
Canonical and noncanonical NOTCH signaling in the nongenetic resistance of cancer: distinct and concerted control
Xianzhe Huang, Wenwei Chen, Yanyan Wang, Dmytro Shytikov, Yanwen Wang, Wangyi Zhu, Ruyi Chen, Yuwei He, Yanjia Yang, Wei Guo
Front. Med. ››
Canonical and noncanonical NOTCH signaling in the nongenetic resistance of cancer: distinct and concerted control
Therapeutic resistance in cancer is responsible for numerous cancer deaths in clinical practice. While target mutations are well recognized as the basis of genetic resistance to targeted therapy, nontarget mutation resistance (or nongenetic resistance) remains poorly characterized. Despite its complex and unintegrated mechanisms in the literature, nongenetic resistance is considered from our perspective to be a collective response of innate or acquired resistant subpopulations in heterogeneous tumors to therapy. These subpopulations, e.g., cancer stem-like cells, cancer cells with epithelial-to-mesenchymal transition, and drug-tolerant persisters, are protected by their resistance traits at cellular and molecular levels. This review summarizes recent advances in the research on resistant populations and their resistance traits. NOTCH signaling, as a central regulator of nongenetic resistance, is discussed with a special focus on its canonical maintenance of resistant cancer cells and noncanonical regulation of their resistance traits. This novel view of canonical and noncanonical NOTCH signaling pathways is translated into our proposal of reshaping therapeutic strategies targeting NOTCH signaling in resistant cancer cells. We hope that this review will lead researchers to study the canonical and noncanonical arms of NOTCH signaling as an integrated resistant mechanism, thus promoting the development of innovative therapeutic strategies.
canonical NOTCH signaling / noncanonical NOTCH signaling / nongenetic resistance of cancer / cancer stem-like cells / epithelial-to-mesenchymal transition / drug-tolerant persisters / NOTCH inhibitors
[1] |
Bray F , Laversanne M , Sung H , Ferlay J , Siegel RL , Soerjomataram I , Jemal A . Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2024; 74(3): 229–263
CrossRef
Google scholar
|
[2] |
Schabath MB , Cote ML . Cancer progress and priorities: lung cancer. Cancer Epidemiol Biomarkers Prev 2019; 28(10): 1563–1579
CrossRef
Google scholar
|
[3] |
Hirsch FR , Scagliotti GV , Mulshine JL , Kwon R , Curran WJ Jr , Wu YL , Paz-Ares L . Lung cancer: current therapies and new targeted treatments. Lancet 2017; 389(10066): 299–311
CrossRef
Google scholar
|
[4] |
Mithoowani H , Febbraro M . Non-small-cell lung cancer in 2022: a review for general practitioners in oncology. Curr Oncol 2022; 29(3): 1828–1839
CrossRef
Google scholar
|
[5] |
Rudin CM , Brambilla E , Faivre-Finn C , Sage J . Small-cell lung cancer. Nat Rev Dis Primers 2021; 7(1): 3
CrossRef
Google scholar
|
[6] |
Rodriguez-Canales J , Parra-Cuentas E , Wistuba II . Diagnosis and molecular classification of lung cancer. Cancer Treat Res 2016; 170: 25–46
CrossRef
Google scholar
|
[7] |
Kontomanolis EN , Koutras A , Syllaios A , Schizas D , Mastoraki A , Garmpis N , Diakosavvas M , Angelou K , Tsatsaris G , Pagkalos A , Ntounis T , Fasoulakis Z . Role of oncogenes and tumor-suppressor genes in carcinogenesis: a review. Anticancer Res 2020; 40(11): 6009–6015
CrossRef
Google scholar
|
[8] |
Liu Y , Hu X , Han C , Wang L , Zhang X , He X , Lu X . Targeting tumor suppressor genes for cancer therapy. BioEssays 2015; 37(12): 1277–1286
CrossRef
Google scholar
|
[9] |
Ruiz-Cordero R , Devine WP . Targeted therapy and checkpoint immunotherapy in lung cancer. Surg Pathol Clin 2020; 13(1): 17–33
CrossRef
Google scholar
|
[10] |
Davis W , Larionov LF . Progress in chemotherapy of cancer. Bull World Health Organ 1964; 30(3): 327–341
|
[11] |
Imakita T , Fujita K , Kanai O , Okamura M , Hashimoto M , Nakatani K , Sawai S , Mio T . Small cell transformation of non-small cell lung cancer under immunotherapy: case series and literature review. Thorac Cancer 2021; 12(22): 3062–3067
CrossRef
Google scholar
|
[12] |
Yang S , Zhang Z , Wang Q . Emerging therapies for small cell lung cancer. J Hematol Oncol 2019; 12(1): 47
CrossRef
Google scholar
|
[13] |
El-Hussein A , Manoto SL , Ombinda-Lemboumba S , Alrowaili ZA , Mthunzi-Kufa P . A review of chemotherapy and photodynamic therapy for lung cancer treatment. Anticancer Agents Med Chem 2021; 21(2): 149–161
CrossRef
Google scholar
|
[14] |
Siegel RL , Miller KD , Fuchs HE , Jemal A . Cancer statistics, 2021. CA Cancer J Clin 2021; 71(1): 7–33
CrossRef
Google scholar
|
[15] |
Wang X , Zhang H , Chen X . Drug resistance and combating drug resistance in cancer. Cancer Drug Resist 2019; 2(2): 141–160
|
[16] |
Nussinov R , Tsai CJ , Jang H . Anticancer drug resistance: an update and perspective. Drug Resist Updat 2021; 59: 100796
CrossRef
Google scholar
|
[17] |
Garcia-Mayea Y , Mir C , Masson F , Paciucci R , LLeonart ME . Insights into new mechanisms and models of cancer stem cell multidrug resistance. Semin Cancer Biol 2020; 60: 166–180
CrossRef
Google scholar
|
[18] |
Kannampuzha S , Gopalakrishnan AV . Cancer chemoresistance and its mechanisms: associated molecular factors and its regulatory role. Med Oncol 2023; 40(9): 264
CrossRef
Google scholar
|
[19] |
Marine JC , Dawson SJ , Dawson MA . Non-genetic mechanisms of therapeutic resistance in cancer. Nat Rev Cancer 2020; 20(12): 743–756
CrossRef
Google scholar
|
[20] |
Andersson ER , Sandberg R , Lendahl U . Notch signaling: simplicity in design, versatility in function. Development 2011; 138(17): 3593–3612
CrossRef
Google scholar
|
[21] |
Stier S , Cheng T , Dombkowski D , Carlesso N , Scadden DT . Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood 2002; 99(7): 2369–2378
CrossRef
Google scholar
|
[22] |
Low S , Barnes JL , Zammit PS , Beauchamp JR . Delta-like 4 activates Notch 3 to regulate self-renewal in skeletal muscle stem cells. Stem Cells 2018; 36(3): 458–466
CrossRef
Google scholar
|
[23] |
Kim TH , Shivdasani RA . Notch signaling in stomach epithelial stem cell homeostasis. J Exp Med 2011; 208(4): 677–688
CrossRef
Google scholar
|
[24] |
Siebel C , Lendahl U . Notch signaling in development, tissue homeostasis, and disease. Physiol Rev 2017; 97(4): 1235–1294
CrossRef
Google scholar
|
[25] |
Izon DJ , Punt JA , Xu L , Karnell FG , Allman D , Myung PS , Boerth NJ , Pui JC , Koretzky GA , Pear WS . Notch1 regulates maturation of CD4+ and CD8+ thymocytes by modulating TCR signal strength. Immunity 2001; 14(3): 253–264
CrossRef
Google scholar
|
[26] |
The Cancer Genome Atlas Research Network . Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014; 511(7511): 543–550
CrossRef
Google scholar
|
[27] |
Westhoff B , Colaluca IN , D’Ario G , Donzelli M , Tosoni D , Volorio S , Pelosi G , Spaggiari L , Mazzarol G , Viale G , Pece S , Di Fiore PP . Alterations of the Notch pathway in lung cancer. Proc Natl Acad Sci USA 2009; 106(52): 22293–22298
CrossRef
Google scholar
|
[28] |
Kim N , Kim HK , Lee K , Hong Y , Cho JH , Choi JW , Lee JI , Suh YL , Ku BM , Eum HH , Choi S , Choi YL , Joung JG , Park WY , Jung HA , Sun JM , Lee SH , Ahn JS , Park K , Ahn MJ , Lee HO . Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat Commun 2020; 11(1): 2285
CrossRef
Google scholar
|
[29] |
Licciulli S , Avila JL , Hanlon L , Troutman S , Cesaroni M , Kota S , Keith B , Simon MC , Puré E , Radtke F , Capobianco AJ , Kissil JL . Notch1 is required for Kras-induced lung adenocarcinoma and controls tumor cell survival via p53. Cancer Res 2013; 73(19): 5974–5984
CrossRef
Google scholar
|
[30] |
Xu X , Huang L , Futtner C , Schwab B , Rampersad RR , Lu Y , Sporn TA , Hogan BLM , Onaitis MW . The cell of origin and subtype of K-Ras-induced lung tumors are modified by Notch and Sox2. Genes Dev 2014; 28(17): 1929–1939
CrossRef
Google scholar
|
[31] |
Ntziachristos P , Lim JS , Sage J , Aifantis I . From fly wings to targeted cancer therapies: a centennial for notch signaling. Cancer Cell 2014; 25(3): 318–334
CrossRef
Google scholar
|
[32] |
Sriuranpong V , Borges MW , Ravi RK , Arnold DR , Nelkin BD , Baylin SB , Ball DW . Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res 2001; 61(7): 3200–3205
|
[33] |
The Cancer Genome Atlas Research Network . Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012; 489(7417): 519–525
CrossRef
Google scholar
|
[34] |
Qureshi R , Zou B , Alam T , Wu J , Lee VHF , Yan H . Computational methods for the analysis and prediction of EGFR-mutated lung cancer drug resistance: recent advances in drug design, challenges and future prospects. IEEE/ACM Trans Comput Biol Bioinform 2023; 20(1): 238–255
CrossRef
Google scholar
|
[35] |
Bousquet Mur E , Bernardo S , Papon L , Mancini M , Fabbrizio E , Goussard M , Ferrer I , Giry A , Quantin X , Pujol JL , Calvayrac O , Moll HP , Glasson Y , Pirot N , Turtoi A , Cañamero M , Wong KK , Yarden Y , Casanova E , Soria JC , Colinge J , Siebel CW , Mazieres J , Favre G , Paz-Ares L , Maraver A . Notch inhibition overcomes resistance to tyrosine kinase inhibitors in EGFR-driven lung adenocarcinoma. J Clin Invest 2020; 130(2): 612–624
CrossRef
Google scholar
|
[36] |
Zhang Y , Chen B , Wang Y , Zhao Q , Wu W , Zhang P , Miao L , Sun S . NOTCH3 overexpression and posttranscriptional regulation by miR-150 were associated with EGFR-TKI resistance in lung adenocarcinoma. Oncol Res 2019; 27(7): 751–761
CrossRef
Google scholar
|
[37] |
Xie M , He CS , Wei SH , Zhang L . Notch-1 contributes to epidermal growth factor receptor tyrosine kinase inhibitor acquired resistance in non-small cell lung cancer in vitro and in vivo. Eur J Cancer 2013; 49(16): 3559–3572
CrossRef
Google scholar
|
[38] |
Zhang Y , Xu W , Guo H , Zhang Y , He Y , Lee SH , Song X , Li X , Guo Y , Zhao Y , Ding C , Ning F , Ma Y , Lei QY , Hu X , Li S , Guo W . NOTCH1 signaling regulates self-renewal and platinum chemoresistance of cancer stem-like cells in human non-small cell lung cancer. Cancer Res 2017; 77(11): 3082–3091
CrossRef
Google scholar
|
[39] |
Meng RD , Shelton CC , Li YM , Qin LX , Notterman D , Paty PB , Schwartz GK . gamma-Secretase inhibitors abrogate oxaliplatin-induced activation of the Notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity. Cancer Res 2009; 69(2): 573–582
CrossRef
Google scholar
|
[40] |
Güngör C , Zander H , Effenberger KE , Vashist YK , Kalinina T , Izbicki JR , Yekebas E , Bockhorn M . Notch signaling activated by replication stress–induced expression of midkine drives epithelial–mesenchymal transition and chemoresistance in pancreatic cancer. Cancer Res 2011; 71(14): 5009–5019
CrossRef
Google scholar
|
[41] |
Han S , Xu Y , Chen D , Yang F , Wang M , Zhou Q , Wang G , Li L , Xu C , Wang W , Cai S , Xing N . Notch activation defines immune-suppressive subsets of ccRCCs with unfavorable benefits from immunotherapy over VEGFR/mTOR inhibitors. iScience 2024; 27(1): 108290
CrossRef
Google scholar
|
[42] |
