Single-cell RNA-seq reveals the transcriptional program underlying tumor progression and metastasis in neuroblastoma

Zhe Nian, Dan Wang, Hao Wang, Wenxu Liu, Zhenyi Ma, Jie Yan, Yanna Cao, Jie Li, Qiang Zhao, Zhe Liu

PDF(9334 KB)
PDF(9334 KB)
Front. Med. ›› 2024, Vol. 18 ›› Issue (4) : 690-707. DOI: 10.1007/s11684-024-1081-7
RESEARCH ARTICLE

Single-cell RNA-seq reveals the transcriptional program underlying tumor progression and metastasis in neuroblastoma

Author information +
History +

Abstract

Neuroblastoma (NB) is one of the most common childhood malignancies. Sixty percent of patients present with widely disseminated clinical signs at diagnosis and exhibit poor outcomes. However, the molecular mechanisms triggering NB metastasis remain largely uncharacterized. In this study, we generated a transcriptomic atlas of 15 447 NB cells from eight NB samples, including paired samples of primary tumors and bone marrow metastases. We used time-resolved analysis to chart the evolutionary trajectory of NB cells from the primary tumor to the metastases in the same patient and identified a common ‘starter’ subpopulation that initiates tumor development and metastasis. The ‘starter’ population exhibited high expression levels of multiple cell cycle-related genes, indicating the important role of cell cycle upregulation in NB tumor progression. In addition, our evolutionary trajectory analysis demonstrated the involvement of partial epithelial-to-mesenchymal transition (p-EMT) along the metastatic route from the primary site to the bone marrow. Our study provides insights into the program driving NB metastasis and presents a signature of metastasis-initiating cells as an independent prognostic indicator and potential therapeutic target to inhibit the initiation of NB metastasis.

Keywords

single-cell RNA sequencing / metastasis / neuroblastoma / epithelial-to-mesenchymal transition

Cite this article

Download citation ▾
Zhe Nian, Dan Wang, Hao Wang, Wenxu Liu, Zhenyi Ma, Jie Yan, Yanna Cao, Jie Li, Qiang Zhao, Zhe Liu. Single-cell RNA-seq reveals the transcriptional program underlying tumor progression and metastasis in neuroblastoma. Front. Med., 2024, 18(4): 690‒707 https://doi.org/10.1007/s11684-024-1081-7

