Epigenetics and environmental health

Min Zhang, Ting Hu, Tianyu Ma, Wei Huang, Yan Wang

PDF(3383 KB)
PDF(3383 KB)
Front. Med. ›› 2024, Vol. 18 ›› Issue (4) : 571-596. DOI: 10.1007/s11684-023-1038-2
REVIEW

Epigenetics and environmental health

Author information +
History +

Abstract

Epigenetic modifications including DNA methylation, histone modifications, chromatin remodeling, and RNA modifications complicate gene regulation and heredity and profoundly impact various physiological and pathological processes. In recent years, accumulating evidence indicates that epigenetics is vulnerable to environmental changes and regulates the growth, development, and diseases of individuals by affecting chromatin activity and regulating gene expression. Environmental exposure or induced epigenetic changes can regulate the state of development and lead to developmental disorders, aging, cardiovascular disease, Alzheimer’s disease, cancers, and so on. However, epigenetic modifications are reversible. The use of specific epigenetic inhibitors targeting epigenetic changes in response to environmental exposure is useful in disease therapy. Here, we provide an overview of the role of epigenetics in various diseases. Furthermore, we summarize the mechanism of epigenetic alterations induced by different environmental exposures, the influence of different environmental exposures, and the crosstalk between environmental variation epigenetics, and genes that are implicated in the body’s health. However, the interaction of multiple factors and epigenetics in regulating the initiation and progression of various diseases complicates clinical treatments. We discuss some commonly used epigenetic drugs targeting epigenetic modifications and methods to prevent or relieve various diseases regulated by environmental exposure and epigenetics through diet.

Keywords

epigenetics / environmental exposure / health / prevention and therapy

Cite this article

Download citation ▾
Min Zhang, Ting Hu, Tianyu Ma, Wei Huang, Yan Wang. Epigenetics and environmental health. Front. Med., 2024, 18(4): 571‒596 https://doi.org/10.1007/s11684-023-1038-2