Yan W , Menjivar RE , Bonilla ME , Steele NG , Kemp SB , Du W , Donahue KL , Brown KL , Carpenter ES , Avritt FR , Irizarry-Negron VM , Yang S , Burns WR III , Zhang Y , Pasca di Magliano M , Bednar F . Notch signaling regulates immunosuppressive tumor-associated macrophage function in pancreatic cancer. Cancer Immunol Res 2024; 12(1): 91–106
CrossRef
Google scholar
|
[43] |
Makena MR , Ranjan A , Thirumala V , Reddy AP . Cancer stem cells: road to therapeutic resistance and strategies to overcome resistance. Biochim Biophys Acta Mol Basis Dis 2020; 1866(4): 165339
CrossRef
Google scholar
|
[44] |
Du B , Shim JS . Targeting epithelial–mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules 2016; 21(7): 965
CrossRef
Google scholar
|
[45] |
Ramesh V , Brabletz T , Ceppi P . Targeting EMT in cancer with repurposed metabolic inhibitors. Trends Cancer 2020; 6(11): 942–950
CrossRef
Google scholar
|
[46] |
Sharma SV , Lee DY , Li B , Quinlan MP , Takahashi F , Maheswaran S , McDermott U , Azizian N , Zou L , Fischbach MA , Wong KK , Brandstetter K , Wittner B , Ramaswamy S , Classon M , Settleman J . A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 2010; 141(1): 69–80
CrossRef
Google scholar
|
[47] |
Bell CC , Gilan O . Principles and mechanisms of non-genetic resistance in cancer. Br J Cancer 2020; 122(4): 465–472
CrossRef
Google scholar
|
[48] |
Mayani H , Chávez-González A , Vázquez-Santillan K , Contreras J , Guzman ML . Cancer stem cells: biology and therapeutic implications. Arch Med Res 2022; 53(8): 770–784
CrossRef
Google scholar
|
[49] |
Zhou H , Tan L , Liu B , Guan XY . Cancer stem cells: recent insights and therapies. Biochem Pharmacol 2023; 209: 115441
CrossRef
Google scholar
|
[50] |
Saygin C , Matei D , Majeti R , Reizes O , Lathia JD . Targeting cancer stemness in the clinic: from hype to hope. Cell Stem Cell 2019; 24(1): 25–40
CrossRef
Google scholar
|
[51] |
Lee SY , Jeong EK , Ju MK , Jeon HM , Kim MY , Kim CH , Park HG , Han SI , Kang HS . Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer 2017; 16(1): 10
CrossRef
Google scholar
|
[52] |
Bonnet D , Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3(7): 730–737
CrossRef
Google scholar
|
[53] |
Reya T , Morrison SJ , Clarke MF , Weissman IL . Stem cells, cancer, and cancer stem cells. Nature 2001; 414(6859): 105–111
CrossRef
Google scholar
|
[54] |
Al-Hajj M , Wicha MS , Benito-Hernandez A , Morrison SJ , Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100(7): 3983–3988
CrossRef
Google scholar
|
[55] |
Guo W , Lasky JL , Chang CJ , Mosessian S , Lewis X , Xiao Y , Yeh JE , Chen JY , Iruela-Arispe ML , Varella-Garcia M , Wu H . Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature 2008; 453(7194): 529–533
CrossRef
Google scholar
|
[56] |
Yin J , Wen Y , Zeng J , Zhang Y , Chen J , Zhang Y , Han T , Li X , Huang H , Cai Y , Jin Y , Li Y , Guo W , Pan L . CDC50A might be a novel biomarker of epithelial ovarian cancer-initiating cells. BMC Cancer 2022; 22(1): 903
CrossRef
Google scholar
|
[57] |
Guo W , Lasky JL , Wu H . Cancer stem cells. Pediatr Res 2006; 59(4): 59–64
CrossRef
Google scholar
|
[58] |
Thiery JP , Acloque H , Huang RYJ , Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139(5): 871–890
CrossRef
Google scholar
|
[59] |
Dongre A , Weinberg RA . New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 2019; 20(2): 69–84
CrossRef
Google scholar
|
[60] |
Brabletz S , Schuhwerk H , Brabletz T , Stemmler MP . Dynamic EMT: a multi-tool for tumor progression. EMBO J 2021; 40(18): e108647
CrossRef
Google scholar
|
[61] |
Title AC , Hong SJ , Pires ND , Hasenöhrl L , Godbersen S , Stokar-Regenscheit N , Bartel DP , Stoffel M . Genetic dissection of the miR-200–Zeb1 axis reveals its importance in tumor differentiation and invasion. Nat Commun 2018; 9(1): 4671
CrossRef
Google scholar
|
[62] |
Saitoh M . Involvement of partial EMT in cancer progression. J Biochem 2018; 164(4): 257–264
CrossRef
Google scholar
|
[63] |
Rehman SK , Haynes J , Collignon E , Brown KR , Wang Y , Nixon AML , Bruce JP , Wintersinger JA , Singh Mer A , Lo EBL , Leung C , Lima-Fernandes E , Pedley NM , Soares F , McGibbon S , He HH , Pollet A , Pugh TJ , Haibe-Kains B , Morris Q , Ramalho-Santos M , Goyal S , Moffat J , O’Brien CA . Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy. Cell 2021; 184(1): 226–242.e21
CrossRef
Google scholar
|
[64] |
Oren Y , Tsabar M , Cuoco MS , Amir-Zilberstein L , Cabanos HF , Hütter JC , Hu B , Thakore PI , Tabaka M , Fulco CP , Colgan W , Cuevas BM , Hurvitz SA , Slamon DJ , Deik A , Pierce KA , Clish C , Hata AN , Zaganjor E , Lahav G , Politi K , Brugge JS , Regev A . Cycling cancer persister cells arise from lineages with distinct programs. Nature 2021; 596(7873): 576–582
CrossRef
Google scholar
|
[65] |
Ramirez M , Rajaram S , Steininger RJ , Osipchuk D , Roth MA , Morinishi LS , Evans L , Ji W , Hsu CH , Thurley K , Wei S , Zhou A , Koduru PR , Posner BA , Wu LF , Altschuler SJ . Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat Commun 2016; 7(1): 10690
CrossRef
Google scholar
|
[66] |
Leonce C , Saintigny P , Ortiz-Cuaran S . Cell-intrinsic mechanisms of drug tolerance to systemic therapies in cancer. Mol Cancer Res 2022; 20(1): 11–29
CrossRef
Google scholar
|
[67] |
Menon DR , Das S , Krepler C , Vultur A , Rinner B , Schauer S , Kashofer K , Wagner K , Zhang G , Rad EB , Haass N , Soyer H , Gabrielli B , Somasundaram R , Hoefler G , Herlyn M , Schaider H . A stress-induced early innate response causes multidrug tolerance in melanoma. Oncogene 2015; 34(34): 4448–4459
CrossRef
Google scholar
|
[68] |
Du Z , Zhang T , Lin Y , Dong G , Li A , Wang Z , Zhang Y , Giamas G , Stebbing J , Zhu L , Peng L . A prognostic model of drug tolerant persister-related genes in lung adenocarcinoma based on single cell and bulk RNA sequencing data. Heliyon 2023; 9(11): e20708
CrossRef
Google scholar
|
[69] |
Dhanyamraju PK , Schell TD , Amin S , Robertson GP . Drug-tolerant persister cells in cancer therapy resistance. Cancer Res 2022; 82(14): 2503–2514
CrossRef
Google scholar
|
[70] |
Rueff J , Rodrigues AS . Cancer drug resistance: a brief overview from a genetic viewpoint. Methods Mol Biol 2016; 1395: 1–18
CrossRef
Google scholar
|
[71] |
Bertolini G , Roz L , Perego P , Tortoreto M , Fontanella E , Gatti L , Pratesi G , Fabbri A , Andriani F , Tinelli S , Roz E , Caserini R , Lo Vullo S , Camerini T , Mariani L , Delia D , Calabrò E , Pastorino U , Sozzi G . Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci USA 2009; 106(38): 16281–16286
CrossRef
Google scholar
|
[72] |
Robey RW , Pluchino KM , Hall MD , Fojo AT , Bates SE , Gottesman MM . Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 2018; 18(7): 452–464
CrossRef
Google scholar
|
[73] |
Szakács G , Annereau JP , Lababidi S , Shankavaram U , Arciello A , Bussey KJ , Reinhold W , Guo Y , Kruh GD , Reimers M , Weinstein JN , Gottesman MM . Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell 2004; 6(2): 129–137
CrossRef
Google scholar
|
[74] |
Ween MP , Armstrong MA , Oehler MK , Ricciardelli C . The role of ABC transporters in ovarian cancer progression and chemoresistance. Crit Rev Oncol Hematol 2015; 96(2): 220–256
CrossRef
Google scholar
|
[75] |
Saxena M , Stephens MA , Pathak H , Rangarajan A . Transcription factors that mediate epithelial–mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death Dis 2011; 2(7): e179
CrossRef
Google scholar
|
[76] |
Katayama R , Sakashita T , Yanagitani N , Ninomiya H , Horiike A , Friboulet L , Gainor JF , Motoi N , Dobashi A , Sakata S , Tambo Y , Kitazono S , Sato S , Koike S , John Iafrate A , Mino-Kenudson M , Ishikawa Y , Shaw AT , Engelman JA , Takeuchi K , Nishio M , Fujita N . P-glycoprotein mediates ceritinib resistance in anaplastic lymphoma kinase-rearranged non-small cell lung cancer. EBioMedicine 2016; 3: 54–66
CrossRef
Google scholar
|
[77] |
Murray GI , Taylor MC , McFadyen MCE , McKay JA , Greenlee WF , Burke MD , Melvin WT . Tumor-specific expression of cytochrome P450 CYP1B11. Cancer Res 1997; 57(14): 3026–3031
|
[78] |
Murray GI . The role of cytochrome P450 in tumour development and progression and its potential in therapy. J Pathol 2000; 192(4): 419–426
CrossRef
Google scholar
|
[79] |
Leclerc J , Tournel G , Courcot-Ngoubo Ngangue E , Pottier N , Lafitte JJ , Jaillard S , Mensier E , Lhermitte M , Broly F , Lo-Guidice JM . Profiling gene expression of whole cytochrome P450 superfamily in human bronchial and peripheral lung tissues: Differential expression in non-small cell lung cancers. Biochimie 2010; 92(3): 292–306
CrossRef
Google scholar
|
[80] |
Al-Dhfyan A , Alhoshani A , Korashy HM . Aryl hydrocarbon receptor/cytochrome P450 1A1 pathway mediates breast cancer stem cells expansion through PTEN inhibition and β-Catenin and Akt activation. Mol Cancer 2017; 16(1): 14
CrossRef
Google scholar
|
[81] |
Mo HY , Wei QY , Zhong QH , Zhao XY , Guo D , Han J , Noracharttiyapot W , Visser L , van den Berg A , Xu YM , Lau ATY . Cytochrome P450 27C1 level dictates lung cancer tumorigenicity and sensitivity towards multiple anticancer agents and its potential interplay with the IGF-1R/Akt/p53 signaling pathway. Int J Mol Sci 2022; 23(14): 7853
CrossRef
Google scholar
|
[82] |
Lin C , Xie L , Lu Y , Hu Z , Chang J . miR-133b reverses cisplatin resistance by targeting GSTP1 in cisplatin-resistant lung cancer cells. Int J Mol Med 2018; 41(4): 2050–2058
CrossRef
Google scholar
|
[83] |
Li J , Ye T , Liu Y , Kong L , Sun Z , Liu D , Wang J , Xing HR . Transcriptional activation of Gstp1 by MEK/ERK signaling confers chemo-resistance to cisplatin in lung cancer stem cells. Front Oncol 2019; 9: 476
CrossRef
Google scholar
|
[84] |
Allain EP , Rouleau M , Lévesque E , Guillemette C . Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. Br J Cancer 2020; 122(9): 1277–1287
CrossRef
Google scholar
|
[85] |
López-Ayllón BD , de Castro-Carpeño J , Rodriguez C , Pernía O , Ibañez de Cáceres I , Belda-Iniesta C , Perona R , Sastre L . Biomarkers of erlotinib response in non-small cell lung cancer tumors that do not harbor the more common epidermal growth factor receptor mutations. Int J Clin Exp Pathol 2015; 8(3): 2888–2898
|
[86] |
Nowsheen S , Yang ES . The intersection between DNA damage response and cell death pathways. Exp Oncol 2012; 34(3): 243–254
|
[87] |
Jackson SP , Bartek J . The DNA-damage response in human biology and disease. Nature 2009; 461(7267): 1071–1078
CrossRef
Google scholar
|
[88] |
d’Adda di Fagagna F . Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 2008; 8(7): 512–522
CrossRef
Google scholar
|
[89] |
Weber AM , Ryan AJ . ATM and ATR as therapeutic targets in cancer. Pharmacol Ther 2015; 149: 124–138
CrossRef
Google scholar
|
[90] |
Cheng L , Wu Q , Huang Z , Guryanova OA , Huang Q , Shou W , Rich JN , Bao S . L1CAM regulates DNA damage checkpoint response of glioblastoma stem cells through NBS1. EMBO J 2011; 30(5): 800–813
CrossRef
Google scholar
|
[91] |
