. Zoonotic potential of emerging paramyxoviruses: knowns and unknowns. Adv Virus Res 2017; 98: 1–55
CrossRef
Google scholar
|
[89] |
Harcourt BH, Tamin A, Ksiazek TG, Rollin PE, Anderson LJ, Bellini WJ, Rota PA. Molecular characterization of Nipah virus, a newly emergent paramyxovirus. Virology 2000; 271(2): 334–349
CrossRef
Google scholar
|
[90] |
Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A, Lam SK, Ksiazek TG, Rollin PE, Zaki SR, Shieh W, Goldsmith CS, Gubler DJ, Roehrig JT, Eaton B, Gould AR, Olson J, Field H, Daniels P, Ling AE, Peters CJ, Anderson LJ, Mahy BWJ. Nipah virus: a recently emergent deadly paramyxovirus. Science 2000; 288(5470): 1432–1435
CrossRef
Google scholar
|
[91] |
Kielian M, Rey FA. Virus membrane-fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol 2006; 4(1): 67–76
CrossRef
Google scholar
|
[92] |
Ksiazek TG, Rota PA, Rollin PE. A review of Nipah and Hendra viruses with an historical aside. Virus Res 2011; 162(1–2): 173–183
CrossRef
Google scholar
|
[93] |
Goldsmith CS, Whistler T, Rollin PE, Ksiazek TG, Rota PA, Bellini WJ, Daszak P, Wong KT, Shieh WJ, Zaki SR. Elucidation of Nipah virus morphogenesis and replication using ultrastructural and molecular approaches. Virus Res 2003; 92(1): 89–98
CrossRef
Google scholar
|
[94] |
Lawrence P, Escudero-Perez B. Henipavirus immune evasion and pathogenesis mechanisms: lessons learnt from natural infection and animal models. Viruses 2022; 14(5): 936
CrossRef
Google scholar
|
[95] |
Sun B, Jia L, Liang B, Chen Q, Liu D. Phylogeography, transmission, and viral proteins of Nipah virus. Virol Sin 2018; 33(5): 385–393
CrossRef
Google scholar
|
[96] |
Mohandas S, Shete A, Sarkale P, Kumar A, Mote C, Yadav P. Genomic characterization, transcriptome analysis, and pathogenicity of the Nipah virus (Indian isolate). Virulence 2023; 14(1): 2224642
CrossRef
Google scholar
|
[97] |
Clayton BA, Middleton D, Arkinstall R, Frazer L, Wang LF, Marsh GA. The nature of exposure drives transmission of Nipah viruses from Malaysia and Bangladesh in ferrets. PLoS Negl Trop Dis 2016; 10(6): e0004775
CrossRef
Google scholar
|
[98] |
Satterfield BA, Cross RW, Fenton KA, Borisevich V, Agans KN, Deer DJ, Graber J, Basler CF, Geisbert TW, Mire CE. Nipah virus C and W proteins contribute to respiratory disease in ferrets. J Virol 2016; 90(14): 6326–6343
CrossRef
Google scholar
|
[99] |
Singh RK, Dhama K, Chakraborty S, Tiwari R, Natesan S, Khandia R, Munjal A, Vora KS, Latheef SK, Karthik K, Singh Malik Y, Singh R, Chaicumpa W, Mourya DT. Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies—a comprehensive review. Vet Q 2019; 39(1): 26–55
CrossRef
Google scholar
|
[100] |
Kim HS, Shin SW, Choi BG, Choi HJ. Differences over 10 years in epidemiologic and clinical features of Kawasaki disease at a single tertiary center. Clin Exp Pediatr 2020; 63(4): 157–158
CrossRef
Google scholar
|
[101] |
Harcourt BH, Tamin A, Halpin K, Ksiazek TG, Rollin PE, Bellini WJ, Rota PA. Molecular characterization of the polymerase gene and genomic termini of Nipah virus. Virology 2001; 287(1): 192–201
CrossRef
Google scholar
|
[102] |
Halpin K, Bankamp B, Harcourt BH, Bellini WJ, Rota PA. Nipah virus conforms to the rule of six in a minigenome replication assay. J Gen Virol 2004; 85(3): 701–707
CrossRef
Google scholar
|
[103] |
Noton SL, Fearns R. Initiation and regulation of paramyxovirus transcription and replication. Virology 2015; 479–480: 545–554
CrossRef
Google scholar
|
[104] |
Hausmann S, Jacques JP, Kolakofsky D. Paramyxovirus RNA editing and the requirement for hexamer genome length. RNA 1996; 2(10): 1033–1045
|
[105] |