References

[1]
Waddington CH. The epigenotype. Int J Epidemiol 2012; 41(1): 10–13
CrossRef Google scholar
[2]
Feinberg AP. The key role of epigenetics in human disease prevention and mitigation. N Engl J Med 2018; 378(14): 1323–1334
CrossRef Google scholar
[3]
Loughland I, Little A, Seebacher F. DNA methyltransferase 3a mediates developmental thermal plasticity. BMC Biol 2021; 19(1): 11
CrossRef Google scholar
[4]
Martin EM, Fry RC. Environmental influences on the epigenome: exposure-associated DNA methylation in human populations. Annu Rev Public Health 2018; 39(1): 309–333
CrossRef Google scholar
[5]
Skvortsova K, Iovino N, Bogdanović O. Functions and mechanisms of epigenetic inheritance in animals. Nat Rev Mol Cell Biol 2018; 19(12): 774–790
CrossRef Google scholar
[6]
Nishiyama A, Nakanishi M. Navigating the DNA methylation landscape of cancer. Trends Genet 2021; 37(11): 1012–1027
CrossRef Google scholar
[7]
Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012; 13(7): 484–492
CrossRef Google scholar
[8]
Skvortsova K, Stirzaker C, Taberlay P. The DNA methylation landscape in cancer. Essays Biochem 2019; 63(6): 797–811
CrossRef Google scholar
[9]
Fontana L, Tabano S, Maitz S, Colapietro P, Garzia E, Gerli AG, Sirchia SM, Miozzo M. Clinical and molecular diagnosis of Beckwith–Wiedemann syndrome with single- or multi-locus imprinting disturbance. Int J Mol Sci 2021; 22(7): 3445
CrossRef Google scholar
[10]
Wu L, Zhang Y, Ren J. Epigenetic modification in alcohol use disorder and alcoholic cardiomyopathy: from pathophysiology to therapeutic opportunities. Metabolism 2021; 125: 154909
CrossRef Google scholar
[11]
Zhang ZZ, Lee EE, Sudderth J, Yue Y, Zia A, Glass D, Deberardinis RJ, Wang RC. Glutathione depletion, pentose phosphate pathway activation, and hemolysis in erythrocytes protecting cancer cells from vitamin C-induced oxidative stress. J Biol Chem 2016; 291(44): 22861–22867
CrossRef Google scholar
[12]
Li S, Garrett-Bakelman FE, Chung SS, Sanders MA, Hricik T, Rapaport F, Patel J, Dillon R, Vijay P, Brown AL, Perl AE, Cannon J, Bullinger L, Luger S, Becker M, Lewis ID, To LB, Delwel R, Löwenberg B, Döhner H, Döhner K, Guzman ML, Hassane DC, Roboz GJ, Grimwade D, Valk PJ, D’Andrea RJ, Carroll M, Park CY, Neuberg D, Levine R, Melnick AM, Mason CE. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat Med 2016; 22(7): 792–799
CrossRef Google scholar
[13]
Pan H, Jiang Y, Boi M, Tabbò F, Redmond D, Nie K, Ladetto M, Chiappella A, Cerchietti L, Shaknovich R, Melnick AM, Inghirami GG, Tam W, Elemento O. Epigenomic evolution in diffuse large B-cell lymphomas. Nat Commun 2015; 6(1): 6921
CrossRef Google scholar
[14]
Recillas-Targa F. Cancer epigenetics: an overview. Arch Med Res 2022; 53(8): 732–740
CrossRef Google scholar
[15]
Tong KI, Yoon S, Isaev K, Bakhtiari M, Lackraj T, He MY, Joynt J, Silva A, Xu MC, Privé GG, He HH, Tiedemann RE, Chavez EA, Chong LC, Boyle M, Scott DW, Steidl C, Kridel R. Combined EZH2 inhibition and IKAROS degradation leads to enhanced antitumor activity in diffuse large B-cell lymphoma. Clin Cancer Res 2021; 27(19): 5401–5414
CrossRef Google scholar
[16]
Fang Y, Liao G, Yu B. LSD1/KDM1A inhibitors in clinical trials: advances and prospects. J Hematol Oncol 2019; 12(1): 129
CrossRef Google scholar
[17]
Bajbouj K, Al-Ali A, Ramakrishnan RK, Saber-Ayad M, Hamid Q. Histone modification in NSCLC: molecular mechanisms and therapeutic targets. Int J Mol Sci 2021; 22(21): 11701
CrossRef Google scholar
[18]