References

[1]
Zafar A, Wang W, Liu G, Wang X, Xian W, McKeon F, Foster J, Zhou J, Zhang R. Molecular targeting therapies for neuroblastoma: progress and challenges. Med Res Rev 2021; 41(2): 961–1021
CrossRef Google scholar
[2]
Furlan A, Adameyko I. Schwann cell precursor: a neural crest cell in disguise?. Dev Biol 2018; 444(Suppl 1): S25–S35
CrossRef Google scholar
[3]
Brodeur GM, Iyer R, Croucher JL, Zhuang T, Higashi M, Kolla V. Therapeutic targets for neuroblastomas. Expert Opin Ther Targets 2014; 18(3): 277–292
CrossRef Google scholar
[4]
Ackermann S, Cartolano M, Hero B, Welte A, Kahlert Y, Roderwieser A, Bartenhagen C, Walter E, Gecht J, Kerschke L, Volland R, Menon R, Heuckmann JM, Gartlgruber M, Hartlieb S, Henrich KO, Okonechnikov K, Altmüller J, Nürnberg P, Lefever S, de Wilde B, Sand F, Ikram F, Rosswog C, Fischer J, Theissen J, Hertwig F, Singhi AD, Simon T, Vogel W, Perner S, Krug B, Schmidt M, Rahmann S, Achter V, Lang U, Vokuhl C, Ortmann M, Büttner R, Eggert A, Speleman F, O’Sullivan RJ, Thomas RK, Berthold F, Vandesompele J, Schramm A, Westermann F, Schulte JH, Peifer M, Fischer M. A mechanistic classification of clinical phenotypes in neuroblastoma. Science 2018; 362(6419): 1165–1170
CrossRef Google scholar
[5]
Kholodenko IV, Kalinovsky DV, Doronin II, Deyev SM, Kholodenko RV. Neuroblastoma origin and therapeutic targets for immunotherapy. J Immunol Res 2018; 2018: 7394268
CrossRef Google scholar
[6]
Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, Weiss WA. Neuroblastoma. Nat Rev Dis Primers 2016; 2(1): 16078
CrossRef Google scholar
[7]
Teitz T, Inoue M, Valentine MB, Zhu K, Rehg JE, Zhao W, Finkelstein D, Wang YD, Johnson MD, Calabrese C, Rubinstein M, Hakem R, Weiss WA, Lahti JM. Th-MYCN mice with caspase-8 deficiency develop advanced neuroblastoma with bone marrow metastasis. Cancer Res 2013; 73(13): 4086–4097
CrossRef Google scholar
[8]
Zheng T, Ménard M, Weiss WA. Neuroblastoma metastases: leveraging the avian neural crest. Cancer Cell 2017; 32(4): 395–397
CrossRef Google scholar
[9]
Zhu S, Zhang X, Weichert-Leahey N, Dong Z, Zhang C, Lopez G, Tao T, He S, Wood AC, Oldridge D, Ung CY, van Ree JH, Khan A, Salazar BM, Lummertz da Rocha E, Zimmerman MW, Guo F, Cao H, Hou X, Weroha SJ, Perez-Atayde AR, Neuberg DS, Meves A, McNiven MA, van Deursen JM, Li H, Maris JM, Look AT. LMO1 synergizes with MYCN to promote neuroblastoma initiation and metastasis. Cancer Cell 2017; 32(3): 310–323.e5
CrossRef Google scholar
[10]
Massagué J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature 2016; 529(7586): 298–306
CrossRef Google scholar
[11]
Peng J, Sun BF, Chen CY, Zhou JY, Chen YS, Chen H, Liu L, Huang D, Jiang J, Cui GS, Yang Y, Wang W, Guo D, Dai M, Guo J, Zhang T, Liao Q, Liu Y, Zhao YL, Han DL, Zhao Y, Yang YG, Wu W. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res 2019; 29(9): 725–738
CrossRef Google scholar
[12]
Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, Rodman C, Luo CL, Mroz EA, Emerick KS, Deschler DG, Varvares MA, Mylvaganam R, Rozenblatt-Rosen O, Rocco JW, Faquin WC, Lin DT, Regev A, Bernstein BE. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 2017; 171(7): 1611–1624.e24
CrossRef Google scholar
[13]
Kan T, Zhang S, Zhou S, Zhang Y, Zhao Y, Gao Y, Zhang T, Gao F, Wang X, Zhao L, Yang M. Single-cell RNA-seq recognized the initiator of epithelial ovarian cancer recurrence. Oncogene 2022; 41(6): 895–906
CrossRef Google scholar
[14]
Dong R, Yang R, Zhan Y, Lai HD, Ye CJ, Yao XY, Luo WQ, Cheng XM, Miao JJ, Wang JF, Liu BH, Liu XQ, Xie LL, Li Y, Zhang M, Chen L, Song WC, Qian W, Gao WQ, Tang YH, Shen CY, Jiang W, Chen G, Yao W, Dong KR, Xiao XM, Zheng S, Li K, Wang J. Single-cell characterization of malignant phenotypes and developmental trajectories of adrenal neuroblastoma. Cancer Cell 2020; 38(5): 716–733.e6