Rota PA, Lo MK. Molecular virology of the henipaviruses. Curr Top Microbiol Immunol 2012; 359: 41–58
CrossRef
Google scholar
|
[106] |
Jensen MR, Yabukarski F, Communie G, Condamine E, Mas C, Volchkova V, Tarbouriech N, Bourhis JM, Volchkov V, Blackledge M, Jamin M. Structural description of the Nipah virus phosphoprotein and its interaction with STAT1. Biophys J 2020; 118(10): 2470–2488
CrossRef
Google scholar
|
[107] |
Jensen MR, Yabukarski F, Communie G, Condamine E, Mas C, Volchkova V, Tarbouriech N, Bourhis JM, Volchkov V, Blackledge M, Jamin M. Structural description of the Nipah virus phosphoprotein and its interaction with STAT1. Biophys J 2020; 118(10): 2470–2488
CrossRef
Google scholar
|
[108] |
Kulkarni S, Volchkova V, Basler CF, Palese P, Volchkov VE, Shaw ML. Nipah virus edits its P gene at high frequency to express the V and W proteins. J Virol 2009; 83(8): 3982–3987
CrossRef
Google scholar
|
[109] |
Shaw ML, García-Sastre A, Palese P, Basler CF. Nipah virus V and W proteins have a common STAT1-binding domain yet inhibit STAT1 activation from the cytoplasmic and nuclear compartments, respectively. J Virol 2004; 78(11): 5633–5641
CrossRef
Google scholar
|
[110] |
Rodriguez JJ, Cruz CD, Horvath CM. Identification of the nuclear export signal and STAT-binding domains of the Nipah virus V protein reveals mechanisms underlying interferon evasion. J Virol 2004; 78(10): 5358–5367
CrossRef
Google scholar
|
[111] |
Lo MK, Harcourt BH, Mungall BA, Tamin A, Peeples ME, Bellini WJ, Rota PA. Determination of the henipavirus phosphoprotein gene mRNA editing frequencies and detection of the C, V and W proteins of Nipah virus in virus-infected cells. J Gen Virol 2009; 90(2): 398–404
CrossRef
Google scholar
|
[112] |
Sleeman K, Bankamp B, Hummel KB, Lo MK, Bellini WJ, Rota PA. The C, V and W proteins of Nipah virus inhibit minigenome replication. J Gen Virol 2008; 89(5): 1300–1308
CrossRef
Google scholar
|
[113] |
Bankamp B, Wilson J, Bellini WJ, Rota PA. Identification of naturally occurring amino acid variations that affect the ability of the measles virus C protein to regulate genome replication and transcription. Virology 2005; 336(1): 120–129
CrossRef
Google scholar
|
[114] |
Nishio M, Ohtsuka J, Tsurudome M, Nosaka T, Kolakofsky D. Human parainfluenza virus type 2 V protein inhibits genome replication by binding to the L protein: possible role in promoting viral fitness. J Virol 2008; 82(13): 6130–6138
CrossRef
Google scholar
|
[115] |
Witko SE, Kotash C, Sidhu MS, Udem SA, Parks CL. Inhibition of measles virus minireplicon-encoded reporter gene expression by V protein. Virology 2006; 348(1): 107–119
CrossRef
Google scholar
|
[116] |
Grogan CC, Moyer SA. Sendai virus wild-type and mutant C proteins show a direct correlation between L polymerase binding and inhibition of viral RNA synthesis. Virology 2001; 288(1): 96–108
CrossRef
Google scholar
|
[117] |
Yoneda M, Guillaume V, Sato H, Fujita K, Georges-Courbot MC, Ikeda F, Omi M, Muto-Terao Y, Wild TF, Kai C. The nonstructural proteins of Nipah virus play a key role in pathogenicity in experimentally infected animals. PLoS One 2010; 5(9): e12709
CrossRef
Google scholar
|
[118] |
Freed EO. Viral late domains. J Virol 2002; 76(10): 4679–4687
CrossRef
Google scholar
|
[119] |
Ciancanelli MJ, Basler CF. Mutation of YMYL in the Nipah virus matrix protein abrogates budding and alters subcellular localization. J Virol 2006; 80(24): 12070–12078
CrossRef
Google scholar
|
[120] |
Patch JR, Han Z, McCarthy SE, Yan L, Wang LF, Harty RN, Broder CC. The YPLGVG sequence of the Nipah virus matrix protein is required for budding. Virol J 2008; 5(1): 137
CrossRef
Google scholar
|
[121] |
