A distinct “repair” role of regulatory T cells in fracture healing

Tingting Wu, Lulu Wang, Chen Jian, Zhenhe Zhang, Ruiyin Zeng, Bobin Mi, Guohui Liu, Yu Zhang, Chen Shi

PDF(3994 KB)
PDF(3994 KB)
Front. Med. ›› 2024, Vol. 18 ›› Issue (3) : 516-537. DOI: 10.1007/s11684-023-1024-8
RESEARCH ARTICLE

A distinct “repair” role of regulatory T cells in fracture healing

Author information +
History +

Abstract

Regulatory T cells (Tregs) suppress immune responses and inflammation. Here, we described the distinct nonimmunological role of Tregs in fracture healing. The recruitment from the circulation pool, peripheral induction, and local expansion rapidly enriched Tregs in the injured bone. The Tregs in the injured bone displayed superiority in direct osteogenesis over Tregs from lymphoid organs. Punctual depletion of Tregs compromised the fracture healing process, which leads to increased bone nonunion. In addition, bone callus Tregs showed unique T-cell receptor repertoires. Amphiregulin was the most overexpressed protein in bone callus Tregs, and it can directly facilitate the proliferation and differentiation of osteogenic precursor cells by activation of phosphatidylinositol 3-kinase/protein kinase B signaling pathways. The results of loss- and gain-function studies further evidenced that amphiregulin can reverse the compromised healing caused by Treg dysfunction. Tregs also enriched in patient bone callus and amphiregulin can promote the osteogenesis of human pre-osteoblastic cells. Our findings indicate the distinct and nonredundant role of Tregs in fracture healing, which will provide a new therapeutic target and strategy in the clinical treatment of fractures.

Keywords

regulatory T cells / fracture healing / amphiregulin / non-union / osteogenesis

Cite this article

Download citation ▾
Tingting Wu, Lulu Wang, Chen Jian, Zhenhe Zhang, Ruiyin Zeng, Bobin Mi, Guohui Liu, Yu Zhang, Chen Shi. A distinct “repair” role of regulatory T cells in fracture healing. Front. Med., 2024, 18(3): 516‒537 https://doi.org/10.1007/s11684-023-1024-8