CrossRef Google scholar
[15]
Jansky S, Sharma AK, Körber V, Quintero A, Toprak UH, Wecht EM, Gartlgruber M, Greco A, Chomsky E, Grünewald TGP, Henrich KO, Tanay A, Herrmann C, Höfer T, Westermann F. Single-cell transcriptomic analyses provide insights into the developmental origins of neuroblastoma. Nat Genet 2021; 53(5): 683–693
CrossRef Google scholar
[16]
Kildisiute G, Kholosy WM, Young MD, Roberts K, Elmentaite R, van Hooff SR, Pacyna CN, Khabirova E, Piapi A, Thevanesan C, Bugallo-Blanco E, Burke C, Mamanova L, Keller KM, Langenberg-Ververgaert KPS, Lijnzaad P, Margaritis T, Holstege FCP, Tas ML, Wijnen M, van Noesel MM, Del Valle I, Barone G, van der Linden R, Duncan C, Anderson J, Achermann JC, Haniffa M, Teichmann SA, Rampling D, Sebire NJ, He X, de Krijger RR, Barker RA, Meyer KB, Bayraktar O, Straathof K, Molenaar JJ, Behjati S. Tumor to normal single-cell mRNA comparisons reveal a pan-neuroblastoma cancer cell. Sci Adv 2021; 7(6): eabd3311
CrossRef Google scholar
[17]
Hanemaaijer ES, Margaritis T, Sanders K, Bos FL, Candelli T, Al-Saati H, van Noesel MM, Meyer-Wentrup FAG, van de Wetering M, Holstege FCP, Clevers H. Single-cell atlas of developing murine adrenal gland reveals relation of Schwann cell precursor signature to neuroblastoma phenotype. Proc Natl Acad Sci USA 2021; 118(5): e2022350118
CrossRef Google scholar
[18]
Bedoya-Reina OC, Li W, Arceo M, Plescher M, Bullova P, Pui H, Kaucka M, Kharchenko P, Martinsson T, Holmberg J, Adameyko I, Deng Q, Larsson C, Juhlin CC, Kogner P, Schlisio S. Single-nuclei transcriptomes from human adrenal gland reveal distinct cellular identities of low and high-risk neuroblastoma tumors. Nat Commun 2021; 12(1): 5309
CrossRef Google scholar
[19]
Kameneva P, Artemov AV, Kastriti ME, Faure L, Olsen TK, Otte J, Erickson A, Semsch B, Andersson ER, Ratz M, Frisén J, Tischler AS, de Krijger RR, Bouderlique T, Akkuratova N, Vorontsova M, Gusev O, Fried K, Sundström E, Mei S, Kogner P, Baryawno N, Kharchenko PV, Adameyko I. Single-cell transcriptomics of human embryos identifies multiple sympathoblast lineages with potential implications for neuroblastoma origin. Nat Genet 2021; 53(5): 694–706
CrossRef Google scholar
[20]
Yuan X, Seneviratne JA, Du S, Xu Y, Chen Y, Jin Q, Jin X, Balachandran A, Huang S, Xu Y, Zhai Y, Lu L, Tang M, Dong Y, Cheung BB, Marshall GM, Shi W, Carter DR, Zhang C. Single-cell profiling of peripheral neuroblastic tumors identifies an aggressive transitional state that bridges an adrenergic-mesenchymal trajectory. Cell Rep 2022; 41(1): 111455
CrossRef Google scholar
[21]
Fetahu IS, Esser-Skala W, Dnyansagar R, Sindelar S, Rifatbegovic F, Bileck A, Skos L, Bozsaky E, Lazic D, Shaw L, Tötzl M, Tarlungeanu D, Bernkopf M, Rados M, Weninger W, Tomazou EM, Bock C, Gerner C, Ladenstein R, Farlik M, Fortelny N, Taschner-Mandl S. Single-cell transcriptomics and epigenomics unravel the role of monocytes in neuroblastoma bone marrow metastasis. Nat Commun 2023; 14(1): 3620
CrossRef Google scholar
[22]
McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst 2019; 8(4): 329–337.e4
CrossRef Google scholar
[23]
Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, Baglaenko Y, Brenner M, Loh PR, Raychaudhuri S. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods 2019; 16(12): 1289–1296
CrossRef Google scholar
[24]