Abad E , Civit L , Potesil D , Zdrahal Z , Lyakhovich A . Enhanced DNA damage response through RAD50 in triple negative breast cancer resistant and cancer stem-like cells contributes to chemoresistance. FEBS J 2021; 288(7): 2184–2202
CrossRef
Google scholar
|
[92] |
Shen M , Xu Z , Xu W , Jiang K , Zhang F , Ding Q , Xu Z , Chen Y . Inhibition of ATM reverses EMT and decreases metastatic potential of cisplatin-resistant lung cancer cells through JAK/STAT3/PD-L1 pathway. J Exp Clin Cancer Res 2019; 38(1): 149
CrossRef
Google scholar
|
[93] |
Zhang X , Zhang Z , Zhang Q , Zhang Q , Sun P , Xiang R , Ren G , Yang S . ZEB1 confers chemotherapeutic resistance to breast cancer by activating ATM. Cell Death Dis 2018; 9(2): 57
CrossRef
Google scholar
|
[94] |
Bartucci M , Svensson S , Romania P , Dattilo R , Patrizii M , Signore M , Navarra S , Lotti F , Biffoni M , Pilozzi E , Duranti E , Martinelli S , Rinaldo C , Zeuner A , Maugeri-Saccà M , Eramo A , De Maria R . Therapeutic targeting of Chk1 in NSCLC stem cells during chemotherapy. Cell Death Differ 2012; 19(5): 768–778
CrossRef
Google scholar
|
[95] |
Alsubhi N , Middleton F , Abdel-Fatah TMA , Stephens P , Doherty R , Arora A , Moseley PM , Chan SYT , Aleskandarany MA , Green AR , Rakha EA , Ellis IO , Martin SG , Curtin NJ , Madhusudan S . Chk1 phosphorylated at serine345 is a predictor of early local recurrence and radio-resistance in breast cancer. Mol Oncol 2016; 10(2): 213–223
CrossRef
Google scholar
|
[96] |
Abad E , Graifer D , Lyakhovich A . DNA damage response and resistance of cancer stem cells. Cancer Lett 2020; 474: 106–117
CrossRef
Google scholar
|
[97] |
Azad AA , Zoubeidi A , Gleave ME , Chi KN . Targeting heat shock proteins in metastatic castration-resistant prostate cancer. Nat Rev Urol 2015; 12(1): 26–36
CrossRef
Google scholar
|
[98] |
Pinhasi-Kimhi O , Michalovitz D , Ben-Zeev A , Oren M . Specific interaction between the p53 cellular tumour antigen and major heat shock proteins. Nature 1986; 320(6058): 182–185
CrossRef
Google scholar
|
[99] |
Wiech M , Olszewski MB , Tracz-Gaszewska Z , Wawrzynow B , Zylicz M , Zylicz A . Molecular mechanism of mutant p53 stabilization: the role of HSP70 and MDM2. PLoS One 2012; 7(12): e51426
CrossRef
Google scholar
|
[100] |
Knighton LE , Delgado LE , Truman AW . Novel insights into molecular chaperone regulation of ribonucleotide reductase. Curr Genet 2019; 65(2): 477–482
CrossRef
Google scholar
|
[101] |
Huang Z , Yang C , Sun S , Nan Y , Lang Z , Wang X , Zhao J , Liu Y . Heat shock protein 27, a novel regulator of transforming growth factor β induced resistance to cisplatin in A549. Pharmacology 2017; 100(5-6): 283–291
CrossRef
Google scholar
|
[102] |
Hsu HS , Lin JH , Huang WC , Hsu TW , Su K , Chiou SH , Tsai YT , Hung SC . Chemoresistance of lung cancer stemlike cells depends on activation of Hsp27. Cancer 2011; 117(7): 1516–1528
CrossRef
Google scholar
|
[103] |
Franke TF , Hornik CP , Segev L , Shostak GA , Sugimoto C . PI3K/Akt and apoptosis: size matters. Oncogene 2003; 22(56): 8983–8998
CrossRef
Google scholar
|
[104] |
Dubrovska A , Kim S , Salamone RJ , Walker JR , Maira SM , García-Echeverría C , Schultz PG , Reddy VA . The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci USA 2009; 106(1): 268–273
CrossRef
Google scholar
|
[105] |
Rajasekhar VK , Studer L , Gerald W , Socci ND , Scher HI . Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-κB signalling. Nat Commun 2011; 2(1): 162
CrossRef
Google scholar
|
[106] |
Kagoya Y , Yoshimi A , Kataoka K , Nakagawa M , Kumano K , Arai S , Kobayashi H , Saito T , Iwakura Y , Kurokawa M . Positive feedback between NF-κB and TNF-α promotes leukemia-initiating cell capacity. J Clin Invest 2014; 124(2): 528–542
CrossRef
Google scholar
|
[107] |
Konopleva M , Zhao S , Hu W , Jiang S , Snell V , Weidner D , Jackson CE , Zhang X , Champlin R , Estey E , Reed JC , Andreeff M . The anti-apoptotic genes Bcl-XL and Bcl-2 are over-expressed and contribute to chemoresistance of non-proliferating leukaemic CD34+ cells. Br J Haematol 2002; 118(2): 521–534
CrossRef
Google scholar
|
[108] |
Piggott L , Omidvar N , Martí Pérez S , French R , Eberl M , Clarkson RWE . Suppression of apoptosis inhibitor c-FLIP selectively eliminates breast cancer stem cell activity in response to the anti-cancer agent, TRAIL. Breast Cancer Res 2011; 13(5): R88
CrossRef
Google scholar
|
[109] |
Chakraborty S , Li L , Tang H , Xie Y , Puliyappadamba VT , Raisanen J , Burma S , Boothman DA , Cochran B , Wu J , Habib AA . Cytoplasmic TRADD confers a worse prognosis in glioblastoma. Neoplasia 2013; 15(8): 888–897
CrossRef
Google scholar
|
[110] |
Cheng F , Dou J , Zhang Y , Wang X , Wei H , Zhang Z , Cao Y , Wu Z . Urolithin a inhibits epithelial-mesenchymal transition in lung cancer cells via P53-Mdm2-Snail pathway. OncoTargets Ther 2021; 14: 3199–3208
CrossRef
Google scholar
|
[111] |
Soleymani L , Zarrabi A , Hashemi F , Hashemi F , Zabolian A , Banihashemi SM , Moghadam SS , Hushmandi K , Samarghandian S , Ashrafizadeh M , Khan H . Role of ZEB family members in proliferation, metastasis, and chemoresistance of prostate cancer cells: revealing signaling networks. Curr Cancer Drug Targets 2021; 21(9): 749–767
CrossRef
Google scholar
|
[112] |
García-Aranda M , Pérez-Ruiz E , Redondo M . Bcl-2 inhibition to overcome resistance to chemo- and immunotherapy. Int J Mol Sci 2018; 19(12): 3950
CrossRef
Google scholar
|
[113] |
Lu Y , Liu Y , Oeck S , Zhang GJ , Schramm A , Glazer PM . Hypoxia induces resistance to EGFR inhibitors in lung cancer cells via upregulation of FGFR1 and the MAPK pathway. Cancer Res 2020; 80(21): 4655–4667
CrossRef
Google scholar
|
[114] |
Deben C , Deschoolmeester V , De Waele J , Jacobs J , Van den Bossche J , Wouters A , Peeters M , Rolfo C , Smits E , Lardon F , Pauwels P . Hypoxia-induced cisplatin resistance in non-small cell lung cancer cells is mediated by HIF-1α and mutant p53 and can be overcome by induction of oxidative stress. Cancers (Basel) 2018; 10(4): 126
CrossRef
Google scholar
|
[115] |
Hao S , Zhu X , Liu Z , Wu X , Li S , Jiang P , Jiang L . Chronic intermittent hypoxia promoted lung cancer stem cell-like properties via enhancing Bach1 expression. Respir Res 2021; 22(1): 58
CrossRef
Google scholar
|
[116] |
Bao B , Ali S , Ahmad A , Azmi AS , Li Y , Banerjee S , Kong D , Sethi S , Aboukameel A , Padhye SB , Sarkar FH . Hypoxia-induced aggressiveness of pancreatic cancer cells is due to increased expression of VEGF, IL-6 and miR-21, which can be attenuated by CDF treatment. PLoS One 2012; 7(12): e50165
CrossRef
Google scholar
|
[117] |
Zhang C , Samanta D , Lu H , Bullen JW , Zhang H , Chen I , He X , Semenza GL . Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA 2016; 113(14): E2047–E2056
CrossRef
Google scholar
|
[118] |
Harris AL . Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2002; 2(1): 38–47
CrossRef
Google scholar
|
[119] |
Jing X , Yang F , Shao C , Wei K , Xie M , Shen H , Shu Y . Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer 2019; 18(1): 157
CrossRef
Google scholar
|
[120] |
Chen Y , De Marco MA , Graziani I , Gazdar AF , Strack PR , Miele L , Bocchetta M . Oxygen concentration determines the biological effects of NOTCH-1 signaling in adenocarcinoma of the lung. Cancer Res 2007; 67(17): 7954–7959
CrossRef
Google scholar
|
[121] |
Raniszewska A , Polubiec-Kownacka M , Rutkowska E , Domagala-Kulawik J . PD-L1 expression on lung cancer stem cells in metastatic lymph nodes aspirates. Stem Cell Rev 2019; 15(2): 324–330
CrossRef
Google scholar
|
[122] |
Xu C , Fillmore CM , Koyama S , Wu H , Zhao Y , Chen Z , Herter-Sprie GS , Akbay EA , Tchaicha JH , Altabef A , Reibel JB , Walton Z , Ji H , Watanabe H , Jänne PA , Castrillon DH , Rustgi AK , Bass AJ , Freeman GJ , Padera RF , Dranoff G , Hammerman PS , Kim CF , Wong KK . Loss of Lkb1 and Pten leads to lung squamous cell carcinoma with elevated PD-L1 expression. Cancer Cell 2014; 25(5): 590–604
CrossRef
Google scholar
|
[123] |
Hsu JM , Xia W , Hsu YH , Chan LC , Yu WH , Cha JH , Chen CT , Liao HW , Kuo CW , Khoo KH , Hsu JL , Li CW , Lim SO , Chang SS , Chen YC , Ren G , Hung MC . STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nat Commun 2018; 9(1): 1908
CrossRef
Google scholar
|
[124] |
Liu L , Zhang L , Yang L , Li H , Li R , Yu J , Yang L , Wei F , Yan C , Sun Q , Zhao H , Yang F , Jin H , Wang J , Wang SE , Ren X . Anti-CD47 antibody as a targeted therapeutic agent for human lung cancer and cancer stem cells. Front Immunol 2017; 8: 404
CrossRef
Google scholar
|
[125] |
Majeti R , Chao MP , Alizadeh AA , Pang WW , Jaiswal S , Gibbs KD Jr , van Rooijen N , Weissman IL . CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 2009; 138(2): 286–299
CrossRef
Google scholar
|
[126] |
Chen P , Hsu WH , Han J , Xia Y , DePinho RA . Cancer stemness meets immunity: from mechanism to therapy. Cell Rep 2021; 34(1): 108597
CrossRef
Google scholar
|
[127] |
Todaro M , Alea MP , Stefano ABD , Cammareri P , Vermeulen L , Iovino F , Tripodo C , Russo A , Gulotta G , Medema JP , Stassi G . Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 2007; 1(4): 389–402
CrossRef
Google scholar
|
[128] |
Lebrun JJ . The dual role of TGFβ in human cancer: from tumor suppression to cancer metastasis. ISRN Mol Biol 2012; 2012: 381428
CrossRef
Google scholar
|
[129] |
Stagg J , Divisekera U , McLaughlin N , Sharkey J , Pommey S , Denoyer D , Dwyer KM , Smyth MJ . Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci USA 2010; 107(4): 1547–1552
CrossRef
Google scholar
|
[130] |
Chen S , Fan J , Zhang M , Qin L , Dominguez D , Long A , Wang G , Ma R , Li H , Zhang Y , Fang D , Sosman J , Zhang B . CD73 expression on effector T cells sustained by TGF-β facilitates tumor resistance to anti-4–1BB/CD137 therapy. Nat Commun 2019; 10(1): 150
CrossRef
Google scholar
|
[131] |
Kovall RA , Blacklow SC . Mechanistic insights into Notch receptor signaling from structural and biochemical studies. Curr Top Dev Biol 2010; 92: 31–71
CrossRef
Google scholar
|
[132] |
ParkGParkWY. Notch (Notch1, Notch2, Notch3, Notch4). In: Choi S. Encyclopedia of Signaling Molecules. New York, NY: Springer, 2012: 1254–1261
|
[133] |
Zhou B , Lin W , Long Y , Yang Y , Zhang H , Wu K , Chu Q . Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther 2022; 7(1): 95
CrossRef
Google scholar
|
[134] |
Hosseini-Alghaderi S , Baron M . Notch3 in development, health and disease. Biomolecules 2020; 10(3): 485
CrossRef
Google scholar
|
[135] |
de Celis JF , Bray SJ . The Abruptex domain of Notch regulates negative interactions between Notch, its ligands and Fringe. Development 2000; 127(6): 1291–1302
CrossRef
Google scholar
|
[136] |
Andersson ER , Lendahl U . Therapeutic modulation of Notch signalling—are we there yet. Nat Rev Drug Discov 2014; 13(5): 357–378
CrossRef
Google scholar
|
[137] |
Westhoff B , Colaluca IN , D’Ario G , Donzelli M , Tosoni D , Volorio S , Pelosi G , Spaggiari L , Mazzarol G , Viale G , Pece S , Di Fiore PP . Alterations of the Notch pathway in lung cancer. Proc Natl Acad Sci USA 2009; 106(52): 22293–22298