References

[1]
Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 2012; 30(1): 531–564
CrossRef Google scholar
[2]
Lei H, Schmidt-Bleek K, Dienelt A, Reinke P, Volk HD. Regulatory T cell-mediated anti-inflammatory effects promote successful tissue repair in both indirect and direct manners. Front Pharmacol 2015; 6: 184
CrossRef Google scholar
[3]
Rothstein DM, Camirand G. New insights into the mechanisms of Treg function. Curr Opin Organ Transplant 2015; 20(4): 376–384
CrossRef Google scholar
[4]
Luo CT, Li MO. Transcriptional control of regulatory T cell development and function. Trends Immunol 2013; 34(11): 531–539
CrossRef Google scholar
[5]
Roncador G, Brown PJ, Maestre L, Hue S, Martínez-Torrecuadrada JL, Ling KL, Pratap S, Toms C, Fox BC, Cerundolo V, Powrie F, Banham AH. Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur J Immunol 2005; 35(6): 1681–1691
CrossRef Google scholar
[6]
Kanamori M, Nakatsukasa H, Okada M, Lu Q, Yoshimura A. Induced regulatory T cells: their development, stability, and applications. Trends Immunol 2016; 37(11): 803–811
CrossRef Google scholar
[7]
Burzyn D, Benoist C, Mathis D. Regulatory T cells in nonlymphoid tissues. Nat Immunol 2013; 14(10): 1007–1013
CrossRef Google scholar
[8]
Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, Lee J, Goldfine AB, Benoist C, Shoelson S, Mathis D. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 2009; 15(8): 930–939
CrossRef Google scholar
[9]
Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, Shoelson SE, Benoist C, Mathis D. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 2012; 486(7404): 549–553
CrossRef Google scholar
[10]
Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M, Jang Y, Sefik E, Tan TG, Wagers AJ, Benoist C, Mathis D. A special population of regulatory T cells potentiates muscle repair. Cell 2013; 155(6): 1282–1295
CrossRef Google scholar
[11]
Arpaia N, Green JA, Moltedo B, Arvey A, Hemmers S, Yuan S, Treuting PM, Rudensky AY. A distinct function of regulatory T Cells in tissue protection. Cell 2015; 162(5): 1078–1089
CrossRef Google scholar
[12]
Xia N, Lu Y, Gu M, Li N, Liu M, Jiao J, Zhu Z, Li J, Li D, Tang T, Lv B, Nie S, Zhang M, Liao M, Liao Y, Yang X, Cheng X. A unique population of regulatory T cells in heart potentiates cardiac protection from myocardial infarction. Circulation 2020; 142(20): 1956–1973
CrossRef Google scholar
[13]
Deliyanti D, Talia DM, Zhu T, Maxwell MJ, Agrotis A, Jerome JR, Hargreaves EM, Gerondakis S, Hibbs ML, Mackay F, Wilkinson-Berka JL. Foxp3+ Tregs are recruited to the retina to repair pathological angiogenesis. Nat Commun 2017; 8(1): 748
CrossRef Google scholar
[14]
Ali N, Zirak B, Rodriguez RS, Pauli ML, Truong HA, Lai K, Ahn R, Corbin K, Lowe MM, Scharschmidt TC, Taravati K, Tan MR, Ricardo-Gonzalez RR, Nosbaum A, Bertolini M, Liao W, Nestle FO, Paus R, Cotsarelis G, Abbas AK, Rosenblum MD. Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 2017; 169(6): 1119–1129.e11
CrossRef Google scholar
[15]
Baht GS, Vi L, Alman BA. The role of the immune cells in fracture healing. Curr Osteoporos Rep 2018; 16(2): 138–145
CrossRef Google scholar
[16]
Wildemann B, Ignatius A, Leung F, Taitsman LA, Smith RM, Pesántez R, Stoddart MJ, Richards RG, Jupiter JB. Non-union bone fractures. Nat Rev Dis Primers 2021; 7(1): 57
CrossRef Google scholar
[17]
Zura R, Xiong Z, Einhorn T, Watson JT, Ostrum RF, Prayson MJ, Della Rocca GJ, Mehta S, McKinley T, Wang Z, Steen RG. Epidemiology of fracture nonunion in 18 human bones. JAMA Surg 2016; 151(11): e162775
CrossRef Google scholar
[18]
Horton JE, Raisz LG, Simmons HA, Oppenheim JJ, Mergenhagen SE. Bone resorbing activity in supernatant fluid from cultured human peripheral blood leukocytes. Science 1972; 177(4051): 793–795
CrossRef Google scholar
[19]
Arron JR, Choi Y. Bone versus immune system. Nature 2000; 408(6812): 535–536
CrossRef Google scholar
[20]
Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S. CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008; 322(5899): 271–275
CrossRef Google scholar
[21]