Pardo JC, Ruiz de Porras V, Gil J, Font A, Puig-Domingo M, Jordà M. Lipid metabolism and epigenetics crosstalk in prostate cancer. Nutrients 2022; 14(4): 851
CrossRef Google scholar
[19]
Nombela P, Miguel-López B, Blanco S. The role of m6A, m5C and Ψ RNA modifications in cancer: novel therapeutic opportunities. Mol Cancer 2021; 20(1): 18
CrossRef Google scholar
[20]
Barbieri I, Kouzarides T. Role of RNA modifications in cancer. Nat Rev Cancer 2020; 20(6): 303–322
CrossRef Google scholar
[21]
Barbieri I, Tzelepis K, Pandolfini L, Shi J, Millán-Zambrano G, Robson SC, Aspris D, Migliori V, Bannister AJ, Han N, De Braekeleer E, Ponstingl H, Hendrick A, Vakoc CR, Vassiliou GS, Kouzarides T. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature 2017; 552(7683): 126–131
CrossRef Google scholar
[22]
Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, Chou T, Chow A, Saletore Y, MacKay M, Schulman J, Famulare C, Patel M, Klimek VM, Garrett-Bakelman FE, Melnick A, Carroll M, Mason CE, Jaffrey SR, Kharas MG. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med 2017; 23(11): 1369–1376
CrossRef Google scholar
[23]
Ma JZ, Yang F, Zhou CC, Liu F, Yuan JH, Wang F, Wang TT, Xu QG, Zhou WP, Sun SH. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methyladenosine-dependent primary microRNA processing. Hepatology 2017; 65(2): 529–543
CrossRef Google scholar
[24]
Liu J, Eckert MA, Harada BT, Liu SM, Lu Z, Yu K, Tienda SM, Chryplewicz A, Zhu AC, Yang Y, Huang JT, Chen SM, Xu ZG, Leng XH, Yu XC, Cao J, Zhang Z, Liu J, Lengyel E, He C. m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nat Cell Biol 2018; 20(9): 1074–1083
CrossRef Google scholar
[25]
Huang B, Jiang C, Zhang R. Epigenetics: the language of the cell?. Epigenomics 2014; 6(1): 73–88
CrossRef Google scholar
[26]
Zhang Y, Yang H, Long Y, Zhang Y, Chen R, Shi J, Chen J. circRNA N6-methyladenosine methylation in preeclampsia and the potential role of N6-methyladenosine-modified circPAPPA2 in trophoblast invasion. Sci Rep 2021; 11(1): 24357
CrossRef Google scholar
[27]
Qiu L, Zhang GF, Yu L, Wang HY, Jia XJ, Wang TJ. Novel oncogenic and chemoresistance-inducing functions of resistin in ovarian cancer cells require miRNAs-mediated induction of epithelial-to-mesenchymal transition. Sci Rep 2018; 8(1): 12522
CrossRef Google scholar
[28]
Lin X, Zuo S, Luo R, Li Y, Yu G, Zou Y, Zhou Y, Liu Z, Liu Y, Hu Y, Xie Y, Fang W, Liu Z. HBX-induced miR-5188 impairs FOXO1 to stimulate β-catenin nuclear translocation and promotes tumor stemness in hepatocellular carcinoma. Theranostics 2019; 9(25): 7583–7598
CrossRef Google scholar
[29]
Zou Y, Lin X, Bu J, Lin Z, Chen Y, Qiu Y, Mo H, Tang Y, Fang W, Wu Z. Timeless-stimulated miR-5188-FOXO1/β-catenin-c-Jun feedback loop promotes stemness via ubiquitination of β-catenin in breast cancer. Mol Ther 2020; 28(1): 313–327
CrossRef Google scholar
[30]
Weisbeck A, Jansen RJ. Nutrients and the pancreas: an epigenetic perspective. Nutrients 2017; 9(3): 283
CrossRef Google scholar
[31]
Garcia-Martinez L, Zhang Y, Nakata Y, Chan HL, Morey L. Epigenetic mechanisms in breast cancer therapy and resistance. Nat Commun 2021; 12(1): 1786
CrossRef Google scholar
[32]
Fuchs FD, Whelton PK. High blood pressure and cardiovascular disease. Hypertension 2020; 75(2): 285–292
CrossRef Google scholar
[33]
Schiano C, Benincasa G, Franzese M, Della Mura N, Pane K, Salvatore M, Napoli C. Epigenetic-sensitive pathways in personalized therapy of major cardiovascular diseases. Pharmacol Ther 2020; 210: 107514
CrossRef Google scholar