Tirosh I, Venteicher AS, Hebert C, Escalante LE, Patel AP, Yizhak K, Fisher JM, Rodman C, Mount C, Filbin MG, Neftel C, Desai N, Nyman J, Izar B, Luo CC, Francis JM, Patel AA, Onozato ML, Riggi N, Livak KJ, Gennert D, Satija R, Nahed BV, Curry WT, Martuza RL, Mylvaganam R, Iafrate AJ, Frosch MP, Golub TR, Rivera MN, Getz G, Rozenblatt-Rosen O, Cahill DP, Monje M, Bernstein BE, Louis DN, Regev A, Suvà ML. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 2016; 539(7628): 309–313
CrossRef Google scholar
[25]
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34(18): 3094–3100
CrossRef Google scholar
[26]
Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, von Haeseler A, Schatz MC. Accurate detection of complex structural variations using single-molecule sequencing. Nat Methods 2018; 15(6): 461–468
CrossRef Google scholar
[27]
Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, Chak S, Naikawadi RP, Wolters PJ, Abate AR, Butte AJ, Bhattacharya M. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 2019; 20(2): 163–172
CrossRef Google scholar
[28]
Zhang Q, He Y, Luo N, Patel SJ, Han Y, Gao R, Modak M, Carotta S, Haslinger C, Kind D, Peet GW, Zhong G, Lu S, Zhu W, Mao Y, Xiao M, Bergmann M, Hu X, Kerkar SP, Vogt AB, Pflanz S, Liu K, Peng J, Ren X, Zhang Z. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 2019; 179(4): 829–845.e20
CrossRef Google scholar
[29]
Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 2014; 32(4): 381–386
CrossRef Google scholar
[30]
Street K, Risso D, Fletcher RB, Das D, Ngai J, Yosef N, Purdom E, Dudoit S. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 2018; 19(1): 477
CrossRef Google scholar
[31]
Garcia-Alonso L, Holland CH, Ibrahim MM, Turei D, Saez-Rodriguez J. Benchmark and integration of resources for the estimation of human transcription factor activities. Genome Res 2019; 29(8): 1363–1375
CrossRef Google scholar
[32]
Alvarez MJ, Shen Y, Giorgi FM, Lachmann A, Ding BB, Ye BH, Califano A. Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nat Genet 2016; 48(8): 838–847
CrossRef Google scholar
[33]
Holland CH, Tanevski J, Perales-Patón J, Gleixner J, Kumar MP, Mereu E, Joughin BA, Stegle O, Lauffenburger DA, Heyn H, Szalai B, Saez-Rodriguez J. Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data. Genome Biol 2020; 21(1): 36
CrossRef Google scholar
[34]
Verhoeven BM, Mei S, Olsen TK, Gustafsson K, Valind A, Lindström A, Gisselsson D, Fard SS, Hagerling C, Kharchenko PV, Kogner P, Johnsen JI, Baryawno N. The immune cell atlas of human neuroblastoma. Cell Rep Med 2022; 3(6): 100657
CrossRef Google scholar
[35]
Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, Myung P, Plikus MV, Nie Q. Inference and analysis of cell-cell communication using CellChat. Nat Commun 2021; 12(1): 1088
CrossRef Google scholar
[36]
Zhang J, Guan M, Wang Q, Zhang J, Zhou T, Sun X. Single-cell transcriptome-based multilayer network biomarker for predicting prognosis and therapeutic response of gliomas. Brief Bioinform 2020; 21(3): 1080–1097
CrossRef Google scholar
[37]
Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, Louis DN, Rozenblatt-Rosen O, Suvà ML, Regev A, Bernstein BE. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014; 344(6190): 1396–1401
CrossRef Google scholar
[38]
Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 2003; 3(3): 203–216
CrossRef Google scholar
[39]
Pan XW, Zhang H, Xu D, Chen JX, Chen WJ, Gan SS, Qu FJ, Chu CM, Cao JW, Fan YH, Song X, Ye JQ, Zhou W, Cui XG. Identification of a novel cancer stem cell subpopulation that promotes progression of human fatal renal cell carcinoma by single-cell RNA-seq analysis. Int J Biol Sci 2020; 16(16): 3149–3162
CrossRef Google scholar
[40]
