m6A reader YTHDF1 promotes cardiac fibrosis by enhancing AXL translation
Han Wu, Weitao Jiang, Ping Pang, Wei Si, Xue Kong, Xinyue Zhang, Yuting Xiong, Chunlei Wang, Feng Zhang, Jinglun Song, Yang Yang, Linghua Zeng, Kuiwu Liu, Yingqiong Jia, Zhuo Wang, Jiaming Ju, Hongtao Diao, Yu Bian, Baofeng Yang
m6A reader YTHDF1 promotes cardiac fibrosis by enhancing AXL translation
Cardiac fibrosis caused by ventricular remodeling and dysfunction such as post-myocardial infarction (MI) can lead to heart failure. RNA N6-methyladenosine (m6A) methylation has been shown to play a pivotal role in the occurrence and development of many illnesses. In investigating the biological function of the m6A reader YTHDF1 in cardiac fibrosis, adeno-associated virus 9 was used to knock down or overexpress the YTHDF1 gene in mouse hearts, and MI surgery in vivo and transforming growth factor-β (TGF-β)-activated cardiac fibroblasts in vitro were performed to establish fibrosis models. Our results demonstrated that silencing YTHDF1 in mouse hearts can significantly restore impaired cardiac function and attenuate myocardial fibrosis, whereas YTHDF1 overexpression could further enhance cardiac dysfunction and aggravate the occurrence of ventricular pathological remodeling and fibrotic development. Mechanistically, zinc finger BED-type containing 6 mediated the transcriptional function of the YTHDF1 gene promoter. YTHDF1 augmented AXL translation and activated the TGF-β-Smad2/3 signaling pathway, thereby aggravating the occurrence and development of cardiac dysfunction and myocardial fibrosis. Consistently, our data indicated that YTHDF1 was involved in activation, proliferation, and migration to participate in cardiac fibrosis in vitro. Our results revealed that YTHDF1 could serve as a potential therapeutic target for myocardial fibrosis.
cardiac fibrosis / YTHDF1 / AXL / ZBED6 / heart failure
[1] |
Castiglione V, Aimo A, Vergaro G, Saccaro L, Passino C, Emdin M. Biomarkers for the diagnosis and management of heart failure. Heart Fail Rev 2022; 27(2): 625–643
CrossRef
Google scholar
|
[2] |
Bui AL, Horwich TB, Fonarow GC. Epidemiology and risk profile of heart failure. Nat Rev Cardiol 2011; 8(1): 30–41
CrossRef
Google scholar
|
[3] |
González A, Schelbert EB, Díez J, Butler J. Myocardial interstitial fibrosis in heart failure: biological and translational perspectives. J Am Coll Cardiol 2018; 71(15): 1696–1706
CrossRef
Google scholar
|
[4] |
Azevedo PS, Polegato BF, Minicucci MF, Paiva SA, Zornoff LA. Cardiac remodeling: concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arq Bras Cardiol 2016; 106(1): 62–69
CrossRef
Google scholar
|
[5] |
Burke RM, Lighthouse JK, Mickelsen DM, Small EM. Sacubitril/valsartan decreases cardiac fibrosis in left ventricle pressure overload by restoring PKG signaling in cardiac fibroblasts. Circ Heart Fail 2019; 12(4): e005565
CrossRef
Google scholar
|
[6] |
Su SA, Yang D, Wu Y, Xie Y, Zhu W, Cai Z, Shen J, Fu Z, Wang Y, Jia L, Wang Y, Wang JA, Xiang M. EphrinB2 regulates cardiac fibrosis through modulating the interaction of Stat3 and TGF-β/Smad3 signaling. Circ Res 2017; 121(6): 617–627
CrossRef
Google scholar
|
[7] |
Davis J, Molkentin JD. Myofibroblasts: trust your heart and let fate decide. J Mol Cell Cardiol 2014; 70: 9–18
CrossRef
Google scholar
|
[8] |
Luo M, Peng H, Chen P, Zhou Y. The immunomodulatory role of interleukin-35 in fibrotic diseases. Expert Rev Clin Immunol 2019; 15(4): 431–439
CrossRef
Google scholar
|
[9] |
Tallquist MD. Cardiac fibroblast diversity. Annu Rev Physiol 2020; 82(1): 63–78
CrossRef
Google scholar
|
[10] |