CrossRef
Google scholar
|
[138] |
McGill MA , Dho SE , Weinmaster G , McGlade CJ . Numb regulates post-endocytic trafficking and degradation of Notch1. J Biol Chem 2009; 284(39): 26427–26438
CrossRef
Google scholar
|
[139] |
Shao X , Ding Z , Zhao M , Liu K , Sun H , Chen J , Liu X , Zhang Y , Hong Y , Li H , Li H . Mammalian Numb protein antagonizes Notch by controlling postendocytic trafficking of the Notch ligand Delta-like 4. J Biol Chem 2017; 292(50): 20628–20643
CrossRef
Google scholar
|
[140] |
van Tetering G , Vooijs M . Proteolytic cleavage of Notch: “HIT and RUN”. Curr Mol Med 2011; 11(4): 255–269
CrossRef
Google scholar
|
[141] |
Groot AJ , Vooijs MA . The role of Adams in Notch signaling. Adv Exp Med Biol 2012; 727: 15–36
CrossRef
Google scholar
|
[142] |
Steiner H , Fluhrer R , Haass C . Intramembrane proteolysis by gamma-secretase. J Biol Chem 2008; 283(44): 29627–29631
CrossRef
Google scholar
|
[143] |
Sorensen EB , Conner SD . γ-secretase-dependent cleavage initiates Notch signaling from the plasma membrane. Traffic 2010; 11(9): 1234–1245
CrossRef
Google scholar
|
[144] |
Tagami S , Okochi M , Yanagida K , Ikuta A , Fukumori A , Matsumoto N , Ishizuka-Katsura Y , Nakayama T , Itoh N , Jiang J , Nishitomi K , Kamino K , Morihara T , Hashimoto R , Tanaka T , Kudo T , Chiba S , Takeda M . Regulation of Notch signaling by dynamic changes in the precision of S3 cleavage of Notch-1. Mol Cell Biol 2008; 28(1): 165–176
CrossRef
Google scholar
|
[145] |
Antfolk D , Antila C , Kemppainen K , Landor SKJ , Sahlgren C . Decoding the PTM-switchboard of Notch. Biochim Biophys Acta Mol Cell Res 2019; 1866(12): 118507
CrossRef
Google scholar
|
[146] |
Yeh CH , Bellon M , Nicot C . FBXW7: a critical tumor suppressor of human cancers. Mol Cancer 2018; 17(1): 115
CrossRef
Google scholar
|
[147] |
Fryer CJ , White JB , Jones KA . Mastermind recruits CycC: CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 2004; 16(4): 509–520
CrossRef
Google scholar
|
[148] |
Li N , Fassl A , Chick J , Inuzuka H , Li X , Mansour MR , Liu L , Wang H , King B , Shaik S , Gutierrez A , Ordureau A , Otto T , Kreslavsky T , Baitsch L , Bury L , Meyer CA , Ke N , Mulry KA , Kluk MJ , Roy M , Kim S , Zhang X , Geng Y , Zagozdzon A , Jenkinson S , Gale RE , Linch DC , Zhao JJ , Mullighan CG , Harper JW , Aster JC , Aifantis I , von Boehmer H , Gygi SP , Wei W , Look AT , Sicinski P . Cyclin C is a haploinsufficient tumour suppressor. Nat Cell Biol 2014; 16(11): 1080–1091
CrossRef
Google scholar
|
[149] |
Foltz DR , Santiago MC , Berechid BE , Nye JS . Glycogen synthase kinase-3β modulates Notch signaling and stability. Curr Biol 2002; 12(12): 1006–1011
CrossRef
Google scholar
|
[150] |
Jin YH , Kim H , Oh M , Ki H , Kim K . Regulation of Notch1/NICD and Hes1 expressions by GSK-3alpha/beta. Mol Cells 2009; 27(1): 15–19
CrossRef
Google scholar
|
[151] |
Mo JS , Kim MY , Han SO , Kim IS , Ann EJ , Lee KS , Seo MS , Kim JY , Lee SC , Park JW , Choi EJ , Seong JY , Joe CO , Faessler R , Park HS . Integrin-linked kinase controls Notch1 signaling by down-regulation of protein stability through Fbw7 ubiquitin ligase. Mol Cell Biol 2007; 27(15): 5565–5574
CrossRef
Google scholar
|
[152] |
Mo JS , Ann EJ , Yoon JH , Jung J , Choi YH , Kim HY , Ahn JS , Kim SM , Kim MY , Hong JA , Seo MS , Lang F , Choi EJ , Park HS . Serum- and glucocorticoid-inducible kinase 1 (SGK1) controls Notch1 signaling by downregulation of protein stability through Fbw7 ubiquitin ligase. J Cell Sci 2011; 124(1): 100–112
CrossRef
Google scholar
|
[153] |
Qin H , Wang J , Liang Y , Taniguchi Y , Tanigaki K , Han H . RING1 inhibits transactivation of RBP-J by Notch through interaction with LIM protein KyoT2. Nucleic Acids Res 2004; 32(4): 1492–1501
CrossRef
Google scholar
|
[154] |
Fu W , Wang K , Zhao JL , Yu HC , Li SZ , Lin Y , Liang L , Huang SY , Liang YM , Han H , Qin HY . FHL1C induces apoptosis in Notch1-dependent T-ALL cells through an interaction with RBP-J. BMC Cancer 2014; 14(1): 463
CrossRef
Google scholar
|
[155] |
Oswald F , Kostezka U , Astrahantseff K , Bourteele S , Dillinger K , Zechner U , Ludwig L , Wilda M , Hameister H , Knöchel W , Liptay S , Schmid RM . SHARP is a novel component of the Notch/RBP-Jκ signalling pathway. EMBO J 2002; 21(20): 5417–5426
CrossRef
Google scholar
|
[156] |
Ann EJ , Kim HY , Seo MS , Mo JS , Kim MY , Yoon JH , Ahn JS , Park HS . Wnt5a controls Notch1 signaling through CaMKII-mediated degradation of the SMRT corepressor protein. J Biol Chem 2012; 287(44): 36814–36829
CrossRef
Google scholar
|
[157] |
Nagel AC , Krejci A , Tenin G , Bravo-Patiño A , Bray S , Maier D , Preiss A . Hairless-mediated repression of Notch target genes requires the combined activity of Groucho and CtBP corepressors. Mol Cell Biol 2005; 25(23): 10433–10441
CrossRef
Google scholar
|
[158] |
Kopan R , Ilagan MXG . The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009; 137(2): 216–233
CrossRef
Google scholar
|
[159] |
Fischer A , Gessler M . Delta-Notch–and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors. Nucleic Acids Res 2007; 35(14): 4583–4596
CrossRef
Google scholar
|
[160] |
Reizis B , Leder P . Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway. Genes Dev 2002; 16(3): 295–300
CrossRef
Google scholar
|
[161] |
Fang TC , Yashiro-Ohtani Y , Del Bianco C , Knoblock DM , Blacklow SC , Pear WS . Notch directly regulates Gata3 expression during T helper 2 cell differentiation. Immunity 2007; 27(1): 100–110
CrossRef
Google scholar
|
[162] |
Palomero T , Lim WK , Odom DT , Sulis ML , Real PJ , Margolin A , Barnes KC , O’Neil J , Neuberg D , Weng AP , Aster JC , Sigaux F , Soulier J , Look AT , Young RA , Califano A , Ferrando AA . NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA 2006; 103(48): 18261–18266
CrossRef
Google scholar
|
[163] |
Chen L , Zhang J , Lyu Z , Chen Y , Ji X , Cao H , Jin M , Zhu J , Yang J , Ling R , Xing J , Ren T , Lyu Y . Positive feedback loop between mitochondrial fission and Notch signaling promotes survivin-mediated survival of TNBC cells. Cell Death Dis 2018; 9(11): 1050
CrossRef
Google scholar
|
[164] |
Ronchini C , Capobianco AJ . Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic). Mol Cell Biol 2001; 21(17): 5925–5934
CrossRef
Google scholar
|
[165] |
Rangarajan A , Talora C , Okuyama R , Nicolas M , Mammucari C , Oh H , Aster JC , Krishna S , Metzger D , Chambon P , Miele L , Aguet M , Radtke F , Dotto GP . Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J 2001; 20(13): 3427–3436
CrossRef
Google scholar
|
[166] |
Yeh TS , Lin YM , Hsieh RH , Tseng MJ . Association of transcription factor YY1 with the high molecular weight Notch complex suppresses the transactivation activity of Notch. J Biol Chem 2003; 278(43): 41963–41969
CrossRef
Google scholar
|
[167] |
Mulligan P , Yang F , Di Stefano L , Ji JY , Ouyang J , Nishikawa JL , Toiber D , Kulkarni M , Wang Q , Najafi-Shoushtari SH , Mostoslavsky R , Gygi SP , Gill G , Dyson NJ , Näär AMA . SIRT1–LSD1 corepressor complex regulates Notch target gene expression and development. Mol Cell 2011; 42(5): 689–699
CrossRef
Google scholar
|
[168] |
Popko-Scibor AE , Lindberg MJ , Hansson ML , Holmlund T , Wallberg AE . Ubiquitination of Notch1 is regulated by MAML1-mediated p300 acetylation of Notch1. Biochem Biophys Res Commun 2011; 416(3-4): 300–306
CrossRef
Google scholar
|
[169] |
Baumgart A , Mazur PK , Anton M , Rudelius M , Schwamborn K , Feuchtinger A , Behnke K , Walch A , Braren R , Peschel C , Duyster J , Siveke JT , Dechow T . Opposing role of Notch1 and Notch2 in a KrasG12D-driven murine non-small cell lung cancer model. Oncogene 2015; 34(5): 578–588
CrossRef
Google scholar
|
[170] |
Ye Y , Zhang Z , Fan X , Xu X , Chen M , Chang B , Zhang Y . Notch3 overexpression associates with poor prognosis in human non-small-cell lung cancer. Med Oncol 2013; 30(2): 595
CrossRef
Google scholar
|
[171] |
Haruki N , Kawaguchi KS , Eichenberger S , Massion PP , Olson S , Gonzalez A , Carbone DP , Dang TP . Dominant-negative Notch3 receptor inhibits mitogen-activated protein kinase pathway and the growth of human lung cancers. Cancer Res 2005; 65(9): 3555–3561
CrossRef
Google scholar
|
[172] |
Xiu M , Zeng X , Shan R , Wen W , Li J , Wan R . Targeting Notch4 in cancer: molecular mechanisms and therapeutic perspectives. Cancer Manag Res 2021; 13: 7033–7045
CrossRef
Google scholar
|
[173] |
Liu L , Jiang H , Wang X , Wang X , Zou L . STYX/FBXW7 axis participates in the development of endometrial cancer cell via Notch-mTOR signaling pathway. Biosci Rep 2020; 40(4): BSR20200057
CrossRef
Google scholar
|
[174] |
Kwon C , Cheng P , King IN , Andersen P , Shenje L , Nigam V , Srivastava D . Notch post-translationally regulates β-catenin protein in stem and progenitor cells. Nat Cell Biol 2011; 13(10): 1244–1251
CrossRef
Google scholar
|
[175] |
Hayward P , Brennan K , Sanders P , Balayo T , DasGupta R , Perrimon N , Martinez Arias A . Notch modulates Wnt signalling by associating with Armadillo/beta-catenin and regulating its transcriptional activity. Development 2005; 132(8): 1819–1830
CrossRef
Google scholar
|
[176] |
Sanders PGT , Muñoz-Descalzo S , Balayo T , Wirtz-Peitz F , Hayward P , Arias AM . Ligand-independent traffic of Notch buffers activated armadillo in Drosophila. PLoS Biol 2009; 7(8): e1000169
CrossRef
Google scholar
|
[177] |
Hori K , Sen A , Kirchhausen T , Artavanis-Tsakonas S . Regulation of ligand-independent Notch signal through intracellular trafficking. Commun Integr Biol 2012; 5(4): 374–376
CrossRef
Google scholar
|
[178] |
Blokzijl A , Dahlqvist C , Reissmann E , Falk A , Moliner A , Lendahl U , Ibáñez CF . Cross-talk between the Notch and TGF-β signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J Cell Biol 2003; 163(4): 723–728
CrossRef
Google scholar
|
[179] |
Qiang L , Wu T , Zhang HW , Lu N , Hu R , Wang YJ , Zhao L , Chen FH , Wang XT , You QD , Guo QL . HIF-1α is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway. Cell Death Differ 2012; 19(2): 284–294
CrossRef
Google scholar
|
[180] |
Hossain F , Sorrentino C , Ucar DA , Peng Y , Matossian M , Wyczechowska D , Crabtree J , Zabaleta J , Morello S , Del Valle L , Burow M , Collins-Burow B , Pannuti A , Minter LM , Golde TE , Osborne BA , Miele L . Notch signaling regulates mitochondrial metabolism and NF-κB activity in triple-negative breast cancer cells via IKKα-dependent non-canonical pathways. Front Oncol 2018; 8: 575
CrossRef
Google scholar
|
[181] |
Lee KS , Wu Z , Song Y , Mitra SS , Feroze AH , Cheshier SH , Lu B . Roles of PINK1, mTORC2, and mitochondria in preserving brain tumor-forming stem cells in a noncanonical Notch signaling pathway. Genes Dev 2013; 27(24): 2642–2647
CrossRef
Google scholar
|
[182] |
Konishi J , Yi F , Chen X , Vo H , Carbone DP , Dang TP . Notch3 cooperates with the EGFR pathway to modulate apoptosis through the induction of bim. Oncogene 2010; 29(4): 589–596