[34]
Tang H, Zeng Z, Shang C, Li Q, Liu J. Epigenetic regulation in pathology of atherosclerosis: a novel perspective. Front Genet 2021; 12: 810689
CrossRef Google scholar
[35]
Chen MS, Lee RT, Garbern JC. Senescence mechanisms and targets in the heart. Cardiovasc Res 2022; 118(5): 1173–1187
CrossRef Google scholar
[36]
Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J, Megens RT, Heyll K, Noels H, Hristov M, Wang S, Kiessling F, Olson EN, Weber C. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med 2014; 20(4): 368–376
CrossRef Google scholar
[37]
Renaud L, Harris LG, Mani SK, Kasiganesan H, Chou JC, Baicu CF, Van Laer A, Akerman AW, Stroud RE, Jones JA, Zile MR, Menick DR. HDACs regulate miR-133a expression in pressure overload-induced cardiac fibrosis. Circ Heart Fail 2015; 8(6): 1094–1104
CrossRef Google scholar
[38]
López-Otín C, Pietrocola F, Roiz-Valle D, Galluzzi L, Kroemer G. Meta-hallmarks of aging and cancer. Cell Metab 2023; 35(1): 12–35
CrossRef Google scholar
[39]
Zhang W, Qu J, Liu GH, Belmonte JCI. The ageing epigenome and its rejuvenation. Nat Rev Mol Cell Biol 2020; 21(3): 137–150
CrossRef Google scholar
[40]
Soto-Palma C, Niedernhofer LJ, Faulk CD, Dong X. Epigenetics, DNA damage, and aging. J Clin Invest 2022; 132(16): e158446
CrossRef Google scholar
[41]
Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet 2018; 19(6): 371–384
CrossRef Google scholar
[42]
Jambhekar A, Dhall A, Shi Y. Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol 2019; 20(10): 625–641
CrossRef Google scholar
[43]
Tan Q, Heijmans BT, Hjelmborg JV, Soerensen M, Christensen K, Christiansen L. Epigenetic drift in the aging genome: a ten-year follow-up in an elderly twin cohort. Int J Epidemiol 2016; 45(4): 1146–1158
CrossRef Google scholar
[44]
Kitada M, Ogura Y, Monno I, Koya D. Sirtuins and type 2 diabetes: role in inflammation, oxidative stress, and mitochondrial function. Front Endocrinol (Lausanne) 2019; 10: 187
CrossRef Google scholar
[45]
Fraga MF, Esteller M. Epigenetics and aging: the targets and the marks. Trends Genet 2007; 23(8): 413–418
CrossRef Google scholar
[46]
Maegawa S, Hinkal G, Kim HS, Shen L, Zhang L, Zhang J, Zhang N, Liang S, Donehower LA, Issa JP. Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res 2010; 20(3): 332–340
CrossRef Google scholar
[47]
Zhou W, Dinh HQ, Ramjan Z, Weisenberger DJ, Nicolet CM, Shen H, Laird PW, Berman BP. DNA methylation loss in late-replicating domains is linked to mitotic cell division. Nat Genet 2018; 50(4): 591–602
CrossRef Google scholar
[48]
Unnikrishnan A, Freeman WM, Jackson J, Wren JD, Porter H, Richardson A. The role of DNA methylation in epigenetics of aging. Pharmacol Ther 2019; 195: 172–185
CrossRef Google scholar
[49]
Moskalev A, Guvatova Z, Lopes IA, Beckett CW, Kennedy BK, De Magalhaes JP, Makarov AA. Targeting aging mechanisms: pharmacological perspectives. Trends Endocrinol Metab 2022; 33(4): 266–280
CrossRef Google scholar
[50]
Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, Reinius L, Acevedo N, Taub M, Ronninger M, Shchetynsky K, Scheynius A, Kere J, Alfredsson L, Klareskog L, Ekström TJ, Feinberg AP. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol 2013; 31(2): 142–147
CrossRef Google scholar
[51]
Wu D, Hu D, Chen H, Shi G, Fetahu IS, Wu F, Rabidou K, Fang R, Tan L, Xu S, Liu H, Argueta C, Zhang L, Mao F, Yan G, Chen J, Dong Z, Lv R, Xu Y, Wang M, Ye Y, Zhang S, Duquette D, Geng S, Yin C, Lian CG, Murphy GF, Adler GK, Garg R, Lynch L, Yang P, Li Y, Lan F, Fan J, Shi Y, Shi YG. Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature 2018; 559(7715): 637–641