La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, Lidschreiber K, Kastriti ME, Lönnerberg P, Furlan A, Fan J, Borm LE, Liu Z, van Bruggen D, Guo J, He X, Barker R, Sundström E, Castelo-Branco G, Cramer P, Adameyko I, Linnarsson S, Kharchenko PV. RNA velocity of single cells. Nature 2018; 560(7719): 494–498
CrossRef Google scholar
[41]
Spanjaard B, Hu B, Mitic N, Olivares-Chauvet P, Janjuha S, Ninov N, Junker JP. Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars. Nat Biotechnol 2018; 36(5): 469–473
CrossRef Google scholar
[42]
Kester L, van Oudenaarden A. Single-cell transcriptomics meets lineage tracing. Cell Stem Cell 2018; 23(2): 166–179
CrossRef Google scholar
[43]
Lee-Six H, Øbro NF, Shepherd MS, Grossmann S, Dawson K, Belmonte M, Osborne RJ, Huntly BJP, Martincorena I, Anderson E, O’Neill L, Stratton MR, Laurenti E, Green AR, Kent DG, Campbell PJ. Population dynamics of normal human blood inferred from somatic mutations. Nature 2018; 561(7724): 473–478
CrossRef Google scholar
[44]
Miller TE, Lareau CA, Verga JA, DePasquale EAK, Liu V, Ssozi D, Sandor K, Yin Y, Ludwig LS, El Farran CA, Morgan DM, Satpathy AT, Griffin GK, Lane AA, Love JC, Bernstein BE, Sankaran VG, van Galen P. Mitochondrial variant enrichment from high-throughput single-cell RNA sequencing resolves clonal populations. Nat Biotechnol 2022; 40(7): 1030–1034
CrossRef Google scholar
[45]
Nguyen B, Fong C, Luthra A, Smith SA, DiNatale RG, Nandakumar S, Walch H, Chatila WK, Madupuri R, Kundra R, Bielski CM, Mastrogiacomo B, Donoghue MTA, Boire A, Chandarlapaty S, Ganesh K, Harding JJ, Iacobuzio-Donahue CA, Razavi P, Reznik E, Rudin CM, Zamarin D, Abida W, Abou-Alfa GK, Aghajanian C, Cercek A, Chi P, Feldman D, Ho AL, Iyer G, Janjigian YY, Morris M, Motzer RJ, O’Reilly EM, Postow MA, Raj NP, Riely GJ, Robson ME, Rosenberg JE, Safonov A, Shoushtari AN, Tap W, Teo MY, Varghese AM, Voss M, Yaeger R, Zauderer MG, Abu-Rustum N, Garcia-Aguilar J, Bochner B, Hakimi A, Jarnagin WR, Jones DR, Molena D, Morris L, Rios-Doria E, Russo P, Singer S, Strong VE, Chakravarty D, Ellenson LH, Gopalan A, Reis-Filho JS, Weigelt B, Ladanyi M, Gonen M, Shah SP, Massague J, Gao J, Zehir A, Berger MF, Solit DB, Bakhoum SF, Sanchez-Vega F, Schultz N. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell 2022; 185(3): 563–575.e11
CrossRef Google scholar
[46]
Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell 2017; 168(4): 670–691
CrossRef Google scholar
[47]
Lundgren K, Nordenskjöld B, Landberg G. Hypoxia, Snail and incomplete epithelial-mesenchymal transition in breast cancer. Br J Cancer 2009; 101(10): 1769–1781
CrossRef Google scholar
[48]
Nieto MA, Huang RY, Jackson RA, Thiery JP. EMT: 2016. Cell 2016; 166(1): 21–45
CrossRef Google scholar
[49]
Li M, Sun C, Bu X, Que Y, Zhang L, Zhang Y, Zhang L, Lu S, Huang J, Zhu J, Wang J, Sun F, Zhang Y. ISL1 promoted tumorigenesis and EMT via Aurora kinase A-induced activation of PI3K/AKT signaling pathway in neuroblastoma. Cell Death Dis 2021; 12(6): 620
CrossRef Google scholar
[50]
Ferronha T, Rabadán MA, Gil-Guiñon E, Le Dréau G, de Torres C, Martí E. LMO4 is an essential cofactor in the Snail2-mediated epithelial-to-mesenchymal transition of neuroblastoma and neural crest cells. J Neurosci 2013; 33(7): 2773–2783
CrossRef Google scholar
[51]
Missios P, da Rocha EL, Pearson DS, Philipp J, Aleman MM, Pirouz M, Farache D, Franses JW, Kubaczka C, Tsanov KM, Jha DK, Pepe-Mooney B, Powers JT, Gregory RI, Lee AS, Dominguez D, Ting DT, Daley GQ. LIN28B alters ribosomal dynamics to promote metastasis in MYCN-driven malignancy. J Clin Invest 2021; 131(22): e145142
CrossRef Google scholar
[52]
Tan CY, Chang CL. NDPKA is not just a metastasis suppressor—be aware of its metastasis-promoting role in neuroblastoma. Lab Invest 2018; 98(2): 219–227
CrossRef Google scholar