CrossRef
Google scholar
|
[183] |
Png CW , Weerasooriya M , Guo J , James SJ , Poh HM , Osato M , Flavell RA , Dong C , Yang H , Zhang Y . DUSP10 regulates intestinal epithelial cell growth and colorectal tumorigenesis. Oncogene 2016; 35(2): 206–217
CrossRef
Google scholar
|
[184] |
Benavides-Serrato A , Anderson L , Holmes B , Cloninger C , Artinian N , Bashir T , Gera J . mTORC2 modulates feedback regulation of p38 MAPK activity via DUSP10/MKP5 to confer differential responses to PP242 in glioblastoma. Genes Cancer 2014; 5(11–12): 393–406
CrossRef
Google scholar
|
[185] |
Adamowicz M , Vermezovic J , d’Adda di Fagagna F . NOTCH1 inhibits activation of ATM by impairing the formation of an ATM-FOXO3a-KAT5/Tip60 complex. Cell Rep 2016; 16(8): 2068–2076
CrossRef
Google scholar
|
[186] |
Jin S , Mutvei AP , Chivukula IV , Andersson ER , Ramsköld D , Sandberg R , Lee KL , Kronqvist P , Mamaeva V , Östling P , Mpindi JP , Kallioniemi O , Screpanti I , Poellinger L , Sahlgren C , Lendahl U . Non-canonical Notch signaling activates IL-6/JAK/STAT signaling in breast tumor cells and is controlled by p53 and IKKα/IKKβ. Oncogene 2013; 32(41): 4892–4902
CrossRef
Google scholar
|
[187] |
Song LL , Peng Y , Yun J , Rizzo P , Chaturvedi V , Weijzen S , Kast WM , Stone PJB , Santos L , Loredo A , Lendahl U , Sonenshein G , Osborne B , Qin JZ , Pannuti A , Nickoloff BJ , Miele L . Notch-1 associates with IKKα and regulates IKK activity in cervical cancer cells. Oncogene 2008; 27(44): 5833–5844
CrossRef
Google scholar
|
[188] |
Ma H , Yang Y , Nie T , Yan R , Si Y , Wei J , Li M , Liu H , Ye W , Zhang H , Cheng L , Zhang L , Lv X , Luo L , Xu Z , Zhang X , Lei Y , Zhang F . Disparate macrophage responses are linked to infection outcome of Hantan virus in humans or rodents. Nat Commun 2024; 15(1): 438
CrossRef
Google scholar
|
[189] |
Ringuette R , Atkins M , Lagali PS , Bassett EA , Campbell C , Mazerolle C , Mears AJ , Picketts DJ , Wallace VAA . Notch-Gli2 axis sustains Hedgehog responsiveness of neural progenitors and Müller glia. Dev Biol 2016; 411(1): 85–100
CrossRef
Google scholar
|
[190] |
Jacobs CT , Huang P . Notch signalling maintains Hedgehog responsiveness via a Gli-dependent mechanism during spinal cord patterning in zebrafish. eLife 2019; 8: e49252
CrossRef
Google scholar
|
[191] |
Po A , Citarella A , Catanzaro G , Besharat ZM , Trocchianesi S , Gianno F , Sabato C , Moretti M , De Smaele E , Vacca A , Fiori ME , Ferretti E . Hedgehog-GLI signalling promotes chemoresistance through the regulation of ABC transporters in colorectal cancer cells. Sci Rep 2020; 10(1): 13988
CrossRef
Google scholar
|
[192] |
Kim JW , Kim MJ , Kim KJ , Yun HJ , Chae JS , Hwang SG , Chang TS , Park HS , Lee KW , Han PL , Cho SG , Kim TW , Choi EJ . Notch interferes with the scaffold function of JNK-interacting protein 1 to inhibit the JNK signaling pathway. Proc Natl Acad Sci USA 2005; 102(40): 14308–14313
CrossRef
Google scholar
|
[193] |
Whitmarsh AJ , Kuan CY , Kennedy NJ , Kelkar N , Haydar TF , Mordes JP , Appel M , Rossini AA , Jones SN , Flavell RA , Rakic P , Davis RJ . Requirement of the JIP1 scaffold protein for stress-induced JNK activation. Genes Dev 2001; 15(18): 2421–2432
CrossRef
Google scholar
|
[194] |
SuiLWangSRodriguezRKSimDBhattacharyaNBloisALChenSAzizSSchlaegerTRogersMSBielenbergDAkslenLAWatnickRS. Notch1 regulates breast cancer stem cell function via a non-canonical cleavage-independent pathway. 2020; bioRxiv: 10.1101/2020.02.28.970764
|
[195] |
Long J , Yang C , Zheng Y , Loughran P , Guang F , Li Y , Liao H , Scott MJ , Tang D , Billiar TR , Deng M . Notch signaling protects CD4 T cells from STING-mediated apoptosis during acute systemic inflammation. Sci Adv 2020; 6(39): eabc5447
CrossRef
Google scholar
|
[196] |
Jehn BM , Bielke W , Pear WS , Osborne BA . Cutting edge: protective effects of Notch-1 on TCR-induced apoptosis. J Immunol Baltim Md 1950 1999; 162(2): 635–638
CrossRef
Google scholar
|
[197] |
Steinbuck MP , Winandy S . A review of Notch processing with new insights into ligand-independent Notch signaling in T-cells. Front Immunol 2018; 9: 1230
CrossRef
Google scholar
|
[198] |
Steinbuck MP , Arakcheeva K , Winandy S . Novel TCR-mediated mechanisms of Notch activation and signaling. J Immunol Baltim Md 1950 2018; 200(3): 997–1007
CrossRef
Google scholar
|
[199] |
Pece S , Serresi M , Santolini E , Capra M , Hulleman E , Galimberti V , Zurrida S , Maisonneuve P , Viale G , Di Fiore PP . Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J Cell Biol 2004; 167(2): 215–221
CrossRef
Google scholar
|
[200] |
Cheng C , Huang Z , Zhou R , An H , Cao G , Ye J , Huang C , Wu D . Numb negatively regulates the epithelial-to-mesenchymal transition in colorectal cancer through the Wnt signaling pathway. Am J Physiol Gastrointest Liver Physiol 2020; 318(5): G841–G853
CrossRef
Google scholar
|
[201] |
Stylianou S , Clarke RB , Brennan K . Aberrant activation of Notch signaling in human breast cancer. Cancer Res 2006; 66(3): 1517–1525
CrossRef
Google scholar
|
[202] |
D’Souza B , Meloty-Kapella L , Weinmaster G . Canonical and non-canonical Notch ligands. Curr Top Dev Biol 2010; 92: 73–129
CrossRef
Google scholar
|
[203] |
Huang J , Chen Y , Li J , Zhang K , Chen J , Chen D , Feng B , Song H , Feng J , Wang R , Chen L . Notch-1 confers chemoresistance in lung adenocarcinoma to Taxanes through AP-1/microRNA-451 mediated regulation of MDR-1. Mol Ther Nucleic Acids 2016; 5(10): e375
CrossRef
Google scholar
|
[204] |
Shi C , Qian J , Ma M , Zhang Y , Han B . Notch 3 protein, not its gene polymorphism, is associated with the chemotherapy response and prognosis of advanced NSCLC patients. Cell Physiol Biochem 2014; 34(3): 743–752
CrossRef
Google scholar
|
[205] |
Sosa Iglesias V , Giuranno L , Dubois LJ , Theys J , Vooijs M . Drug resistance in non-small cell lung cancer: a potential for NOTCH targeting. Front Oncol 2018; 8: 267
CrossRef
Google scholar
|
[206] |
Zou B , Zhou XL , Lai SQ , Liu JC . Notch signaling and non-small cell lung cancer. Oncol Lett 2018; 15(3): 3415–3421
CrossRef
Google scholar
|
[207] |
Lee JB , Werbowetski-Ogilvie TE , Lee JH , McIntyre BAS , Schnerch A , Hong SH , Park IH , Daley GQ , Bernstein ID , Bhatia M . Notch-HES1 signaling axis controls hemato-endothelial fate decisions of human embryonic and induced pluripotent stem cells. Blood 2013; 122(7): 1162–1173
CrossRef
Google scholar
|
[208] |
Kamakura S , Oishi K , Yoshimatsu T , Nakafuku M , Masuyama N , Gotoh Y . Hes binding to STAT3 mediates crosstalk between Notch and JAK-STAT signalling. Nat Cell Biol 2004; 6(6): 547–554
CrossRef
Google scholar
|
[209] |
Jin L , Vu T , Yuan G , Datta PK . STRAP promotes stemness of human colorectal cancer via epigenetic regulation of the NOTCH pathway. Cancer Res 2017; 77(20): 5464–5478
CrossRef
Google scholar
|
[210] |
Allam H , Johnson BP , Zhang M , Lu Z , Cannon MJ , Abbott KL . The glycosyltransferase GnT-III activates Notch signaling and drives stem cell expansion to promote the growth and invasion of ovarian cancer. J Biol Chem 2017; 292(39): 16351–16359
CrossRef
Google scholar
|
[211] |
Man J , Yu X , Huang H , Zhou W , Xiang C , Huang H , Miele L , Liu Z , Bebek G , Bao S , Yu JS . Hypoxic induction of vasorin regulates Notch1 turnover to maintain glioma stem-like cells. Cell Stem Cell 2018; 22(1): 104–118.e6
CrossRef
Google scholar
|
[212] |
Liu L , Tao T , Liu S , Yang X , Chen X , Liang J , Hong R , Wang W , Yang Y , Li X , Zhang Y , Li Q , Liang S , Yu H , Wu Y , Guo X , Lai Y , Ding X , Guan H , Wu J , Zhu X , Yuan J , Li J , Su S , Li M , Cai X , Cai J , Tian H . An RFC4/Notch1 signaling feedback loop promotes NSCLC metastasis and stemness. Nat Commun 2021; 12(1): 2693
CrossRef
Google scholar
|
[213] |
Wang LL , Wan XY , Liu CQ , Zheng FM . NDR1 increases NOTCH1 signaling activity by impairing Fbw7 mediated NICD degradation to enhance breast cancer stem cell properties. Mol Med 2022; 28(1): 49
CrossRef
Google scholar
|
[214] |
Mani SA , Guo W , Liao MJ , Eaton EN , Ayyanan A , Zhou AY , Brooks M , Reinhard F , Zhang CC , Shipitsin M , Campbell LL , Polyak K , Brisken C , Yang J , Weinberg RA . The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133(4): 704–715
CrossRef
Google scholar
|
[215] |
Bocci F , Gearhart-Serna L , Boareto M , Ribeiro M , Ben-Jacob E , Devi GR , Levine H , Onuchic JN , Jolly MK . Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. Proc Natl Acad Sci USA 2019; 116(1): 148–157
CrossRef
Google scholar
|
[216] |
Cheng T , Rodrigues N , Shen H , Yang Y , Dombkowski D , Sykes M , Scadden DT . Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 2000; 287(5459): 1804–1808
CrossRef
Google scholar
|
[217] |
Stier S , Cheng T , Forkert R , Lutz C , Dombkowski DM , Zhang JL , Scadden DT . Ex vivo targeting of p21Cip1/Waf1permits relative expansion of human hematopoietic stem cells. Blood 2003; 102(4): 1260–1266
CrossRef
Google scholar
|
[218] |
Harada Y , Yamada M , Imayoshi I , Kageyama R , Suzuki Y , Kuniya T , Furutachi S , Kawaguchi D , Gotoh Y . Cell cycle arrest determines adult neural stem cell ontogeny by an embryonic Notch-nonoscillatory Hey1 module. Nat Commun 2021; 12(1): 6562
CrossRef
Google scholar
|
[219] |
Sang L , Coller HA , Roberts JM . Control of the reversibility of cellular quiescence by the transcriptional repressor HES1. Science 2008; 321(5892): 1095–1100
CrossRef
Google scholar
|
[220] |
Srinivasan T , Walters J , Bu P , Than EB , Tung KL , Chen KY , Panarelli N , Milsom J , Augenlicht L , Lipkin SM , Shen X . NOTCH signaling regulates asymmetric cell fate of fast- and slow-cycling colon cancer–initiating cells. Cancer Res 2016; 76(11): 3411–3421
CrossRef
Google scholar
|
[221] |
Singh SK , Singh S , Gadomski S , Sun L , Pfannenstein A , Magidson V , Chen X , Kozlov S , Tessarollo L , Klarmann KD , Keller JR . Id1 ablation protects hematopoietic stem cells from stress-induced exhaustion and aging. Cell Stem Cell 2018; 23(2): 252–265.e8
CrossRef
Google scholar
|
[222] |
Asai T , Liu Y , Di Giandomenico S , Bae N , Ndiaye-Lobry D , Deblasio A , Menendez S , Antipin Y , Reva B , Wevrick R , Nimer SD . Necdin, a p53 target gene, regulates the quiescence and response to genotoxic stress of hematopoietic stem/progenitor cells. Blood 2012; 120(8): 1601–1612
CrossRef
Google scholar
|
[223] |
Basu S , Dong Y , Kumar R , Jeter C , Tang DG . Slow-cycling (dormant) cancer cells in therapy resistance, cancer relapse and metastasis. Semin Cancer Biol 2022; 78: 90–103
CrossRef
Google scholar
|
[224] |
Liau BB , Sievers C , Donohue LK , Gillespie SM , Flavahan WA , Miller TE , Venteicher AS , Hebert CH , Carey CD , Rodig SJ , Shareef SJ , Najm FJ , van Galen P , Wakimoto H , Cahill DP , Rich JN , Aster JC , Suvà ML , Patel AP , Bernstein BE . Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. Cell Stem Cell 2017; 20(2): 233–246.e7
CrossRef
Google scholar
|
[225] |