Wang YE, Park A, Lake M, Pentecost M, Torres B, Yun TE, Wolf MC, Holbrook MR, Freiberg AN, Lee B. Ubiquitin-regulated nuclear-cytoplasmic trafficking of the Nipah virus matrix protein is important for viral budding. PLoS Pathog 2010; 6(11): e1001186
CrossRef
Google scholar
|
[122] |
Tamin A, Harcourt BH, Ksiazek TG, Rollin PE, Bellini WJ, Rota PA. Functional properties of the fusion and attachment glycoproteins of Nipah virus. Virology 2002; 296(1): 190–200
CrossRef
Google scholar
|
[123] |
Frisén J, Holmberg J, Barbacid M. Ephrins and their Eph receptors: multitalented directors of embryonic development. EMBO J 1999; 18(19): 5159–5165
CrossRef
Google scholar
|
[124] |
Hafner C, Schmitz G, Meyer S, Bataille F, Hau P, Langmann T, Dietmaier W, Landthaler M, Vogt T. Differential gene expression of Eph receptors and ephrins in benign human tissues and cancers. Clin Chem 2004; 50(3): 490–499
CrossRef
Google scholar
|
[125] |
Bossart KN, Wang LF, Flora MN, Chua KB, Lam SK, Eaton BT, Broder CC. Membrane fusion tropism and heterotypic functional activities of the Nipah virus and Hendra virus envelope glycoproteins. J Virol 2002; 76(22): 11186–11198
CrossRef
Google scholar
|
[126] |
Thakur N, Bailey D. Advances in diagnostics, vaccines and therapeutics for Nipah virus. Microbes Infect 2019; 21(7): 278–286
CrossRef
Google scholar
|
[127] |
Aguilar HC, Aspericueta V, Robinson LR, Aanensen KE, Lee B. A quantitative and kinetic fusion protein-triggering assay can discern distinct steps in the nipah virus membrane fusion cascade. J Virol 2010; 84(16): 8033–8041
CrossRef
Google scholar
|
[128] |
Weis M, Maisner A. Nipah virus fusion protein: importance of the cytoplasmic tail for endosomal trafficking and bioactivity. Eur J Cell Biol 2015; 94(7-9): 316–322
CrossRef
Google scholar
|
[129] |
Bossart KN, Broder CC. Developments towards effective treatments for Nipah and Hendra virus infection. Expert Rev Anti Infect Ther 2006; 4(1): 43–55
CrossRef
Google scholar
|
[130] |
Poch O, Blumberg BM, Bougueleret L, Tordo N. Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains. J Gen Virol 1990; 71(5): 1153–1162
CrossRef
Google scholar
|
[131] |
Magoffin DE, Halpin K, Rota PA, Wang LF. Effects of single amino acid substitutions at the E residue in the conserved GDNE motif of the Nipah virus polymerase (L) protein. Arch Virol 2007; 152(4): 827–832
CrossRef
Google scholar
|
[132] |
Kaliappan A, Kaliappan V, Lakshmi JT, Raja S, Nikhat SS, Vidya MS, Saranya M, Sagar T, Chenna KD. Nipah amidst COVID-19 pandemic, another re-emerging infectious disease of pandemic potential—a narrative review. Maedica (Bucur) 2022; 17(2): 464–470
|
[133] |
Hassan MZ, Sazzad HMS, Luby SP, Sturm-Ramirez K, Bhuiyan MU, Rahman MZ, Islam MM, Stroher U, Sultana S, Kafi MAH, Daszak P, Rahman M, Gurley ES. Nipah virus contamination of hospital surfaces during outbreaks, Bangladesh, 2013–2014. Emerg Infect Dis 2018; 24(1): 15–21
CrossRef
Google scholar
|
[134] |
Escaffre O, Borisevich V, Carmical JR, Prusak D, Prescott J, Feldmann H, Rockx B. Henipavirus pathogenesis in human respiratory epithelial cells. J Virol 2013; 87(6): 3284–3294
CrossRef
Google scholar
|
[135] |
Escaffre O, Borisevich V, Rockx B. Pathogenesis of Hendra and Nipah virus infection in humans. J Infect Dev Ctries 2013; 7(4): 308–311
CrossRef
Google scholar
|
[136] |
Dong J, Cross RW, Doyle MP, Kose N, Mousa JJ, Annand EJ, Borisevich V, Agans KN, Sutton R, Nargi R, Majedi M, Fenton KA, Reichard W, Bombardi RG, Geisbert TW, Crowe JE Jr. Potent Henipavirus neutralization by antibodies recognizing diverse sites on Hendra and Nipah virus receptor binding protein. Cell 2020; 183(6): 1536–1550.e17
CrossRef