Shah H, Hacker A, Langburt D, Dewar M, McFadden MJ, Zhang H, Kuzmanov U, Zhou YQ, Hussain B, Ehsan F, Hinz B, Gramolini AO, Heximer SP. Myocardial infarction induces cardiac fibroblast transformation within injured and noninjured regions of the mouse heart. J Proteome Res 2021; 20(5): 2867–2881
CrossRef
Google scholar
|
[11] |
Deng LJ, Deng WQ, Fan SR, Chen MF, Qi M, Lyu WY, Qi Q, Tiwari AK, Chen JX, Zhang DM, Chen ZS. m6A modification: recent advances, anticancer targeted drug discovery and beyond. Mol Cancer 2022; 21(1): 52
CrossRef
Google scholar
|
[12] |
Gong R, Wang X, Li H, Liu S, Jiang Z, Zhao Y, Yu Y, Han Z, Yu Y, Dong C, Li S, Xu B, Zhang W, Wang N, Li X, Gao X, Yang F, Bamba D, Ma W, Liu Y, Cai B. Loss of m6A methyltransferase METTL3 promotes heart regeneration and repair after myocardial injury. Pharmacol Res 2021; 174: 105845
CrossRef
Google scholar
|
[13] |
Chen YS, Ouyang XP, Yu XH, Novák P, Zhou L, He PP, Yin K. N6-adenosine methylation (m6A) RNA modification: an emerging role in cardiovascular diseases. J Cardiovasc Transl Res 2021; 14(5): 857–872
CrossRef
Google scholar
|
[14] |
Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H, He C. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 2015; 161(6): 1388–1399
CrossRef
Google scholar
|
[15] |
Jin D, Guo J, Wu Y, Yang L, Wang X, Du J, Dai J, Chen W, Gong K, Miao S, Li X, Sun H. m6A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC. Mol Cancer 2020; 19(1): 40
CrossRef
Google scholar
|
[16] |
Liu L, Liu X, Dong Z, Li J, Yu Y, Chen X, Ren F, Cui G, Sun R. N6-methyladenosine-related genomic targets are altered in breast cancer tissue and associated with poor survival. J Cancer 2019; 10(22): 5447–5459
CrossRef
Google scholar
|
[17] |
Okura N, Nishioka N, Yamada T, Taniguchi H, Tanimura K, Katayama Y, Yoshimura A, Watanabe S, Kikuchi T, Shiotsu S, Kitazaki T, Nishiyama A, Iwasaku M, Kaneko Y, Uchino J, Uehara H, Horinaka M, Sakai T, Tanaka K, Kozaki R, Yano S, Takayama K. ONO-7475, a novel AXL inhibitor, suppresses the adaptive resistance to initial EGFR-TKI treatment in EGFR-mutated non-small cell lung cancer. Clin Cancer Res 2020; 26(9): 2244–2256
CrossRef
Google scholar
|
[18] |
Tanaka M, Siemann DW. Therapeutic targeting of the Gas6/Axl signaling pathway in cancer. Int J Mol Sci 2021; 22(18): 9953
CrossRef
Google scholar
|
[19] |
Quirico L, Orso F, Esposito CL, Bertone S, Coppo R, Conti L, Catuogno S, Cavallo F, de Franciscis V, Taverna D. Axl-148b chimeric aptamers inhibit breast cancer and melanoma progression. Int J Biol Sci 2020; 16(7): 1238–1251
CrossRef
Google scholar
|
[20] |
Batlle M, Recarte-Pelz P, Roig E, Castel MA, Cardona M, Farrero M, Ortiz JT, Campos B, Pulgarín MJ, Ramírez J, Pérez-Villa F, García de Frutos P. AXL receptor tyrosine kinase is increased in patients with heart failure. Int J Cardiol 2014; 173(3): 402–409
CrossRef
Google scholar
|
[21] |
Caldentey G, García De Frutos P, Cristóbal H, Garabito M, Berruezo A, Bosch X, San Antonio R, Flores-Umanzor E, Perea RJ, De Caralt TM, Rodríguez J, Ortiz-Pérez JT. Serum levels of growth arrest-specific 6 protein and soluble AXL in patients with ST-segment elevation myocardial infarction. Eur Heart J Acute Cardiovasc Care 2019; 8(8): 708–716
CrossRef
Google scholar
|
[22] |
DeBerge M, Glinton K, Subramanian M, Wilsbacher LD, Rothlin CV, Tabas I, Thorp EB. Macrophage AXL receptor tyrosine kinase inflames the heart after reperfused myocardial infarction. J Clin Invest 2021; 131(6): e139576
CrossRef
Google scholar
|
[23] |
Li TY, Su W, Li LL, Zhao XG, Yang N, Gai JX, Lv X, Zhang J, Huang MQ, Zhang Q, Ji WH, Song XY, Zhou YH, Li XL, Shan HL, Liang HH. Critical role of PAFR/YAP1 positive feedback loop in cardiac fibrosis. Acta Pharmacol Sin 2022; 43(11): 2862–2872