CrossRef Google scholar
[52]
Nativio R, Lan Y, Donahue G, Sidoli S, Berson A, Srinivasan AR, Shcherbakova O, Amlie-Wolf A, Nie J, Cui X, He C, Wang LS, Garcia BA, Trojanowski JQ, Bonini NM, Berger SL. An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer’s disease. Nat Genet 2020; 52(10): 1024–1035
CrossRef Google scholar
[53]
Gräff J, Rei D, Guan JS, Wang WY, Seo J, Hennig KM, Nieland TJ, Fass DM, Kao PF, Kahn M, Su SC, Samiei A, Joseph N, Haggarty SJ, Delalle I, Tsai LH. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 2012; 483(7388): 222–226
CrossRef Google scholar
[54]
Li L, Zhou A, Wei Y, Liu F, Li P, Fang R, Ma L, Zhang S, Wang L, Liu J, Richard HT, Chen Y, Wang H, Huang S. Critical role of lncEPAT in coupling dysregulated EGFR pathway and histone H2A deubiquitination during glioblastoma tumorigenesis. Sci Adv 2022; 8(40): eabn2571
CrossRef Google scholar
[55]
Liu Q, Li H, Guo L, Chen Q, Gao X, Li PH, Tang N, Guo X, Deng F, Wu S. Effects of short-term personal exposure to air pollution on platelet mitochondrial DNA methylation levels and the potential mitigation by L-arginine supplementation. J Hazard Mater 2021; 417: 125963
CrossRef Google scholar
[56]
Wang C, Chen R, Cai J, Shi J, Yang C, Tse LA, Li H, Lin Z, Meng X, Liu C, Niu Y, Xia Y, Zhao Z, Kan H. Personal exposure to fine particulate matter and blood pressure: a role of angiotensin converting enzyme and its DNA methylation. Environ Int 2016; 94: 661–666
CrossRef Google scholar
[57]
Abraham E, Rousseaux S, Agier L, Giorgis-Allemand L, Tost J, Galineau J, Hulin A, Siroux V, Vaiman D, Charles MA, Heude B, Forhan A, Schwartz J, Chuffart F, Bourova-Flin E, Khochbin S, Slama R, Lepeule J; EDEN Mother-Child Cohort Study Group. Pregnancy exposure to atmospheric pollution and meteorological conditions and placental DNA methylation. Environ Int 2018; 118: 334–347
CrossRef Google scholar
[58]
Wang D, Ruan W, Fan L, Xu H, Song Q, Diao H, He R, Jin Y, Zhang A. Hypermethylation of Mig-6 gene promoter region inactivates its function, leading to EGFR/ERK signaling hyperphosphorylation, and is involved in arsenite-induced hepatic stellate cells activation and extracellular matrix deposition. J Hazard Mater 2022; 439: 129577
CrossRef Google scholar
[59]
Virani S, Rentschler KM, Nishijo M, Ruangyuttikarn W, Swaddiwudhipong W, Basu N, Rozek LS. DNA methylation is differentially associated with environmental cadmium exposure based on sex and smoking status. Chemosphere 2016; 145: 284–290
CrossRef Google scholar
[60]
Park J, Kim J, Kim E, Won S, Kim WJ. Association between prenatal cadmium exposure and cord blood DNA methylation. Environ Res 2022; 212(Pt B): 113268
CrossRef Google scholar
[61]
Hu F, Yin L, Dong F, Zheng M, Zhao Y, Fu S, Zhang W, Chen X. Effects of long-term cadmium exposure on growth, antioxidant defense and DNA methylation in juvenile Nile tilapia (Oreochromis niloticus). Aquat Toxicol 2021; 241: 106014
CrossRef Google scholar
[62]
Nakayama SMM, Nakata H, Ikenaka Y, Yabe J, Oroszlany B, Yohannes YB, Bortey-Sam N, Muzandu K, Choongo K, Kuritani T, Nakagawa M, Ishizuka M. One year exposure to Cd- and Pb-contaminated soil causes metal accumulation and alteration of global DNA methylation in rats. Environ Pollut 2019; 252(Pt B): 1267–1276
CrossRef Google scholar
[63]