Google scholar
|
[137] |
Wong KT, Shieh WJ, Kumar S, Norain K, Abdullah W, Guarner J, Goldsmith CS, Chua KB, Lam SK, Tan CT, Goh KJ, Chong HT, Jusoh R, Rollin PE, Ksiazek TG, Zaki SR. Nipah virus infection: pathology and pathogenesis of an emerging paramyxoviral zoonosis. Am J Pathol 2002; 161(6): 2153–2167
CrossRef
Google scholar
|
[138] |
Rockx B, Brining D, Kramer J, Callison J, Ebihara H, Mansfield K, Feldmann H. Clinical outcome of henipavirus infection in hamsters is determined by the route and dose of infection. J Virol 2011; 85(15): 7658–7671
CrossRef
Google scholar
|
[139] |
Lo MK, Miller D, Aljofan M, Mungall BA, Rollin PE, Bellini WJ, Rota PA. Characterization of the antiviral and inflammatory responses against Nipah virus in endothelial cells and neurons. Virology 2010; 404(1): 78–88
CrossRef
Google scholar
|
[140] |
Elvert M, Sauerhering L, Maisner A. Cytokine induction in Nipah virus-infected primary human and porcine bronchial epithelial cells. J Infect Dis 2020; 221(Suppl 4): S395–S400
CrossRef
Google scholar
|
[141] |
Pelissier R, Iampietro M, Horvat B. Recent advances in the understanding of Nipah virus immunopathogenesis and anti-viral approaches. F1000 Res 2019; 8: 1763
CrossRef
Google scholar
|
[142] |
Becker N, Maisner A. Nipah virus impairs autocrine IFN signaling by sequestering STAT1 and STAT2 into inclusion bodies. Viruses 2023; 15(2): 554
CrossRef
Google scholar
|
[143] |
Talbot-Cooper C, Pantelejevs T, Shannon JP, Cherry CR, Au MT, Hyvönen M, Hickman HD, Smith GL. Poxviruses and paramyxoviruses use a conserved mechanism of STAT1 antagonism to inhibit interferon signaling. Cell Host Microbe 2022; 30(3): 357–372.e11
CrossRef
Google scholar
|
[144] |
Mathieu C, Dhondt KP, Chalons M, Mely S, Raoul H, Negre D, Cosset FL, Gerlier D, Vives RR, Horvat B. Heparan sulfate-dependent enhancement of henipavirus infection. MBio 2015; 6(2): e02427–14
CrossRef
Google scholar
|
[145] |
Mathieu C, Pohl C, Szecsi J, Trajkovic-Bodennec S, Devergnas S, Raoul H, Cosset FL, Gerlier D, Wild TF, Horvat B. Nipah virus uses leukocytes for efficient dissemination within a host. J Virol 2011; 85(15): 7863–7871
CrossRef
Google scholar
|
[146] |
Maisner A, Neufeld J, Weingartl H. Organ- and endotheliotropism of Nipah virus infections in vivo and in vitro. Thromb Haemost 2009; 102(6): 1014–1023
|
[147] |
Stachowiak B, Weingartl HM. Nipah virus infects specific subsets of porcine peripheral blood mononuclear cells. PLoS One 2012; 7(1): e30855
CrossRef
Google scholar
|
[148] |
Munster VJ, Prescott JB, Bushmaker T, Long D, Rosenke R, Thomas T, Scott D, Fischer ER, Feldmann H, de Wit E. Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route. Sci Rep 2012; 2(1): 736
CrossRef
Google scholar
|
[149] |
Devnath P, Wajed S, Chandra Das R, Kar S, Islam I, Masud H. The pathogenesis of Nipah virus: a review. Microb Pathog 2022; 170: 105693
CrossRef
Google scholar
|
[150] |
de Wit E, Munster VJ. Animal models of disease shed light on Nipah virus pathogenesis and transmission. J Pathol 2015; 235(2): 196–205
CrossRef
Google scholar
|
[151] |
Geisbert TW, Feldmann H, Broder CC. Animal challenge models of henipavirus infection and pathogenesis. Curr Top Microbiol Immunol 2012; 359: 153–177
CrossRef
Google scholar
|
[152] |
Middleton DJ, Morrissy CJ, van der Heide BM, Russell GM, Braun MA, Westbury HA, Halpin K, Daniels PW. Experimental Nipah virus infection in pteropid bats (Pteropus poliocephalus). J Comp Pathol 2007; 136(4): 266–272
CrossRef
Google scholar
|
[153] |
Weingartl H, Czub S, Copps J, Berhane Y, Middleton D, Marszal P, Gren J, Smith G, Ganske S, Manning L, Czub M. Invasion of the central nervous system in a porcine host by Nipah virus. J Virol 2005; 79(12): 7528–7534