Bozec A, Zaiss MM. T regulatory cells in bone remodelling. Curr Osteoporos Rep 2017; 15(3): 121–125
CrossRef Google scholar
[22]
Cano-Gamez E, Soskic B, Roumeliotis TI, So E, Smyth DJ, Baldrighi M, Willé D, Nakic N, Esparza-Gordillo J, Larminie CGC, Bronson PG, Tough DF, Rowan WC, Choudhary JS, Trynka G. Single-cell transcriptomics identifies an effectorness gradient shaping the response of CD4+ T cells to cytokines. Nat Commun 2020; 11(1): 1801
CrossRef Google scholar
[23]
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 2018; 36(5): 411–420
CrossRef Google scholar
[24]
Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH. Massively parallel digital transcriptional profiling of single cells. Nat Commun 2017; 8(1): 14049
CrossRef Google scholar
[25]
Fan X, Dong J, Zhong S, Wei Y, Wu Q, Yan L, Yong J, Sun L, Wang X, Zhao Y, Wang W, Yan J, Wang X, Qiao J, Tang F. Spatial transcriptomic survey of human embryonic cerebral cortex by single-cell RNA-seq analysis. Cell Res 2018; 28(7): 730–745
CrossRef Google scholar
[26]
Li J, Tan J, Martino MM, Lui KO. Regulatory T-cells: potential regulator of tissue repair and regeneration. Front Immunol 2018; 9: 585
CrossRef Google scholar
[27]
Luckheeram RV, Zhou R, Verma AD, Xia B. CD4+ T cells: differentiation and functions. Clin Dev Immunol 2012; 2012: 925135
CrossRef Google scholar
[28]
Zhang C, Li L, Feng K, Fan D, Xue W, Lu J. ‘Repair’ Treg cells in tissue injury. Cell Physiol Biochem 2017; 43(6): 2155–2169
CrossRef Google scholar
[29]
Saxena A, Dobaczewski M, Rai V, Haque Z, Chen W, Li N, Frangogiannis NG. Regulatory T cells are recruited in the infarcted mouse myocardium and may modulate fibroblast phenotype and function. Am J Physiol Heart Circ Physiol 2014; 307(8): H1233–H1242
CrossRef Google scholar
[30]
Kunkel GT, Maceyka M, Milstien S, Spiegel S. Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat Rev Drug Discov 2013; 12(9): 688–702
CrossRef Google scholar
[31]
Yadav M, Louvet C, Davini D, Gardner JM, Martinez-Llordella M, Bailey-Bucktrout S, Anthony BA, Sverdrup FM, Head R, Kuster DJ, Ruminski P, Weiss D, Von Schack D, Bluestone JA. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J Exp Med 2012; 209(10): 1713–1722, s1–19
CrossRef Google scholar
[32]
Thornton AM, Korty PE, Tran DQ, Wohlfert EA, Murray PE, Belkaid Y, Shevach EM. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol 2010; 184(7): 3433–3441
CrossRef Google scholar
[33]
Nikolouli E, Elfaki Y, Herppich S, Schelmbauer C, Delacher M, Falk C, Mufazalov IA, Waisman A, Feuerer M, Huehn J. Recirculating IL-1R2+ Tregs fine-tune intrathymic Treg development under inflammatory conditions. Cell Mol Immunol 2021; 18(1): 182–193
CrossRef Google scholar
[34]
Cuylen S, Blaukopf C, Politi AZ, Müller-Reichert T, Neumann B, Poser I, Ellenberg J, Hyman AA, Gerlich DW. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature 2016; 535(7611): 308–312
CrossRef Google scholar
[35]
Zeng C, Pan F, Jones LA, Lim MM, Griffin EA, Sheline YI, Mintun MA, Holtzman DM, Mach RH. Evaluation of 5-ethynyl-2′-deoxyuridine staining as a sensitive and reliable method for studying cell proliferation in the adult nervous system. Brain Res 2010; 1319: 21–32
CrossRef Google scholar
[36]
Yin L, Huang D, Liu X, Wang Y, Liu J, Liu F, Yu B. Omentin-1 effects on mesenchymal stem cells: proliferation, apoptosis, and angiogenesis in vitro. Stem Cell Res Ther 2017; 8(1): 224
CrossRef Google scholar
[37]
Suvas S, Azkur AK, Kim BS, Kumaraguru U, Rouse BT. CD4+CD25+ regulatory T cells control the severity of viral immunoinflammatory lesions. J Immunol 2004; 172(7): 4123–4132
CrossRef Google scholar
[38]
Shi C, Wu T, He Y, Zhang Y, Fu D. Recent advances in bone-targeted therapy. Pharmacol Ther 2020; 207: 107473
CrossRef Google scholar
[39]
Tabula Muris Consortium; Overall coordination; Logistical coordination; Organ collection, processing; Library preparation, sequencing; Computational data analysis; Cell type annotation; Writing group; Supplemental text writing group; Principal investigators. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 2018; 562(7727): 367–372