Takahashi H , Sakakibara-Konishi J , Furuta M , Shoji T , Tsuji K , Morinaga D , Kikuchi E , Kikuchi J , Noguchi T , Hatanaka KC , Hatanaka Y , Shinagawa N , Konno S . Notch pathway regulates osimertinib drug-tolerant persistence in EGFR-mutated non-small-cell lung cancer. Cancer Sci 2023; 114(4): 1635–1650
CrossRef
Google scholar
|
[226] |
Zavadil J , Cermak L , Soto-Nieves N , Böttinger EP . Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J 2004; 23(5): 1155–1165
CrossRef
Google scholar
|
[227] |
Brabletz S , Brabletz T . The ZEB/miR-200 feedback loop—a motor of cellular plasticity in development and cancer. EMBO Rep 2010; 11(9): 670–677
CrossRef
Google scholar
|
[228] |
Brabletz S , Bajdak K , Meidhof S , Burk U , Niedermann G , Firat E , Wellner U , Dimmler A , Faller G , Schubert J , Brabletz T . The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO J 2011; 30(4): 770–782
CrossRef
Google scholar
|
[229] |
Sahlgren C , Gustafsson MV , Jin S , Poellinger L , Lendahl U . Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci USA 2008; 105(17): 6392–6397
CrossRef
Google scholar
|
[230] |
Niessen K , Fu Y , Chang L , Hoodless PA , McFadden D , Karsan A . Slug is a direct Notch target required for initiation of cardiac cushion cellularization. J Cell Biol 2008; 182(2): 315–325
CrossRef
Google scholar
|
[231] |
Shao S , Zhao X , Zhang X , Luo M , Zuo X , Huang S , Wang Y , Gu S , Zhao X . Notch1 signaling regulates the epithelial–mesenchymal transition and invasion of breast cancer in a Slug-dependent manner. Mol Cancer 2015; 14(1): 28
CrossRef
Google scholar
|
[232] |
Liu L , Chen X , Wang Y , Qu Z , Lu Q , Zhao J , Yan X , Zhang H , Zhou Y . Notch3 is important for TGF-β-induced epithelial-mesenchymal transition in non-small cell lung cancer bone metastasis by regulating ZEB-1. Cancer Gene Ther 2014; 21(9): 364–372
CrossRef
Google scholar
|
[233] |
Gustafsson MV , Zheng X , Pereira T , Gradin K , Jin S , Lundkvist J , Ruas JL , Poellinger L , Lendahl U , Bondesson M . Hypoxia requires Notch signaling to maintain the undifferentiated cell state. Dev Cell 2005; 9(5): 617–628
CrossRef
Google scholar
|
[234] |
Chen J , Imanaka N , Chen J , Griffin JD . Hypoxia potentiates Notch signaling in breast cancer leading to decreased E-cadherin expression and increased cell migration and invasion. Br J Cancer 2010; 102(2): 351–360
CrossRef
Google scholar
|
[235] |
Welte T , Kim IS , Tian L , Gao X , Wang H , Li J , Holdman XB , Herschkowitz JI , Pond A , Xie G , Kurley S , Nguyen T , Liao L , Dobrolecki LE , Pang L , Mo Q , Edwards DP , Huang S , Xin L , Xu J , Li Y , Lewis MT , Wang T , Westbrook TF , Rosen JM , Zhang XHF . Oncogenic mTOR signalling recruits myeloid-derived suppressor cells to promote tumour initiation. Nat Cell Biol 2016; 18(6): 632–644
CrossRef
Google scholar
|
[236] |
Boelens MC , Wu TJ , Nabet BY , Xu B , Qiu Y , Yoon T , Azzam DJ , Twyman-Saint Victor C , Wiemann BZ , Ishwaran H , ter Brugge PJ , Jonkers J , Slingerland J , Minn AJ . Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 2014; 159(3): 499–513
CrossRef
Google scholar
|
[237] |
Cho S , Lu M , He X , Ee PLR , Bhat U , Schneider E , Miele L , Beck WT . Notch1 regulates the expression of the multidrug resistance gene ABCC1/MRP1 in cultured cancer cells. Proc Natl Acad Sci USA 2011; 108(51): 20778–20783
CrossRef
Google scholar
|
[238] |
Kwon OJ , Zhang L , Wang J , Su Q , Feng Q , Zhang XHF , Mani SA , Paulter R , Creighton CJ , Ittmann MM , Xin L . Notch promotes tumor metastasis in a prostate-specific Pten-null mouse model. J Clin Invest 2016; 126(7): 2626–2641
CrossRef
Google scholar
|
[239] |
Huang D , Savage SR , Calinawan AP , Lin C , Zhang B , Wang P , Starr TK , Birrer MJ , Paulovich AG . A highly annotated database of genes associated with platinum resistance in cancer. Oncogene 2021; 40(46): 6395–6405
CrossRef
Google scholar
|
[240] |
Augert A , Eastwood E , Ibrahim AH , Wu N , Grunblatt E , Basom R , Liggitt D , Eaton KD , Martins R , Poirier JT , Rudin CM , Milletti F , Cheng WY , Mack F , MacPherson D . Targeting NOTCH activation in small cell lung cancer through LSD1 inhibition. Sci Signal 2019; 12(567): eaau2922
CrossRef
Google scholar
|
[241] |
Bhattacharya S , Das A , Mallya K , Ahmad I . Maintenance of retinal stem cells by Abcg2 is regulated by Notch signaling. J Cell Sci 2007; 120(15): 2652–2662
CrossRef
Google scholar
|
[242] |
Bentires-Alj M , Barbu V , Fillet M , Chariot A , Relic B , Jacobs N , Gielen J , Merville MP , Bours V . NF-kappaB transcription factor induces drug resistance through MDR1 expression in cancer cells. Oncogene 2003; 22(1): 90–97
CrossRef
Google scholar
|
[243] |
Sun Y , Guan Z , Liang L , Cheng Y , Zhou J , Li J , Xu Y . HIF-1α/MDR1 pathway confers chemoresistance to cisplatin in bladder cancer. Oncol Rep 2016; 35(3): 1549–1556
CrossRef
Google scholar
|
[244] |
Antonio-Andrés G , Rangel-Santiago J , Tirado-Rodríguez B , Martinez-Ruiz GU , Klunder-Klunder M , Vega MI , Lopez-Martinez B , Jiménez-Hernández E , Torres Nava J , Medina-Sanson A , Huerta-Yepez S . Role of Yin Yang-1 (YY1) in the transcription regulation of the multi-drug resistance (MDR1) gene. Leuk Lymphoma 2018; 59(11): 2628–2638
CrossRef
Google scholar
|
[245] |
Xu D , Hu J , De Bruyne E , Menu E , Schots R , Vanderkerken K , Van Valckenborgh E . Dll1/Notch activation contributes to bortezomib resistance by upregulating CYP1A1 in multiple myeloma. Biochem Biophys Res Commun 2012; 428(4): 518–524
CrossRef
Google scholar
|
[246] |
Androutsopoulos VP , Tsatsakis AM , Spandidos DA . Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention. BMC Cancer 2009; 9(1): 187
CrossRef
Google scholar
|
[247] |
Ye M , Zhang Y , Gao H , Xu Y , Jing P , Wu J , Zhang X , Xiong J , Dong C , Yao L , Zhang J , Zhang J . Activation of the aryl hydrocarbon receptor leads to resistance to EGFR TKIs in non–small cell lung cancer by activating Src-mediated bypass signaling. Clin Cancer Res 2018; 24(5): 1227–1239
CrossRef
Google scholar
|
[248] |
Alam MS , Maekawa Y , Kitamura A , Tanigaki K , Yoshimoto T , Kishihara K , Yasutomo K . Notch signaling drives IL-22 secretion in CD4+ T cells by stimulating the aryl hydrocarbon receptor. Proc Natl Acad Sci USA 2010; 107(13): 5943–5948
CrossRef
Google scholar
|
[249] |
Tan KP , Wang B , Yang M , Boutros PC , MacAulay J , Xu H , Chuang AI , Kosuge K , Yamamoto M , Takahashi S , Wu AML , Ross DD , Harper PA , Ito S . Aryl hydrocarbon receptor is a transcriptional activator of the human breast cancer resistance protein (BCRP/ABCG2). Mol Pharmacol 2010; 78(2): 175–185
CrossRef
Google scholar
|
[250] |
Salisbury TB , Tomblin JK , Primerano DA , Boskovic G , Fan J , Mehmi I , Fletcher J , Santanam N , Hurn E , Morris GZ , Denvir J . Endogenous aryl hydrocarbon receptor promotes basal and inducible expression of tumor necrosis factor target genes in MCF-7 cancer cells. Biochem Pharmacol 2014; 91(3): 390–399
CrossRef
Google scholar
|
[251] |
Li S , Ren B , Shi Y , Gao H , Wang J , Xin Y , Huang B , Liao S , Yang Y , Xu Z , Li Y , Zeng Q . Notch1 inhibition enhances DNA damage induced by cisplatin in cervical cancer. Exp Cell Res 2019; 376(1): 27–38
CrossRef
Google scholar
|
[252] |
Vermezovic J , Adamowicz M , Santarpia L , Rustighi A , Forcato M , Lucano C , Massimiliano L , Costanzo V , Bicciato S , Del Sal G , d’Adda di Fagagna F . Notch is a direct negative regulator of the DNA-damage response. Nat Struct Mol Biol 2015; 22(5): 417–424
CrossRef
Google scholar
|
[253] |
Chung YM , Park SH , Tsai WB , Wang SY , Ikeda MA , Berek JS , Chen DJ , Hu MCT . FOXO3 signalling links ATM to the p53 apoptotic pathway following DNA damage. Nat Commun 2012; 3(1): 1000
CrossRef
Google scholar
|
[254] |
Juryńczyk M , Lewkowicz P , Domowicz M , Mycko MP , Selmaj KW . Heat shock protein 70 (Hsp70) interacts with the Notch1 intracellular domain and contributes to the activity of Notch signaling in myelin-reactive CD4 T cells. J Neuroimmunol 2015; 287: 19–26
CrossRef
Google scholar
|
[255] |
Wang Z , Hu Y , Xiao D , Wang J , Liu C , Xu Y , Shi X , Jiang P , Huang L , Li P , Liu H , Qing G . Stabilization of Notch1 by the Hsp90 chaperone is crucial for T-Cell leukemogenesis. Clin Cancer Res 2017; 23(14): 3834–3846
CrossRef
Google scholar
|
[256] |
Choi SK , Kam H , Kim KY , Park SI , Lee YS . Targeting heat shock protein 27 in cancer: a druggable target for cancer treatment. Cancers (Basel) 2019; 11(8): 1195
CrossRef
Google scholar
|
[257] |
Choi SK , Kim M , Lee H , Kwon Y , Cha HJ , Jang SJ , Na Y , Lee YS . Activation of the HSP27-AKT axis contributes to gefitinib resistance in non-small cell lung cancer cells independent of EGFR mutations. Cell Oncol (Dordr) 2022; 45(5): 913–930
CrossRef
Google scholar
|
[258] |
O’Shaughnessy RFL , Welti JC , Cooke JC , Avilion AA , Monks B , Birnbaum MJ , Byrne C . AKT-dependent HspB1 (Hsp27) activity in epidermal differentiation. J Biol Chem 2007; 282(23): 17297–17305
CrossRef
Google scholar
|
[259] |
Ding X , Bloch W , Iden S , Rüegg MA , Hall MN , Leptin M , Partridge L , Eming SA . mTORC1 and mTORC2 regulate skin morphogenesis and epidermal barrier formation. Nat Commun 2016; 7(1): 13226
CrossRef
Google scholar
|
[260] |
Wu R , Kausar H , Johnson P , Montoya-Durango DE , Merchant M , Rane MJ . Hsp27 regulates Akt activation and polymorphonuclear leukocyte apoptosis by scaffolding MK2 to Akt signal complex. J Biol Chem 2007; 282(30): 21598–21608
CrossRef
Google scholar
|
[261] |
Kung CP , Weber JD . It’s getting complicated—a fresh look at p53–MDM2-ARF triangle in tumorigenesis and cancer therapy. Front Cell Dev Biol 2022; 10: 818744
CrossRef
Google scholar
|
[262] |
Pappas K , Martin TC , Wolfe AL , Nguyen CB , Su T , Jin J , Hibshoosh H , Parsons R . NOTCH and EZH2 collaborate to repress PTEN expression in breast cancer. Commun Biol 2021; 4(1): 312
CrossRef
Google scholar
|
[263] |
Ogawara Y , Kishishita S , Obata T , Isazawa Y , Suzuki T , Tanaka K , Masuyama N , Gotoh Y . Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem 2002; 277(24): 21843–21850
CrossRef
Google scholar
|
[264] |
Perumalsamy LR , Nagala M , Banerjee P , Sarin A . A hierarchical cascade activated by non-canonical Notch signaling and the mTOR–Rictor complex regulates neglect-induced death in mammalian cells. Cell Death Differ 2009; 16(6): 879–889
CrossRef
Google scholar
|
[265] |
Chibaya L , Karim B , Zhang H , Jones SN . Mdm2 phosphorylation by Akt regulates the p53 response to oxidative stress to promote cell proliferation and tumorigenesis. Proc Natl Acad Sci USA 2021; 118(4): e2003193118
CrossRef
Google scholar
|
[266] |
Nair P , Somasundaram K , Krishna S . Activated Notch1 inhibits p53-induced apoptosis and sustains transformation by human papillomavirus type 16 E6 and E7 oncogenes through a PI3K-PKB/Akt-dependent pathway. J Virol 2003; 77(12): 7106–7112
CrossRef
Google scholar
|
[267] |
Mungamuri SK , Yang X , Thor AD , Somasundaram K . Survival signaling by Notch1: mammalian target of rapamycin (mTOR)–dependent inhibition of p53. Cancer Res 2006; 66(9): 4715–4724
CrossRef