[53]
Das SK, Maji S, Wechman SL, Bhoopathi P, Pradhan AK, Talukdar S, Sarkar D, Landry J, Guo C, Wang XY, Cavenee WK, Emdad L, Fisher PB. MDA-9/Syntenin (SDCBP): novel gene and therapeutic target for cancer metastasis. Pharmacol Res 2020; 155: 104695
CrossRef Google scholar
[54]
Kent LN, Leone G. The broken cycle: E2F dysfunction in cancer. Nat Rev Cancer 2019; 19(6): 326–338
CrossRef Google scholar
[55]
Barger CJ, Branick C, Chee L, Karpf AR. Pan-cancer analyses reveal genomic features of FOXM1 overexpression in cancer. Cancers (Basel) 2019; 11(2): 251
CrossRef Google scholar
[56]
Musa J, Aynaud MM, Mirabeau O, Delattre O, Grünewald TG. MYBL2 (B-Myb): a central regulator of cell proliferation, cell survival and differentiation involved in tumorigenesis. Cell Death Dis 2017; 8(6): e2895
CrossRef Google scholar
[57]
Polager S, Ginsberg D. E2F—at the crossroads of life and death. Trends Cell Biol 2008; 18(11): 528–535
CrossRef Google scholar
[58]
Bandara LR, Lam EW, Sørensen TS, Zamanian M, Girling R, La Thangue NB. DP-1: a cell cycle-regulated and phosphorylated component of transcription factor DRTF1/E2F which is functionally important for recognition by pRb and the adenovirus E4 orf 6/7 protein. EMBO J 1994; 13(13): 3104–3114
CrossRef Google scholar
[59]
Fang E, Wang X, Yang F, Hu A, Wang J, Li D, Song H, Hong M, Guo Y, Liu Y, Li H, Huang K, Zheng L, Tong Q. Therapeutic targeting of MZF1–AS1/PARP1/E2F1 axis inhibits proline synthesis and neuroblastoma progression. Adv Sci (Weinh) 2019; 6(19): 1900581
CrossRef Google scholar
[60]
Wang Z, Park HJ, Carr JR, Chen YJ, Zheng Y, Li J, Tyner AL, Costa RH, Bagchi S, Raychaudhuri P. FoxM1 in tumorigenicity of the neuroblastoma cells and renewal of the neural progenitors. Cancer Res 2011; 71(12): 4292–4302
CrossRef Google scholar
[61]
Raschellà G, Cesi V, Amendola R, Negroni A, Tanno B, Altavista P, Tonini GP, De Bernardi B, Calabretta B. Expression of B-myb in neuroblastoma tumors is a poor prognostic factor independent from MYCN amplification. Cancer Res 1999; 59(14): 3365–3368
[62]
Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res 2009; 19(2): 156–172
CrossRef Google scholar
[63]
Padua D, Massagué J. Roles of TGFbeta in metastasis. Cell Res 2009; 19(1): 89–102
CrossRef Google scholar
[64]
Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 2021; 18(1): 9–34
CrossRef Google scholar
[65]
Cheng J, Zhang J, Wu Z, Sun X. Inferring microenvironmental regulation of gene expression from single-cell RNA sequencing data using scMLnet with an application to COVID-19. Brief Bioinform 2021; 22(2): 988–1005
CrossRef Google scholar
[66]
Luo J, Deng M, Zhang X, Sun X. ESICCC as a systematic computational framework for evaluation, selection, and integration of cell-cell communication inference methods. Genome Res 2023; 33(10): 1788–1805
CrossRef Google scholar
[67]
HeXSunX ShaoY. Multicellular network-informed survival model for identification of drug targets of gliomas. IEEE J Biomed Health Inform 2023; [Epub ahead of print] doi: 10.1109/JBHI.2023.3309825
[68]
Huang M, Weiss WA. Neuroblastoma and MYCN. Cold Spring Harb Perspect Med 2013; 3(10): a014415
CrossRef Google scholar
[69]
Brodeur GM, Pritchard J, Berthold F, Carlsen NL, Castel V, Castelberry RP, De Bernardi B, Evans AE, Favrot M, Hedborg F. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol 1993; 11(8): 1466–1477
CrossRef Google scholar
[70]
London WB, Castleberry RP, Matthay KK, Look AT, Seeger RC, Shimada H, Thorner P, Brodeur G, Maris JM, Reynolds CP, Cohn SL. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children’s Oncology Group. J Clin Oncol 2005; 23(27): 6459–6465
CrossRef Google scholar