CrossRef Google scholar
[40]
Li J, Wang Z, Wang J, Guo Q, Fu Y, Dai Z, Wang M, Bai Y, Liu X, Cooper PR, Wu J, He W. Amphiregulin regulates odontogenic differentiation of dental pulp stem cells by activation of mitogen-activated protein kinase and the phosphatidylinositol 3-kinase signaling pathways. Stem Cell Res Ther 2022; 13(1): 304
CrossRef Google scholar
[41]
Wang T, Zhang X, Bikle DD. Osteogenic differentiation of periosteal cells during fracture healing. J Cell Physiol 2017; 232(5): 913–921
CrossRef Google scholar
[42]
Yang C, Liu X, Zhao K, Zhu Y, Hu B, Zhou Y, Wang M, Wu Y, Zhang C, Xu J, Ning Y, Zou D. miRNA-21 promotes osteogenesis via the PTEN/PI3K/Akt/HIF-1α pathway and enhances bone regeneration in critical size defects. Stem Cell Res Ther 2019; 10(1): 65
CrossRef Google scholar
[43]
Komori T. Functions of osteocalcin in bone, pancreas, testis, and muscle. Int J Mol Sci 2020; 21(20): 7513
CrossRef Google scholar
[44]
Vimalraj S. Alkaline phosphatase: structure, expression and its function in bone mineralization. Gene 2020; 754: 144855
CrossRef Google scholar
[45]
Furuta T, Miyaki S, Ishitobi H, Ogura T, Kato Y, Kamei N, Miyado K, Higashi Y, Ochi M. Mesenchymal stem cell-derived exosomes promote fracture healing in a mouse model. Stem Cells Transl Med 2016; 5(12): 1620–1630
CrossRef Google scholar
[46]
Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 2012; 8(3): 133–143
CrossRef Google scholar
[47]
Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender RHF, Bergers G, Bikfalvi A, Bischoff J, Böck BC, Brooks PC, Bussolino F, Cakir B, Carmeliet P, Castranova D, Cimpean AM, Cleaver O, Coukos G, Davis GE, De Palma M, Dimberg A, Dings RPM, Djonov V, Dudley AC, Dufton NP, Fendt SM, Ferrara N, Fruttiger M, Fukumura D, Ghesquière B, Gong Y, Griffin RJ, Harris AL, Hughes CCW, Hultgren NW, Iruela-Arispe ML, Irving M, Jain RK, Kalluri R, Kalucka J, Kerbel RS, Kitajewski J, Klaassen I, Kleinmann HK, Koolwijk P, Kuczynski E, Kwak BR, Marien K, Melero-Martin JM, Munn LL, Nicosia RF, Noel A, Nurro J, Olsson AK, Petrova TV, Pietras K, Pili R, Pollard JW, Post MJ, Quax PHA, Rabinovich GA, Raica M, Randi AM, Ribatti D, Ruegg C, Schlingemann RO, Schulte-Merker S, Smith LEH, Song JW, Stacker SA, Stalin J, Stratman AN, Van de Velde M, van Hinsbergh VWM, Vermeulen PB, Waltenberger J, Weinstein BM, Xin H, Yetkin-Arik B, Yla-Herttuala S, Yoder MC, Griffioen AW. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 2018; 21(3): 425–532
CrossRef Google scholar
[48]
Protopsaltis NJ, Liang W, Nudleman E, Ferrara N. Interleukin-22 promotes tumor angiogenesis. Angiogenesis 2019; 22(2): 311–323
CrossRef Google scholar
[49]
Zhang L, Jiao G, Ren S, Zhang X, Li C, Wu W, Wang H, Liu H, Zhou H, Chen Y. Exosomes from bone marrow mesenchymal stem cells enhance fracture healing through the promotion of osteogenesis and angiogenesis in a rat model of nonunion. Stem Cell Res Ther 2020; 11(1): 38
CrossRef Google scholar
[50]
Taylor D. Fracture and repair of bone: a multiscale problem. J Mater Sci 2007; 42(21): 8911–8918
CrossRef Google scholar
[51]
Mitchell SAT, Majuta LA, Mantyh PW. New insights in understanding and treating bone fracture pain. Curr Osteoporos Rep 2018; 16(4): 325–332
CrossRef Google scholar
[52]
Holmes D. Non-union bone fracture: a quicker fix. Nature 2017; 550(7677): S193
CrossRef Google scholar
[53]
Marzi I. Focus on non-union of fractures. Eur J Trauma Emerg Surg 2019; 45(1): 1–2
CrossRef Google scholar
[54]
Schlundt C, Bucher CH, Tsitsilonis S, Schell H, Duda GN, Schmidt-Bleek K. Clinical and research approaches to treat non-union fracture. Curr Osteoporos Rep 2018; 16(2): 155–168
CrossRef Google scholar
[55]
Dülgeroglu TC, Metineren H. Evaluation of the effect of platelet-rich fibrin on long bone healing: an experimental rat model. Orthopedics 2017; 40(3): e479–e484
CrossRef Google scholar
[56]
Bastian OW, Koenderman L, Alblas J, Leenen LP, Blokhuis TJ. Neutrophils contribute to fracture healing by synthesizing fibronectin+ extracellular matrix rapidly after injury. Clin Immunol 2016; 164: 78–84