CrossRef
Google scholar
|
[154] |
Kasloff SB, Leung A, Pickering BS, Smith G, Moffat E, Collignon B, Embury-Hyatt C, Kobasa D, Weingartl HM. Pathogenicity of Nipah henipavirus Bangladesh in a swine host. Sci Rep 2019; 9(1): 5230
CrossRef
Google scholar
|
[155] |
Juelich T, Smith J, Freiberg AN. Syrian golden hamster model for Nipah virus infection. Methods Mol Biol 2023; 2682: 219–229
CrossRef
Google scholar
|
[156] |
Freiberg AN, Worthy MN, Lee B, Holbrook MR. Combined chloroquine and ribavirin treatment does not prevent death in a hamster model of Nipah and Hendra virus infection. J Gen Virol 2010; 91(3): 765–772
CrossRef
Google scholar
|
[157] |
Dawes BE, Kalveram B, Ikegami T, Juelich T, Smith JK, Zhang L, Park A, Lee B, Komeno T, Furuta Y, Freiberg AN. Favipiravir (T-705) protects against Nipah virus infection in the hamster model. Sci Rep 2018; 8(1): 7604
CrossRef
Google scholar
|
[158] |
Georges-Courbot MC, Contamin H, Faure C, Loth P, Baize S, Leyssen P, Neyts J, Deubel V. Poly(I)-poly(C12U) but not ribavirin prevents death in a hamster model of Nipah virus infection. Antimicrob Agents Chemother 2006; 50(5): 1768–1772
CrossRef
Google scholar
|
[159] |
Geisbert TW, Daddario-DiCaprio KM, Hickey AC, Smith MA, Chan YP, Wang LF, Mattapallil JJ, Geisbert JB, Bossart KN, Broder CC. Development of an acute and highly pathogenic nonhuman primate model of Nipah virus infection. PLoS One 2010; 5(5): e10690
CrossRef
Google scholar
|
[160] |
Liu J, Coffin KM, Johnston SC, Babka AM, Bell TM, Long SY, Honko AN, Kuhn JH, Zeng X. Nipah virus persists in the brains of nonhuman primate survivors. JCI Insight 2019; 4(14): e129629
CrossRef
Google scholar
|
[161] |
Lampejo T. The potential threat of Nipah virus. Clin Med (Lond) 2022; 22(5): 497
CrossRef
Google scholar
|
[162] |
Harcourt BH, Lowe L, Tamin A, Liu X, Bankamp B, Bowden N, Rollin PE, Comer JA, Ksiazek TG, Hossain MJ, Gurley ES, Breiman RF, Bellini WJ, Rota PA. Genetic characterization of Nipah virus, Bangladesh, 2004. Emerg Infect Dis 2005; 11(10): 1594–1597
CrossRef
Google scholar
|
[163] |
Alam AM. Nipah virus, an emerging zoonotic disease causing fatal encephalitis. Clin Med (Lond) 2022; 22(4): 348–352
CrossRef
Google scholar
|
[164] |
Sejvar JJ, Hossain J, Saha SK, Gurley ES, Banu S, Hamadani JD, Faiz MA, Siddiqui FM, Mohammad QD, Mollah AH, Uddin R, Alam R, Rahman R, Tan CT, Bellini W, Rota P, Breiman RF, Luby SP. Long-term neurological and functional outcome in Nipah virus infection. Ann Neurol 2007; 62(3): 235–242
CrossRef
Google scholar
|
[165] |
Harit AK, Ichhpujani RL, Gupta S, Gill KS, Lal S, Ganguly NK, Agarwal SP. Nipah/Hendra virus outbreak in Siliguri, West Bengal, India in 2001. Indian J Med Res 2006; 123(4): 553–560
|
[166] |
Homaira N, Rahman M, Hossain MJ, Nahar N, Khan R, Rahman M, Podder G, Nahar K, Khan D, Gurley ES, Rollin PE, Comer JA, Ksiazek TG, Luby SP. Cluster of Nipah virus infection, Kushtia District, Bangladesh, 2007. PLoS One 2010; 5(10): e13570
CrossRef
Google scholar
|
[167] |
Chandni R, Renjith TP, Fazal A, Yoosef N, Ashhar C, Thulaseedharan NK, Suraj KP, Sreejith MK, Sajeeth Kumar KG, Rajendran VR, Remla Beevi A, Sarita RL, Sugunan AP, Arunkumar G, Mourya DT, Murhekar M. Clinical manifestations of Nipah virus-infected patients who presented to the emergency department during an outbreak in Kerala State in India, May 2018. Clin Infect Dis 2020; 71(1): 152–157
CrossRef
Google scholar
|
[168] |
Tan KS, Tan CT, GOH KJ. Epidemiological aspects of Nipah virus infection. Neurol J Southeast Asia 1999; 4: 77–81
|
[169] |