CrossRef
Google scholar
|
[24] |
Xu JJ, Li RJ, Zhang ZH, Yang C, Liu SX, Li YL, Chen MW, Wang WW, Zhang GY, Song G, Huang ZR. Loganin inhibits angiotensin II-induced cardiac hypertrophy through the JAK2/STAT3 and NF-κB signaling pathways. Front Pharmacol 2021; 12: 678886
CrossRef
Google scholar
|
[25] |
Qin W, Cao L, Massey IY. Role of PI3K/Akt signaling pathway in cardiac fibrosis. Mol Cell Biochem 2021; 476(11): 4045–4059
CrossRef
Google scholar
|
[26] |
Goumans MJ, Ten Dijke P. TGF-β signaling in control of cardiovascular function. Cold Spring Harb Perspect Biol 2018; 10(2): a022210
CrossRef
Google scholar
|
[27] |
Saito A, Horie M, Nagase T. TGF-β signaling in lung health and disease. Int J Mol Sci 2018; 19(8): 2460
CrossRef
Google scholar
|
[28] |
Isaka Y. Targeting TGF-β signaling in kidney fibrosis. Int J Mol Sci 2018; 19(9): 2532
CrossRef
Google scholar
|
[29] |
Frangogiannis NG. Transforming growth factor-β in myocardial disease. Nat Rev Cardiol 2022; 19(7): 435–455
CrossRef
Google scholar
|
[30] |
Zhu JX, Ling W, Xue C, Zhou Z, Zhang YS, Yan C, Wu MP. Higenamine attenuates cardiac fibroblast abstract and fibrosis via inhibition of TGF-β1/Smad signaling. Eur J Pharmacol 2021; 900: 174013
CrossRef
Google scholar
|
[31] |
Tao L, Wang Y, Gao E, Zhang H, Yuan Y, Lau WB, Chan L, Koch WJ, Ma XL. Adiponectin: an indispensable molecule in rosiglitazone cardioprotection following myocardial infarction. Circ Res 2010; 106(2): 409–417
CrossRef
Google scholar
|
[32] |
Huang GL, Liao D, Chen H, Lu Y, Chen L, Li H, Li B, Liu W, Ye C, Li T, Zhu Z, Wang J, Uchida T, Zou Y, Dong Z, He Z. The protein level and transcription activity of activating transcription factor 1 is regulated by prolyl isomerase Pin1 in nasopharyngeal carcinoma progression. Cell Death Dis 2016; 7(12): e2571
CrossRef
Google scholar
|
[33] |
Chen FF, Song FQ, Chen YQ, Wang ZH, Li YH, Liu MH, Li Y, Song M, Zhang W, Zhao J, Zhong M. Exogenous testosterone alleviates cardiac fibrosis and apoptosis via Gas6/Axl pathway in the senescent mice. Exp Gerontol 2019; 119: 128–137
CrossRef
Google scholar
|
[34] |
Zhu HY, Bai WD, Li J, Tao K, Wang HT, Yang XK, Liu JQ, Wang YC, He T, Xie ST, Hu DH. Peroxisome proliferator-activated receptor-γ agonist troglitazone suppresses transforming growth factor-β1 signalling through miR-92b upregulation-inhibited Axl expression in human keloid fibroblasts in vitro. Am J Transl Res 2016; 8(8): 3460–3470
|
[35] |
Zhang Q, Wang L, Wang S, Cheng H, Xu L, Pei G, Wang Y, Fu C, Jiang Y, He C, Wei Q. Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther 2022; 7(1): 78
CrossRef
Google scholar
|
[36] |
Gladka MM, Kohela A, Molenaar B, Versteeg D, Kooijman L, Monshouwer-Kloots J, Kremer V, Vos HR, Huibers MMH, Haigh JJ, Huylebroeck D, Boon RA, Giacca M, van Rooij E. Cardiomyocytes stimulate angiogenesis after ischemic injury in a ZEB2-dependent manner. Nat Commun 2021; 12(1): 84
CrossRef
Google scholar
|
[37] |
Yang J, Savvatis K, Kang JS, Fan P, Zhong H, Schwartz K, Barry V, Mikels-Vigdal A, Karpinski S, Kornyeyev D, Adamkewicz J, Feng X, Zhou Q, Shang C, Kumar P, Phan D, Kasner M, López B, Diez J, Wright KC, Kovacs RL, Chen PS, Quertermous T, Smith V, Yao L, Tschöpe C, Chang CP. Targeting LOXL2 for cardiac interstitial fibrosis and heart failure treatment. Nat Commun 2016; 7(1): 13710
CrossRef
Google scholar
|
[38] |
Mathiyalagan P, Adamiak M, Mayourian J, Sassi Y, Liang Y, Agarwal N, Jha D, Zhang S, Kohlbrenner E, Chepurko E, Chen J, Trivieri MG, Singh R, Bouchareb R, Fish K, Ishikawa K, Lebeche D, Hajjar RJ, Sahoo S. FTO-dependent N6-methyladenosine regulates cardiac function during remodeling and repair. Circulation 2019; 139(4): 518–532