[71]
Turajlic S, Swanton C. Metastasis as an evolutionary process. Science 2016; 352(6282): 169–175
CrossRef Google scholar
[72]
Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139(5): 871–890
CrossRef Google scholar
[73]
Ye X, Weinberg RA. Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol 2015; 25(11): 675–686
CrossRef Google scholar
[74]
Zhang Q, Fei L, Han R, Huang R, Wang Y, Chen H, Yao B, Qiao N, Wang Z, Ma Z, Ye Z, Zhang Y, Wang W, Wang Y, Kong L, Shou X, Cao X, Zhou X, Shen M, Cheng H, Yao Z, Zhang C, Guo G, Zhao Y. Single-cell transcriptome reveals cellular hierarchies and guides p-EMT-targeted trial in skull base chordoma. Cell Discov 2022; 8(1): 94
CrossRef Google scholar
[75]
Grasset EM, Dunworth M, Sharma G, Loth M, Tandurella J, Cimino-Mathews A, Gentz M, Bracht S, Haynes M, Fertig EJ, Ewald AJ. Triple-negative breast cancer metastasis involves complex epithelial-mesenchymal transition dynamics and requires vimentin. Sci Transl Med 2022; 14(656): eabn7571
CrossRef Google scholar
[76]
Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol 2019; 29(3): 212–226
CrossRef Google scholar
[77]
Krebs AM, Mitschke J, Lasierra Losada M, Schmalhofer O, Boerries M, Busch H, Boettcher M, Mougiakakos D, Reichardt W, Bronsert P, Brunton VG, Pilarsky C, Winkler TH, Brabletz S, Stemmler MP, Brabletz T. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol 2017; 19(5): 518–529
CrossRef Google scholar
[78]
Hao Y, Baker D, Ten Dijke P. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci 2019; 20(11): 2767
CrossRef Google scholar
[79]
Zhang Y, Zou X, Qian W, Weng X, Zhang L, Zhang L, Wang S, Cao X, Ma L, Wei G, Wu Y, Hou Z. Enhanced PAPSS2/VCAN sulfation axis is essential for Snail-mediated breast cancer cell migration and metastasis. Cell Death Differ 2019; 26(3): 565–579
CrossRef Google scholar
[80]
Carstens JL, Yang S, Correa de Sampaio P, Zheng X, Barua S, McAndrews KM, Rao A, Burks JK, Rhim AD, Kalluri R. Stabilized epithelial phenotype of cancer cells in primary tumors leads to increased colonization of liver metastasis in pancreatic cancer. Cell Rep 2021; 35(2): 108990
CrossRef Google scholar
[81]
Sepporta MV, Praz V, Balmas Bourloud K, Joseph JM, Jauquier N, Riggi N, Nardou-Auderset K, Petit A, Scoazec JY, Sartelet H, Renella R, Mühlethaler-Mottet A. TWIST1 expression is associated with high-risk neuroblastoma and promotes primary and metastatic tumor growth. Commun Biol 2022; 5(1): 42
CrossRef Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 81825017, 81773034 to Zhe Liu, 8217113342, 81872350 to Zhenyi Ma), the Ministry of Science and Technology of China (No. 2018YFC1313002 to Zhe Liu), the Tianjin Municipal Science and Technology Commission (No. 20JCZDJC00110 to Zhe Liu), the Interdisciplinary Research Project of Hangzhou Normal University (No. 2024JCXK03 to Zhe Liu), and the Haihe Laboratory of Cell Ecosystem Innovation Fund (No. HH22KYZX0025 to Zhe Liu).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-024-1081-7 and is accessible for authorized users.

Compliance with ethics guidelines

Conflicts of interest Zhe Nian, Dan Wang, Hao Wang, Wenxu Liu, Zhenyi Ma, Jie Yan, Yanna Cao, Jie Li, Qiang Zhao, and Zhe Liu declare that they have no conflict of interest.
This study was approved by the Institutional Ethics Committee of Tianjin Medical University Cancer Institute and Hospital, Tianjin, China (Approve number: E20210664). The study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. Informed consent was obtained from all patients for being included in the study.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(9334 KB)

Accesses

Citations

Detail

Sections
Recommended

/