Abdullah S, Tan CT. Henipavirus encephalitis. Handb Clin Neurol 2014; 123: 663–670
CrossRef
Google scholar
|
[170] |
Thomas B, Chandran P, Lilabi MP, George B, Sivakumar CP, Jayadev VK, Bindu V, Rajasi RS, Vijayan B, Mohandas A, Hafeez N. Nipah virus infection in Kozhikode, Kerala, South India, in 2018: epidemiology of an outbreak of an emerging disease. Indian J Community Med 2019; 44(4): 383–387
CrossRef
Google scholar
|
[171] |
Tan CT, Goh KJ, Wong KT, Sarji SA, Chua KB, Chew NK, Murugasu P, Loh YL, Chong HT, Tan KS, Thayaparan T, Kumar S, Jusoh MR. Relapsed and late-onset Nipah encephalitis. Ann Neurol 2002; 51(6): 703–708
CrossRef
Google scholar
|
[172] |
Tan CT, Wong KT. Infections among contacts of patients with Nipah virus, India. Emerg Infect Dis 2020; 26(8): 1963
CrossRef
Google scholar
|
[173] |
Ochani RK, Batra S, Shaikh A, Asad A. Nipah virus—the rising epidemic: a review. Infez Med 2019; 27(2): 117–127
|
[174] |
Erbar S, Maisner A. Nipah virus infection and glycoprotein targeting in endothelial cells. Virol J 2010; 7(1): 305
CrossRef
Google scholar
|
[175] |
Chakraborty S, Deb B, Barbhuiya PA, Uddin A. Analysis of codon usage patterns and influencing factors in Nipah virus. Virus Res 2019; 263: 129–138
CrossRef
Google scholar
|
[176] |
Aditi SM, Shariff M. Nipah virus infection: a review. Epidemiol Infect 2019; 147: e95
CrossRef
Google scholar
|
[177] |
Ambat AS, Zubair SM, Prasad N, Pundir P, Rajwar E, Patil DS, Mangad P. Nipah virus: a review on epidemiological characteristics and outbreaks to inform public health decision making. J Infect Public Health 2019; 12(5): 634–639
CrossRef
Google scholar
|
[178] |
Banerjee S, Niyas VKM, Soneja M, Shibeesh AP, Basheer M, Sadanandan R, Wig N, Biswas A. First experience of ribavirin postexposure prophylaxis for Nipah virus, tried during the 2018 outbreak in Kerala, India. J Infect 2019; 78(6): 491–503
CrossRef
Google scholar
|
[179] |
Aljofan M, Saubern S, Meyer AG, Marsh G, Meers J, Mungall BA. Characteristics of Nipah virus and Hendra virus replication in different cell lines and their suitability for antiviral screening. Virus Res 2009; 142(1-2): 92–99
CrossRef
Google scholar
|
[180] |
Wright PJ, Crameri G, Eaton BT. RNA synthesis during infection by Hendra virus: an examination by quantitative real-time PCR of RNA accumulation, the effect of ribavirin and the attenuation of transcription. Arch Virol 2005; 150(3): 521–532
CrossRef
Google scholar
|
[181] |
Chong HT, Kamarulzaman A, Tan CT, Goh KJ, Thayaparan T, Kunjapan SR, Chew NK, Chua KB, Lam SK. Treatment of acute Nipah encephalitis with ribavirin. Ann Neurol 2001; 49(6): 810–813
CrossRef
Google scholar
|
[182] |
Arunkumar G, Devadiga S, McElroy AK, Prabhu S, Sheik S, Abdulmajeed J, Robin S, Sushama A, Jayaram A, Nittur S, Shakir M, Kumar KGS, Radhakrishnan C, Sakeena K, Vasudevan J, Reena KJ, Sarita RL, Klena JD, Spiropoulou CF, Laserson KF, Nichol ST. Adaptive immune responses in humans during Nipah virus acute and convalescent phases of infection. Clin Infect Dis 2019; 69(10): 1752–1756
CrossRef
Google scholar
|
[183] |
Rockx B, Bossart KN, Feldmann F, Geisbert JB, Hickey AC, Brining D, Callison J, Safronetz D, Marzi A, Kercher L, Long D, Broder CC, Feldmann H, Geisbert TW. A novel model of lethal Hendra virus infection in African green monkeys and the effectiveness of ribavirin treatment. J Virol 2010; 84(19): 9831–9839
CrossRef
Google scholar
|
[184] |
Liew YJM, Ibrahim PAS, Ong HM, Chong CN, Tan CT, Schee JP, Gomez Roman R, Cherian NG, Wong WF, Chang LY. The immunobiology of Nipah virus. Microorganisms 2022; 10(6): 1162
CrossRef
Google scholar
|
[185] |