Google scholar
|
[268] |
Li S , Perlman DM , Peterson MS , Burrichter D , Avdulov S , Polunovsky VA , Bitterman PB . Translation initiation factor 4E blocks endoplasmic reticulum-mediated apoptosis. J Biol Chem 2004; 279(20): 21312–21317
CrossRef
Google scholar
|
[269] |
Maya R , Balass M , Kim ST , Shkedy D , Leal JFM , Shifman O , Moas M , Buschmann T , Ronai Z , Shiloh Y , Kastan MB , Katzir E , Oren M . ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev 2001; 15(9): 1067–1077
CrossRef
Google scholar
|
[270] |
Cheng Q , Cross B , Li B , Chen L , Li Z , Chen J . Regulation of MDM2 E3 ligase activity by phosphorylation after DNA damage. Mol Cell Biol 2011; 31(24): 4951–4963
CrossRef
Google scholar
|
[271] |
Kim SB , Chae GW , Lee J , Park J , Tak H , Chung JH , Park TG , Ahn JK , Joe CO . Activated Notch1 interacts with p53 to inhibit its phosphorylation and transactivation. Cell Death Differ 2007; 14(5): 982–991
CrossRef
Google scholar
|
[272] |
Perumalsamy LR , Nagala M , Sarin A . Notch-activated signaling cascade interacts with mitochondrial remodeling proteins to regulate cell survival. Proc Natl Acad Sci USA 2010; 107(15): 6882–6887
CrossRef
Google scholar
|
[273] |
Zhang K , Hong X , Song Z , Xu Y , Li C , Wang G , Zhang Y , Zhao X , Zhao Z , Zhao J , Huang M , Huang D , Qi C , Gao C , Cai S , Gu F , Hu Y , Xu C , Wang W , Lou Z , Zhang Y , Liu L . Identification of deleterious NOTCH mutation as novel predictor to efficacious immunotherapy in NSCLC. Clin Cancer Res 2020; 26(14): 3649–3661
CrossRef
Google scholar
|
[274] |
Culig Z , Puhr M . Interleukin-6 and prostate cancer: current developments and unsolved questions. Mol Cell Endocrinol 2018; 462(Pt A): 25–30
CrossRef
Google scholar
|
[275] |
Ghandadi M , Sahebkar A . Interleukin-6: a critical cytokine in cancer multidrug resistance. Curr Pharm Des 2016; 22(5): 518–526
CrossRef
Google scholar
|
[276] |
Hu F , Song D , Yan Y , Huang C , Shen C , Lan J , Chen Y , Liu A , Wu Q , Sun L , Xu F , Hu F , Chen L , Luo X , Feng Y , Huang S , Hu J , Wang G . IL-6 regulates autophagy and chemotherapy resistance by promoting BECN1 phosphorylation. Nat Commun 2021; 12(1): 3651
CrossRef
Google scholar
|
[277] |
Chomarat P , Banchereau J , Davoust J , Karolina Palucka A . IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol 2000; 1(6): 510–514
CrossRef
Google scholar
|
[278] |
Park SJ , Nakagawa T , Kitamura H , Atsumi T , Kamon H , Sawa S , Kamimura D , Ueda N , Iwakura Y , Ishihara K , Murakami M , Hirano T . IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation1. J Immunol 2004; 173(6): 3844–3854
CrossRef
Google scholar
|
[279] |
Berger G , Knelson EH , Jimenez-Macias JL , Nowicki MO , Han S , Panagioti E , Lizotte PH , Adu-Berchie K , Stafford A , Dimitrakakis N , Zhou L , Chiocca EA , Mooney DJ , Barbie DA , Lawler SE . STING activation promotes robust immune response and NK cell–mediated tumor regression in glioblastoma models. Proc Natl Acad Sci USA 2022; 119(28): e2111003119
CrossRef
Google scholar
|
[280] |
Hopfner KP , Hornung V . Molecular mechanisms and cellular functions of cGAS–STING signalling. Nat Rev Mol Cell Biol 2020; 21(9): 501–521
CrossRef
Google scholar
|
[281] |
Mizugaki H , Sakakibara-Konishi J , Ikezawa Y , Kikuchi J , Kikuchi E , Oizumi S , Dang TP , Nishimura M . γ-secretase inhibitor enhances antitumour effect of radiation in Notch-expressing lung cancer. Br J Cancer 2012; 106(12): 1953–1959
CrossRef
Google scholar
|
[282] |
Pine SR . Rethinking gamma-secretase inhibitors for treatment of non-small-cell lung cancer: is Notch the target. Clin Cancer Res 2018; 24(24): 6136–6141
CrossRef
Google scholar
|
[283] |
Kumar R , Juillerat-Jeanneret L , Golshayan D . Notch antagonists: potential modulators of cancer and inflammatory diseases. J Med Chem 2016; 59(17): 7719–7737
CrossRef
Google scholar
|
[284] |
Tolcher AW , Messersmith WA , Mikulski SM , Papadopoulos KP , Kwak EL , Gibbon DG , Patnaik A , Falchook GS , Dasari A , Shapiro GI , Boylan JF , Xu ZX , Wang K , Koehler A , Song J , Middleton SA , Deutsch J , Demario M , Kurzrock R , Wheler JJ . Phase I study of RO4929097, a gamma secretase inhibitor of Notch signaling, in patients with refractory metastatic or locally advanced solid tumors. J Clin Oncol 2012; 30(19): 2348–2353
CrossRef
Google scholar
|
[285] |
LoConte NK , Razak ARA , Ivy P , Tevaarwerk A , Leverence R , Kolesar J , Siu L , Lubner SJ , Mulkerin DL , Schelman WR , Deming DA , Holen KD , Carmichael L , Eickhoff J , Liu G . A multicenter phase 1 study of γ-secretase inhibitor RO4929097 in combination with capecitabine in refractory solid tumors. Invest New Drugs 2015; 33(1): 169–176
CrossRef
Google scholar
|
[286] |
Diaz-Padilla I , Hirte H , Oza AM , Clarke BA , Cohen B , Reedjik M , Zhang T , Kamel-Reid S , Ivy SP , Hotte SJ , Razak AAR , Chen EX , Brana I , Wizemann M , Wang L , Siu LL , Bedard PL . A phase Ib combination study of RO4929097, a gamma-secretase inhibitor, and temsirolimus in patients with advanced solid tumors. Invest New Drugs 2013; 31(5): 1182–1191
CrossRef
Google scholar
|
[287] |
Messersmith WA , Shapiro GI , Cleary JM , Jimeno A , Dasari A , Huang B , Shaik MN , Cesari R , Zheng X , Reynolds JM , English PA , McLachlan KR , Kern KA , LoRusso PM . A Phase I, dose-finding study in patients with advanced solid malignancies of the oral γ-secretase inhibitor PF-03084014. Clin Cancer Res 2015; 21(1): 60–67
CrossRef
Google scholar
|
[288] |
Pant S , Jones SF , Kurkjian CD , Infante JR , Moore KN , Burris HA , McMeekin DS , Benhadji KA , Patel BKR , Frenzel MJ , Kursar JD , Zamek-Gliszczynski MJ , Yuen ESM , Chan EM , Bendell JC . A first-in-human phase I study of the oral Notch inhibitor, LY900009, in patients with advanced cancer. Eur J Cancer 2016; 56: 1–9
CrossRef
Google scholar
|
[289] |
Krop I , Demuth T , Guthrie T , Wen PY , Mason WP , Chinnaiyan P , Butowski N , Groves MD , Kesari S , Freedman SJ , Blackman S , Watters J , Loboda A , Podtelezhnikov A , Lunceford J , Chen C , Giannotti M , Hing J , Beckman R , Lorusso P . Phase I pharmacologic and pharmacodynamic study of the gamma secretase (Notch) inhibitor MK-0752 in adult patients with advanced solid tumors. J Clin Oncol 2012; 30(19): 2307–2313
CrossRef
Google scholar
|
[290] |
Morgan KM , Fischer BS , Lee FY , Shah JJ , Bertino JR , Rosenfeld J , Singh A , Khiabanian H , Pine SR . Gamma secretase inhibition by BMS-906024 enhances efficacy of paclitaxel in lung adenocarcinoma. Mol Cancer Ther 2017; 16(12): 2759–2769
CrossRef
Google scholar
|
[291] |
Aung KL , El-Khoueiry AB , Gelmon K , Tran B , Bajaj G , He B , Chen T , Zhu L , Poojary S , Basak S , Qi Z , Spreafico A , Fischer BS , Desai J . A multi-arm phase I dose escalating study of an oral NOTCH inhibitor BMS-986115 in patients with advanced solid tumours. Invest New Drugs 2018; 36(6): 1026–1036
CrossRef
Google scholar
|
[292] |
Cook N , Basu B , Smith DM , Gopinathan A , Evans J , Steward WP , Palmer D , Propper D , Venugopal B , Hategan M , Anthoney DA , Hampson LV , Nebozhyn M , Tuveson D , Farmer-Hall H , Turner H , McLeod R , Halford S , Jodrell D . A phase I trial of the γ-secretase inhibitor MK-0752 in combination with gemcitabine in patients with pancreatic ductal adenocarcinoma. Br J Cancer 2018; 118(6): 793–801
CrossRef
Google scholar
|
[293] |
Azaro A , Baldini C , Rodon J , Soria JC , Yuen E , Lithio A , Oakley G , Benhadji KA , Massard C . Phase 1 study of 2 high dose intensity schedules of the pan-Notch inhibitor crenigacestat (LY3039478) in combination with prednisone in patients with advanced or metastatic cancer. Invest New Drugs 2021; 39(1): 193–201
CrossRef
Google scholar
|
[294] |
Strosberg JR , Yeatman T , Weber J , Coppola D , Schell MJ , Han G , Almhanna K , Kim R , Valone T , Jump H , Sullivan D . A phase II study of RO4929097 in metastatic colorectal cancer. Eur J Cancer Oxf Engl 2012; 48(7): 997–1003
CrossRef
Google scholar
|
[295] |
Jenkins DW , Ross S , Veldman-Jones M , Foltz IN , Clavette BC , Manchulenko K , Eberlein C , Kendrew J , Petteruti P , Cho S , Damschroder M , Peng L , Baker D , Smith NR , Weir HM , Blakey DC , Bedian V , Barry ST . MEDI0639: a novel therapeutic antibody targeting Dll4 modulates endothelial cell function and angiogenesis in vivo. Mol Cancer Ther 2012; 11(8): 1650–1660
CrossRef
Google scholar
|
[296] |
Chiorean EG , LoRusso P , Strother RM , Diamond JR , Younger A , Messersmith WA , Adriaens L , Liu L , Kao RJ , DiCioccio AT , Kostic A , Leek R , Harris A , Jimeno A . A phase I first-in-human study of enoticumab (REGN421), a fully human delta-like ligand 4 (Dll4) monoclonal antibody in patients with advanced solid tumors. Clin Cancer Res 2015; 21(12): 2695–2703
CrossRef
Google scholar
|
[297] |
Chen X , Amar N , Zhu Y , Wang C , Xia C , Yang X , Wu D , Feng M . Combined DLL3-targeted bispecific antibody with PD-1 inhibition is efficient to suppress small cell lung cancer growth. J Immunother Cancer 2020; 8(1): e000785
CrossRef
Google scholar
|
[298] |
Rudin CM , Pietanza MC , Bauer TM , Ready N , Morgensztern D , Glisson BS , Byers LA , Johnson ML , Burris HA III , Robert F , Han TH , Bheddah S , Theiss N , Watson S , Mathur D , Vennapusa B , Zayed H , Lally S , Strickland DK , Govindan R , Dylla SJ , Peng SL , Spigel DR; SCRX16-001 investigators . Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol 2017; 18(1): 42–51
CrossRef
Google scholar
|
[299] |
Morgensztern D , Besse B , Greillier L , Santana-Davila R , Ready N , Hann CL , Glisson BS , Farago AF , Dowlati A , Rudin CM , Le Moulec S , Lally S , Yalamanchili S , Wolf J , Govindan R , Carbone DP . Efficacy and safety of rovalpituzumab tesirine in third-line and beyond patients with DLL3-expressing, relapsed/refractory small-cell lung cancer: Results from the phase II TRINITY study. Clin Cancer Res 2019; 25(23): 6958–6966
CrossRef
Google scholar
|
[300] |
Giffin MJ , Cooke K , Lobenhofer EK , Estrada J , Zhan J , Deegen P , Thomas M , Murawsky CM , Werner J , Liu S , Lee F , Homann O , Friedrich M , Pearson JT , Raum T , Yang Y , Caenepeel S , Stevens J , Beltran PJ , Canon J , Coxon A , Bailis JM , Hughes PE . AMG 757, a half-life extended, DLL3-targeted bispecific T-Cell engager, shows high potency and sensitivity in preclinical models of small-cell lung cancer. Clin Cancer Res 2021; 27(5): 1526–1537
CrossRef
Google scholar
|
[301] |
Hu ZI , Bendell JC , Bullock A , LoConte NK , Hatoum H , Ritch P , Hool H , Leach JW , Sanchez J , Sohal DPS , Strickler J , Patel R , Wang-Gillam A , Firdaus I , Yu KH , Kapoun AM , Holmgren E , Zhou L , Dupont J , Picozzi V , Sahai V , O’Reilly EM . A randomized phase II trial of nab-paclitaxel and gemcitabine with tarextumab or placebo in patients with untreated metastatic pancreatic cancer. Cancer Med 2019; 8(11): 5148–5157
CrossRef
Google scholar
|
[302] |
Ferrarotto R , Eckhardt G , Patnaik A , LoRusso P , Faoro L , Heymach JV , Kapoun AM , Xu L , Munster P . A phase I dose-escalation and dose-expansion study of brontictuzumab in subjects with selected solid tumors. Ann Oncol 2018; 29(7): 1561–1568