CrossRef Google scholar
[57]
Timlin M, Toomey D, Condron C, Power C, Street J, Murray P, Bouchier-Hayes D. Fracture hematoma is a potent proinflammatory mediator of neutrophil function. J Trauma 2005; 58(6): 1223–1229
CrossRef Google scholar
[58]
Ross EA, Devitt A, Johnson JR. Macrophages: the good, the bad, and the gluttony. Front Immunol 2021; 12: 708186
CrossRef Google scholar
[59]
Arora S, Dev K, Agarwal B, Das P, Syed MA. Macrophages: their role, activation and polarization in pulmonary diseases. Immunobiology 2018; 223(4–5): 383–396
CrossRef Google scholar
[60]
Könnecke I, Serra A, El Khassawna T, Schlundt C, Schell H, Hauser A, Ellinghaus A, Volk HD, Radbruch A, Duda GN, Schmidt-Bleek K. T and B cells participate in bone repair by infiltrating the fracture callus in a two-wave fashion. Bone 2014; 64: 155–165
CrossRef Google scholar
[61]
Luo CY, Wang L, Sun C, Li DJ. Estrogen enhances the functions of CD4+CD25+Foxp3+ regulatory T cells that suppress osteoclast differentiation and bone resorption in vitro. Cell Mol Immunol 2011; 8(1): 50–58
CrossRef Google scholar
[62]
Kelchtermans H, Geboes L, Mitera T, Huskens D, Leclercq G, Matthys P. Activated CD4+CD25+ regulatory T cells inhibit osteoclastogenesis and collagen-induced arthritis. Ann Rheum Dis 2009; 68(5): 744–750
CrossRef Google scholar
[63]
Xu F, Guanghao C, Liang Y, Jun W, Wei W, Baorong H. Treg-promoted new bone formation through suppressing TH17 by secreting Interleukin-10 in ankylosing spondylitis. Spine 2019; 44(23): E1349–E1355
CrossRef Google scholar
[64]
Wang L, Simons DL, Lu X, Tu TY, Solomon S, Wang R, Rosario A, Avalos C, Schmolze D, Yim J, Waisman J, Lee PP. Connecting blood and intratumoral Treg cell activity in predicting future relapse in breast cancer. Nat Immunol 2019; 20(9): 1220–1230
CrossRef Google scholar
[65]
D’Alessio FR, Tsushima K, Aggarwal NR, West EE, Willett MH, Britos MF, Pipeling MR, Brower RG, Tuder RM, McDyer JF, King LS. CD4+CD25+Foxp3+ Tregs resolve experimental lung injury in mice and are present in humans with acute lung injury. J Clin Invest 2009; 119(10): 2898–2913
CrossRef Google scholar
[66]
Mahata B, Zhang X, Kolodziejczyk AA, Proserpio V, Haim-Vilmovsky L, Taylor AE, Hebenstreit D, Dingler FA, Moignard V, Göttgens B, Arlt W, McKenzie AN, Teichmann SA. Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell Rep 2014; 7(4): 1130–1142
CrossRef Google scholar
[67]
Rothem DE, Rothem L, Dahan A, Eliakim R, Soudry M. Nicotinic modulation of gene expression in osteoblast cells, MG-63. Bone 2011; 48(4): 903–909
CrossRef Google scholar
[68]
Zaiss DMW, Gause WC, Osborne LC, Artis D. Emerging functions of amphiregulin in orchestrating immunity, inflammation, and tissue repair. Immunity 2015; 42(2): 216–226
CrossRef Google scholar
[69]
Tamama K, Kawasaki H, Wells A. Epidermal growth factor (EGF) treatment on multipotential stromal cells (MSCs). Possible enhancement of therapeutic potential of MSC. J Biomed Biotechnol 2010; 2010: 795385
CrossRef Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 82274026 and 81901884). We thank the patients and families for donating specimens for research. We acknowledge the central laboratory of Union Hospital for X-ray and microscopes imaging. We appreciate the Analytical and Testing Center of Tongji Medical School, Huazhong University of Science & Technology (HUST) for the micro-CT imaging.

Compliance with ethics guidelines

Conflicts of interest Tingting Wu, Lulu Wang, Chen Jian, Zhenhe Zhang, Ruiyin Zeng, Bobin Mi, Guohui Liu, Yu Zhang, and Chen Shi declare that they have no conflict of interest.
The study was approved by the Institutional Animal Care and Use Committee of Tongji Medical College, Huazhong University of Science and Technology (HUST) and the study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. Informed consent was obtained from all patients for being included in the study.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-023-1024-8 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(3994 KB)

Accesses

Citations

Detail

Sections
Recommended

/