Lo MK, Feldmann F, Gary JM, Jordan R, Bannister R, Cronin J, Patel NR, Klena JD, Nichol ST, Cihlar T, Zaki SR, Feldmann H, Spiropoulou CF, de Wit E. Remdesivir (GS-5734) protects African green monkeys from Nipah virus challenge. Sci Transl Med 2019; 11(494): eaau9242
CrossRef
Google scholar
|
[186] |
Negrete OA, Levroney EL, Aguilar HC, Bertolotti-Ciarlet A, Nazarian R, Tajyar S, Lee B. EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 2005; 436(7049): 401–405
CrossRef
Google scholar
|
[187] |
Xu K, Rockx B, Xie Y, DeBuysscher BL, Fusco DL, Zhu Z, Chan YP, Xu Y, Luu T, Cer RZ, Feldmann H, Mokashi V, Dimitrov DS, Bishop-Lilly KA, Broder CC, Nikolov DB. Crystal structure of the Hendra virus attachment G glycoprotein bound to a potent cross-reactive neutralizing human monoclonal antibody. PLoS Pathog 2013; 9(10): e1003684
CrossRef
Google scholar
|
[188] |
Playford EG, Munro T, Mahler SM, Elliott S, Gerometta M, Hoger KL, Jones ML, Griffin P, Lynch KD, Carroll H, El Saadi D, Gilmour ME, Hughes B, Hughes K, Huang E, de Bakker C, Klein R, Scher MG, Smith IL, Wang LF, Lambert SB, Dimitrov DS, Gray PP, Broder CC. Safety, tolerability, pharmacokinetics, and immunogenicity of a human monoclonal antibody targeting the G glycoprotein of henipaviruses in healthy adults: a first-in-human, randomised, controlled, phase 1 study. Lancet Infect Dis 2020; 20(4): 445–454
CrossRef
Google scholar
|
[189] |
Mire CE, Chan YP, Borisevich V, Cross RW, Yan L, Agans KN, Dang HV, Veesler D, Fenton KA, Geisbert TW, Broder CC. A cross-reactive humanized monoclonal antibody targeting fusion glycoprotein function protects ferrets against lethal Nipah virus and Hendra virus infection. J Infect Dis 2020; 221(Suppl 4): S471–S479
CrossRef
Google scholar
|
[190] |
Dang HV, Chan YP, Park YJ, Snijder J, Da Silva SC, Vu B, Yan L, Feng YR, Rockx B, Geisbert TW, Mire CE, Broder CC, Veesler D. An antibody against the F glycoprotein inhibits Nipah and Hendra virus infections. Nat Struct Mol Biol 2019; 26(10): 980–987
CrossRef
Google scholar
|
[191] |
Lo MK, Spengler JR, Krumpe LRH, Welch SR, Chattopadhyay A, Harmon JR, Coleman-McCray JD, Scholte FEM, Hotard AL, Fuqua JL, Rose JK, Nichol ST, Palmer KE, O’Keefe BR, Spiropoulou CF. Griffithsin inhibits Nipah virus entry and fusion and can protect syrian golden hamsters from lethal Nipah virus challenge. J Infect Dis 2020; 221(Supplement_4): S480–S492
CrossRef
Google scholar
|
[192] |
Walpita P, Cong Y, Jahrling PB, Rojas O, Postnikova E, Yu S, Johns L, Holbrook MR. A VLP-based vaccine provides complete protection against Nipah virus challenge following multiple-dose or single-dose vaccination schedules in a hamster model. NPJ Vaccines 2017; 2(1): 21
CrossRef
Google scholar
|
[193] |
van Doremalen N, Lambe T, Sebastian S, Bushmaker T, Fischer R, Feldmann F, Haddock E, Letko M, Avanzato VA, Rissanen I, LaCasse R, Scott D, Bowden TA, Gilbert S, Munster V. A single-dose ChAdOx1-vectored vaccine provides complete protection against Nipah Bangladesh and Malaysia in Syrian golden hamsters. PLoS Negl Trop Dis 2019; 13(6): e0007462
CrossRef
Google scholar
|
[194] |
Keshwara R, Shiels T, Postnikova E, Kurup D, Wirblich C, Johnson RF, Schnell MJ. Rabies-based vaccine induces potent immune responses against Nipah virus. NPJ Vaccines 2019; 4(1): 15
CrossRef
Google scholar
|
[195] |
Parvege MM, Rahman M, Nibir YM, Hossain MS. Two highly similar LAEDDTNAQKT and LTDKIGTEI epitopes in G glycoprotein may be useful for effective epitope based vaccine design against pathogenic Henipavirus. Comput Biol Chem 2016; 61: 270–280
CrossRef
Google scholar
|
[196] |
Saha CK, Mahbub Hasan M, Saddam Hossain M, Asraful Jahan M, Azad AK. In silico identification and characterization of common epitope-based peptide vaccine for Nipah and Hendra viruses. Asian Pac J Trop Med 2017; 10(6): 529–538