CrossRef
Google scholar
|
[303] |
Lopez Miranda E , Stathis A , Hess D , Racca F , Quon D , Rodon J , Saavedra Santa Gadea O , Perez Garcia JM , Nuciforo P , Vivancos A , Cortes J , Ferrarotto R , Schönborn-Kellenberger O , Vigolo M , Bobadilla M , Beni L , Lehal R , Bauer MP , Vogl FD , Garralda E . Phase 1 study of CB-103, a novel first-in-class inhibitor of the CSL-NICD gene transcription factor complex in human cancers. J Clin Oncol 2021; 39(15 suppl): 3020
CrossRef
Google scholar
|
[304] |
Hanna GJ , Stathis A , Lopez-Miranda E , Racca F , Quon D , Leyvraz S , Hess D , Keam B , Rodon J , Ahn MJ , Kim HR , Schneeweiss A , Ribera JM , DeAngelo D , Perez Garcia JM , Cortes J , Schönborn-Kellenberger O , Weber D , Pisa P , Bauer M , Beni L , Bobadilla M , Lehal R , Vigolo M , Vogl FD , Garralda E . A phase I study of the pan-Notch inhibitor CB-103 for patients with advanced adenoid cystic carcinoma and other tumors. Cancer Res Commun 2023; 3(9): 1853–1861
CrossRef
Google scholar
|
[305] |
Clara JA , Monge C , Yang Y , Takebe N . Targeting signalling pathways and the immune microenvironment of cancer stem cells—a clinical update. Nat Rev Clin Oncol 2020; 17(4): 204–232
CrossRef
Google scholar
|
[306] |
Baran N , Konopleva M . Molecular pathways: hypoxia-activated prodrugs in cancer therapy. Clin Cancer Res 2017; 23(10): 2382–2390
CrossRef
Google scholar
|
[307] |
Dang Q , Chen L , Xu M , You X , Zhou H , Zhang Y , Shi W . The γ-secretase inhibitor GSI-I interacts synergistically with the proteasome inhibitor bortezomib to induce ALK+ anaplastic large cell lymphoma cell apoptosis. Cell Signal 2019; 59: 76–84
CrossRef
Google scholar
|
[308] |
Meng J , Peng H , Dai B , Guo W , Wang L , Ji L , Minna JD , Chresta CM , Smith PD , Fang B , Roth JA . High level of AKT activity is associated with resistance to MEK inhibitor AZD6244 (ARRY-142886). Cancer Biol Ther 2009; 8(21): 2073–2080
CrossRef
Google scholar
|
[309] |
Tsamis I , Gomatou G , Chachali SP , Trontzas IP , Patriarcheas V , Panagiotou E , Kotteas E . BRAF/MEK inhibition in NSCLC: mechanisms of resistance and how to overcome it. Clin Transl Oncol 2023; 25(1): 10–20
CrossRef
Google scholar
|
[310] |
Turner NC , Oliveira M , Howell SJ , Dalenc F , Cortes J , Gomez Moreno HL , Hu X , Jhaveri K , Krivorotko P , Loibl S , Morales Murillo S , Okera M , Park YH , Sohn J , Toi M , Tokunaga E , Yousef S , Zhukova L , de Bruin EC , Grinsted L , Schiavon G , Foxley A , Rugo HS; CAPItello-291 Study Group . Capivasertib in hormone receptor-positive advanced breast cancer. N Engl J Med 2023; 388(22): 2058–2070
CrossRef
Google scholar
|
[311] |
Kornblum N , Zhao F , Manola J , Klein P , Ramaswamy B , Brufsky A , Stella PJ , Burnette B , Telli M , Makower DF , Cheema P , Truica CI , Wolff AC , Soori GS , Haley B , Wassenaar TR , Goldstein LJ , Miller KD , Sparano JA . Randomized phase II trial of fulvestrant plus everolimus or placebo in postmenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer resistant to aromatase inhibitor therapy: results of PrE0102. J Clin Oncol 2018; 36(16): 1556–1563
CrossRef
Google scholar
|
[312] |
Chien AJ , Tripathy D , Albain KS , Symmans WF , Rugo HS , Melisko ME , Wallace AM , Schwab R , Helsten T , Forero-Torres A , Stringer-Reasor E , Ellis ED , Kaplan HG , Nanda R , Jaskowiak N , Murthy R , Godellas C , Boughey JC , Elias AD , Haley BB , Kemmer K , Isaacs C , Clark AS , Lang JE , Lu J , Korde L , Edmiston KK , Northfelt DW , Viscusi RK , Yee D , Perlmutter J , Hylton NM , van’t Veer LJ , DeMichele A , Wilson A , Peterson G , Buxton MB , Paoloni M , Clennell J , Berry S , Matthews JB , Steeg K , Singhrao R , Hirst GL , Sanil A , Yau C , Asare SM , Berry DA , Esserman LJ . MK-2206 and standard neoadjuvant chemotherapy improves response in patients with human epidermal growth factor receptor 2–positive and/or hormone receptor–negative breast cancers in the I-SPY 2 trial. J Clin Oncol 2020; 38(10): 1059–1069
CrossRef
Google scholar
|
[313] |
Middleton MR , Dean E , Evans TRJ , Shapiro GI , Pollard J , Hendriks BS , Falk M , Diaz-Padilla I , Plummer R . Phase 1 study of the ATR inhibitor berzosertib (formerly M6620, VX-970) combined with gemcitabine ± cisplatin in patients with advanced solid tumours. Br J Cancer 2021; 125(4): 510–519
CrossRef
Google scholar
|
[314] |
Chen J , Zuo Z , Gao Y , Yao X , Guan P , Wang Y , Li Z , Liu Z , Hong JH , Deng P , Chan JY , Cheah DMZ , Lim J , Chai KXY , Chia BKH , Pang JWL , Koh J , Huang D , He H , Sun Y , Liu L , Liu S , Huang Y , Wang X , You H , Saraf SA , Grigoropoulos NF , Li X , Bei J , Kang T , Lim ST , Teh BT , Huang H , Ong CK , Tan J . Aberrant JAK-STAT signaling-mediated chromatin remodeling impairs the sensitivity of NK/T-cell lymphoma to chidamide. Clin Epigenetics 2023; 15(1): 19
CrossRef
Google scholar
|
[315] |
Xi M , Guo S , Bayin C , Peng L , Chuffart F , Bourova-Flin E , Rousseaux S , Khochbin S , Mi JQ , Wang J . Chidamide inhibits the NOTCH1-MYC signaling axis in T-cell acute lymphoblastic leukemia. Front Med 2022; 16(3): 442–458
CrossRef
Google scholar
|
[316] |
Yamanaka K , Nakahara T , Yamauchi T , Kita A , Takeuchi M , Kiyonaga F , Kaneko N , Sasamata M . Antitumor activity of YM155, a selective small-molecule survivin suppressant, alone and in combination with docetaxel in human malignant melanoma models. Clin Cancer Res 2011; 17(16): 5423–5431
CrossRef
Google scholar
|
[317] |
Shimizu T , Nishio K , Sakai K , Okamoto I , Okamoto K , Takeda M , Morishita M , Nakagawa K . Phase I safety and pharmacokinetic study of YM155, a potent selective survivin inhibitor, in combination with erlotinib in patients with EGFR TKI refractory advanced non-small cell lung cancer. Cancer Chemother Pharmacol 2020; 86(2): 211–219
CrossRef
Google scholar
|
[318] |
Mo JS , Yoon JH , Ann EJ , Ahn JS , Baek HJ , Lee HJ , Kim SH , Kim YD , Kim MY , Park HS . Notch1 modulates oxidative stress induced cell death through suppression of apoptosis signal-regulating kinase 1. Proc Natl Acad Sci USA 2013; 110(17): 6865–6870
CrossRef
Google scholar
|
[319] |
Regl G , Kasper M , Schnidar H , Eichberger T , Neill GW , Philpott MP , Esterbauer H , Hauser-Kronberger C , Frischauf AM , Aberger F . Activation of the BCL2 promoter in response to Hedgehog/GLI signal transduction is predominantly mediated by GLI2. Cancer Res 2004; 64(21): 7724–7731
CrossRef
Google scholar
|
[320] |
Liu W , Hsiao H , Tsou W , Lai M . Notch inhibits apoptosis by direct interference with XIAP ubiquitination and degradation. EMBO J 2007; 26(6): 1660–1669
CrossRef
Google scholar
|
[321] |
Patterson LL , Byerly CD , Solomon R , Pittner N , Bui DC , Patel J , McBride JW . Ehrlichia Notch signaling induction promotes XIAP stability and inhibits apoptosis. Infect Immun 2023; 91(9): e00002–23
CrossRef
Google scholar
|
[322] |
Pollet M , Shaik S , Mescher M , Frauenstein K , Tigges J , Braun SA , Sondenheimer K , Kaveh M , Bruhs A , Meller S , Homey B , Schwarz A , Esser C , Douki T , Vogel CFA , Krutmann J , Haarmann-Stemmann T . The AHR represses nucleotide excision repair and apoptosis and contributes to UV-induced skin carcinogenesis. Cell Death Differ 2018; 25(10): 1823–1836
CrossRef
Google scholar
|
[323] |
Richter S , Bedard PL , Chen EX , Clarke BA , Tran B , Hotte SJ , Stathis A , Hirte HW , Razak ARA , Reedijk M , Chen Z , Cohen B , Zhang WJ , Wang L , Ivy SP , Moore MJ , Oza AM , Siu LL , McWhirter E . A phase I study of the oral gamma secretase inhibitor R04929097 in combination with gemcitabine in patients with advanced solid tumors (PHL-078/CTEP 8575). Invest New Drugs 2014; 32(2): 243–249
CrossRef
Google scholar
|
[324] |
Sahebjam S , Bedard PL , Castonguay V , Chen Z , Reedijk M , Liu G , Cohen B , Zhang WJ , Clarke B , Zhang T , Kamel-Reid S , Chen H , Ivy SP , Razak ARA , Oza AM , Chen EX , Hirte HW , McGarrity A , Wang L , Siu LL , Hotte SJ . A phase I study of the combination of ro4929097 and cediranib in patients with advanced solid tumours (PJC-004/NCI 8503). Br J Cancer 2013; 109(4): 943–949
CrossRef
Google scholar
|
[325] |
Brana I , Berger R , Golan T , Haluska P , Edenfield J , Fiorica J , Stephenson J , Martin LP , Westin S , Hanjani P , Jones MB , Almhanna K , Wenham RM , Sullivan DM , Dalton WS , Gunchenko A , Cheng JD , Siu LL , Gray JE . A parallel-arm phase I trial of the humanised anti-IGF-1R antibody dalotuzumab in combination with the AKT inhibitor MK-2206, the mTOR inhibitor ridaforolimus, or the NOTCH inhibitor MK-0752, in patients with advanced solid tumours. Br J Cancer 2014; 111(10): 1932–1944
CrossRef
Google scholar
|
[326] |
Falchook GS , Dowlati A , Naing A , Gribbin MJ , Jenkins DW , Chang LL , Lai DW , Smith DC . Phase I study of MEDI0639 in patients with advanced solid tumors. J Clin Oncol 2015; 33(15 suppl): 3024
CrossRef
Google scholar
|
[327] |
Davis SL , Hartman SJ , Bagby SM , Schlaepfer M , Yacob BW , Tse T , Simmons DM , Diamond JR , Lieu CH , Leal AD , Cadogan EB , Hughes GD , Durant ST , Messersmith WA , Pitts TM . ATM kinase inhibitor AZD0156 in combination with irinotecan and 5-fluorouracil in preclinical models of colorectal cancer. BMC Cancer 2022; 22(1): 1107
CrossRef
Google scholar
|
[328] |
Durant ST , Zheng L , Wang Y , Chen K , Zhang L , Zhang T , Yang Z , Riches L , Trinidad AG , Fok JHL , Hunt T , Pike KG , Wilson J , Smith A , Colclough N , Reddy VP , Sykes A , Janefeldt A , Johnström P , Varnäs K , Takano A , Ling S , Orme J , Stott J , Roberts C , Barrett I , Jones G , Roudier M , Pierce A , Allen J , Kahn J , Sule A , Karlin J , Cronin A , Chapman M , Valerie K , Illingworth R , Pass M . The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models. Sci Adv 2018; 4(6): eaat1719
CrossRef
Google scholar
|
[329] |
Zeidan AM , Cook RJ , Bordoni R , Berenson JR , Edenfield WJ , Mohan S , Zhou G , Asatiani E , Srinivas N , Savona MR . A phase 1/2 study of the oral janus kinase 1 inhibitors INCB052793 and itacitinib alone or in combination with standard therapies for advanced hematologic malignancies. Clin Lymphoma Myeloma Leuk 2022; 22(7): 523–534
CrossRef
Google scholar
|
[330] |
Heuser M , Smith BD , Fiedler W , Sekeres MA , Montesinos P , Leber B , Merchant A , Papayannidis C , Pérez-Simón JA , Hoang CJ , O’Brien T , Ma WW , Zeremski M , O’Connell A , Chan G , Cortes JE . Clinical benefit of glasdegib plus low-dose cytarabine in patients with de novo and secondary acute myeloid leukemia: long-term analysis of a phase II randomized trial. Ann Hematol 2021; 100(5): 1181–1194
CrossRef
Google scholar
|
[331] |
Pereira V , Torrejon J , Kariyawasam D , Berlanga P , Guerrini-Rousseau L , Ayrault O , Varlet P , Tauziède-Espariat A , Puget S , Bolle S , Beccaria K , Blauwblomme T , Brugières L , Grill J , Geoerger B , Dufour C , Abbou S . Clinical and molecular analysis of smoothened inhibitors in Sonic Hedgehog medulloblastoma. Neurooncol Adv 2021; 3(1): vdab097
CrossRef
Google scholar
|
/
〈 |
|
〉 |