CrossRef
Google scholar
|
[39] |
Akhtar Ali M, Younis S, Wallerman O, Gupta R, Andersson L, Sjöblom T. Transcriptional modulator ZBED6 affects cell cycle and growth of human colorectal cancer cells. Proc Natl Acad Sci USA 2015; 112(25): 7743–7748
CrossRef
Google scholar
|
[40] |
Huang YZ, Zhang LZ, Lai XS, Li MX, Sun YJ, Li CJ, Lan XY, Lei CZ, Zhang CL, Zhao X, Chen H. Transcription factor ZBED6 mediates IGF2 gene expression by regulating promoter activity and DNA methylation in myoblasts. Sci Rep 2014; 4(1): 4570
CrossRef
Google scholar
|
[41] |
Jiang L, Wallerman O, Younis S, Rubin CJ, Gilbert ER, Sundström E, Ghazal A, Zhang X, Wang L, Mikkelsen TS, Andersson G, Andersson L. ZBED6 modulates the transcription of myogenic genes in mouse myoblast cells. PLoS One 2014; 9(4): e94187
CrossRef
Google scholar
|
[42] |
Naboulsi R, Larsson M, Andersson L, Younis S. ZBED6 regulates Igf2 expression partially through its regulation of miR483 expression. Sci Rep 2021; 11(1): 19484
CrossRef
Google scholar
|
[43] |
Wu X, Liu X, Koul S, Lee CY, Zhang Z, Halmos B. AXL kinase as a novel target for cancer therapy. Oncotarget 2014; 5(20): 9546–9563
CrossRef
Google scholar
|
[44] |
Yang DC, Gu S, Li JM, Hsu SW, Chen SJ, Chang WH, Chen CH. Targeting the AXL receptor in combating smoking-related pulmonary fibrosis. Am J Respir Cell Mol Biol 2021; 64(6): 734–746
CrossRef
Google scholar
|
[45] |
Bárcena C, Stefanovic M, Tutusaus A, Joannas L, Menéndez A, García-Ruiz C, Sancho-Bru P, Marí M, Caballeria J, Rothlin CV, Fernández-Checa JC, de Frutos PG, Morales A. Gas6/Axl pathway is activated in chronic liver disease and its targeting reduces fibrosis via hepatic stellate cell inactivation. J Hepatol 2015; 63(3): 670–678
CrossRef
Google scholar
|
[46] |
Steiner CA, Rodansky ES, Johnson LA, Berinstein JA, Cushing KC, Huang S, Spence JR, Higgins PDR. AXL is a potential target for the treatment of intestinal fibrosis. Inflamm Bowel Dis 2021; 27(3): 303–316
CrossRef
Google scholar
|
[47] |
Rigoni TS, Vellozo NS, Guimarães-Pinto K, Cabral-Piccin M, Fabiano-Coelho L, Matos-Silva TC, Filardy AA, Takiya CM, Lopes MF. Axl receptor induces efferocytosis, dampens M1 macrophage responses and promotes heart pathology in Trypanosoma cruzi infection. Commun Biol 2022; 5(1): 1421
CrossRef
Google scholar
|
[48] |
Ma Z, Li Q, Liu P, Dong W, Zuo Y. METTL3 regulates m6A in endometrioid epithelial ovarian cancer independently of METTl14 and WTAP. Cell Biol Int 2020; 44(12): 2524–2531
CrossRef
Google scholar
|
[49] |
Ikeuchi M, Tsutsui H, Shiomi T, Matsusaka H, Matsushima S, Wen J, Kubota T, Takeshita A. Inhibition of TGF-beta signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovasc Res 2004; 64(3): 526–535
CrossRef
Google scholar
|
[50] |
Hanna A, Frangogiannis NG. The role of the TGF-β superfamily in myocardial infarction. Front Cardiovasc Med 2019; 6: 140
CrossRef
Google scholar
|
[51] |
Gao L, Wang LY, Liu ZQ, Jiang D, Wu SY, Guo YQ, Tao HM, Sun M, You LN, Qin S, Cheng XC, Xie JS, Chang GL, Zhang DY. TNAP inhibition attenuates cardiac fibrosis induced by myocardial infarction through deactivating TGF-β1/Smads and activating P53 signaling pathways. Cell Death Dis 2020; 11(1): 44
CrossRef
Google scholar
|
[52] |
Jaykumar AB, Plumber S, Barry DM, Binns D, Wichaidit C, Grzemska M, Earnest S, Goldsmith EJ, Cleaver O, Cobb MH. WNK1 collaborates with TGF-β in endothelial cell junction turnover and angiogenesis. Proc Natl Acad Sci USA 2022; 119(30): e2203743119
CrossRef
Google scholar
|
/
〈 | 〉 |