CrossRef
Google scholar
|
[197] |
Foster SL, Woolsey C, Borisevich V, Agans KN, Prasad AN, Deer DJ, Geisbert JB, Dobias NS, Fenton KA, Cross RW, Geisbert TW. A recombinant VSV-vectored vaccine rapidly protects nonhuman primates against lethal Nipah virus disease. Proc Natl Acad Sci USA 2022; 119(12): e2200065119
CrossRef
Google scholar
|
[198] |
Monath TP, Nichols R, Tussey L, Scappaticci K, Pullano TG, Whiteman MD, Vasilakis N, Rossi SL, Campos RK, Azar SR, Spratt HM, Seaton BL, Archambault WT, Costecalde YV, Moore EH, Hawks RJ, Fusco J. Recombinant vesicular stomatitis vaccine against Nipah virus has a favorable safety profile: model for assessment of live vaccines with neurotropic potential. PLoS Pathog 2022; 18(6): e1010658
CrossRef
Google scholar
|
[199] |
Geisbert TW, Bobb K, Borisevich V, Geisbert JB, Agans KN, Cross RW, Prasad AN, Fenton KA, Yu H, Fouts TR, Broder CC, Dimitrov AS. A single dose investigational subunit vaccine for human use against Nipah virus and Hendra virus. NPJ Vaccines 2021; 6(1): 23
CrossRef
Google scholar
|
[200] |
Gazal S, Sharma N, Gazal S, Tikoo M, Shikha D, Badroo GA, Rashid M, Lee SJ. Nipah and Hendra viruses: deadly zoonotic paramyxoviruses with the potential to cause the next pandemic. Pathogens 2022; 11(12): 1419
CrossRef
Google scholar
|
[201] |
National Institute of Allergy and Infectious Disease. NIH launches clinical trial of mRNA Nipah virus vaccine. 2022. Available at the website of niaid.nih.gov
|
[202] |
Nahar N, Mondal UK, Sultana R, Hossain MJ, Khan MS, Gurley ES, Oliveras E, Luby SP. Piloting the use of indigenous methods to prevent Nipah virus infection by interrupting bats’ access to date palm sap in Bangladesh. Health Promot Int 2013; 28(3): 378–386
CrossRef
Google scholar
|
[203] |
Gurley ES, Hegde ST, Hossain K, Sazzad HMS, Hossain MJ, Rahman M, Sharker MAY, Salje H, Islam MS, Epstein JH, Khan SU, Kilpatrick AM, Daszak P, Luby SP. Convergence of humans, bats, trees, and culture in Nipah virus transmission, Bangladesh. Emerg Infect Dis 2017; 23(9): 1446–1453
CrossRef
Google scholar
|
[204] |
Nahar N, Paul RC, Sultana R, Gurley ES, Garcia F, Abedin J, Sumon SA, Banik KC, Asaduzzaman M, Rimi NA, Rahman M, Luby SP. Raw sap consumption habits and its association with knowledge of Nipah virus in two endemic districts in Bangladesh. PLoS One 2015; 10(11): e0142292
CrossRef
Google scholar
|
[205] |
Siegel JD, Rhinehart E, Jackson M, Chiarello L; Health Care Infection Control Practices Advisory Committee. 2007 guideline for isolation precautions: preventing transmission of infectious agents in health care settings. Am J Infect Control 2007; 35(10 Suppl 2): S65–S164
CrossRef
Google scholar
|
[206] |
Jackson MM, Lynch P. Guideline for isolation precautions in hospitals, 1996. Am J Infect Control 1996; 24(3): 203–206
CrossRef
Google scholar
|
[207] |
Sazzad HM, Hossain MJ, Gurley ES, Ameen KM, Parveen S, Islam MS, Faruque LI, Podder G, Banu SS, Lo MK, Rollin PE, Rota PA, Daszak P, Rahman M, Luby SP. Nipah virus infection outbreak with nosocomial and corpse-to-human transmission, Bangladesh. Emerg Infect Dis 2013; 19(2): 210–217
CrossRef
Google scholar
|
[208] |
Eickmann M, Gravemann U, Handke W, Tolksdorf F, Reichenberg S, Muller TH, Seltsam A. Inactivation of three emerging viruses-severe acute respiratory syndrome coronavirus, Crimean-Congo haemorrhagic fever virus and Nipah virus—in platelet concentrates by ultraviolet C light and in plasma by methylene blue plus visible light. Vox Sang 2020; 115(3): 146–151
CrossRef
Google scholar
|
/
〈 | 〉 |