Bozack AK, Rifas-Shiman SL, Coull BA, Baccarelli AA, Wright RO, Amarasiriwardena C, Gold DR, Oken E, Hivert MF, Cardenas A. Prenatal metal exposure, cord blood DNA methylation and persistence in childhood: an epigenome-wide association study of 12 metals. Clin Epigenetics 2021; 13(1): 208
CrossRef Google scholar
[64]
Zhang J, Zhang J, Li M, Wu Y, Fan Y, Zhou Y, Tan L, Shao Z, Shi H. Methylation of RAR-β2, RASSF1A, and CDKN2A genes induced by nickel subsulfide and nickel-carcinogenesis in rats. Biomed Environ Sci 2011; 24(2): 163–171
[65]
Yang J, Chen W, Li X, Sun J, Guo Q, Wang Z. Relationship between urinary nickel and methylation of p15, p16 in workers exposed to nickel. J Occup Environ Med 2014; 56(5): 489–492
CrossRef Google scholar
[66]
Ansari I, Raddatz G, Gutekunst J, Ridnik M, Cohen D, Abu-Remaileh M, Tuganbaev T, Shapiro H, Pikarsky E, Elinav E, Lyko F, Bergman Y. The microbiota programs DNA methylation to control intestinal homeostasis and inflammation. Nat Microbiol 2020; 5(4): 610–619
CrossRef Google scholar
[67]
Xu P, Berto S, Kulkarni A, Jeong B, Joseph C, Cox KH, Greenberg ME, Kim TK, Konopka G, Takahashi JS. NPAS4 regulates the transcriptional response of the suprachiasmatic nucleus to light and circadian behavior. Neuron 2021; 109(20): 3268–3282.e6
CrossRef Google scholar
[68]
Ji X, Yue H, Ku T, Zhang Y, Yun Y, Li G, Sang N. Histone modification in the lung injury and recovery of mice in response to PM2.5 exposure. Chemosphere 2019; 220: 127–136
CrossRef Google scholar
[69]
Luo M, Xu Y, Cai R, Tang Y, Ge MM, Liu ZH, Xu L, Hu F, Ruan DY, Wang HL. Epigenetic histone modification regulates developmental lead exposure induced hyperactivity in rats. Toxicol Lett 2014; 225(1): 78–85
CrossRef Google scholar
[70]
Han X, Alam MN, Cao M, Wang X, Cen M, Tian M, Lu Y, Huang Q. Low levels of perfluorooctanoic acid exposure activates steroid hormone biosynthesis through repressing histone methylation in rats. Environ Sci Technol 2022; 56(9): 5664–5672
CrossRef Google scholar
[71]
Krautkramer KA, Kreznar JH, Romano KA, Vivas EI, Barrett-Wilt GA, Rabaglia ME, Keller MP, Attie AD, Rey FE, Denu JM. Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol Cell 2016; 64(5): 982–992
CrossRef Google scholar
[72]
Migliore L, Coppedè F. Gene-environment interactions in Alzheimer disease: the emerging role of epigenetics. Nat Rev Neurol 2022; 18(11): 643–660
CrossRef Google scholar
[73]
Ionescu-Tucker A, Cotman CW. Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol Aging 2021; 107: 86–95
CrossRef Google scholar
[74]
Coppedè F. One-carbon epigenetics and redox biology of neurodegeneration. Free Radic Biol Med 2021; 170: 19–33
CrossRef Google scholar
[75]
Rajagopalan S, Park B, Palanivel R, Vinayachandran V, Deiuliis JA, Gangwar RS, Das L, Yin J, Choi Y, Al-Kindi S, Jain MK, Hansen KD, Biswal S. Metabolic effects of air pollution exposure and reversibility. J Clin Invest 2020; 130(11): 6034–6040
CrossRef Google scholar
[76]
Chen D, Fang L, Mei S, Li H, Xu X, Des Marais TL, Lu K, Liu XS, Jin C. Regulation of chromatin assembly and cell transformation by formaldehyde exposure in human cells. Environ Health Perspect 2017; 125(9): 097019
CrossRef Google scholar
[77]
Sundar IK, Yao H, Rahman I. Oxidative stress and chromatin remodeling in chronic obstructive pulmonary disease and smoking-related diseases. Antioxid Redox Signal 2013; 18(15): 1956–1971
CrossRef Google scholar
[78]
Öst A, Lempradl A, Casas E, Weigert M, Tiko T, Deniz M, Pantano L, Boenisch U, Itskov PM, Stoeckius M, Ruf M, Rajewsky N, Reuter G, Iovino N, Ribeiro C, Alenius M, Heyne S, Vavouri T, Pospisilik JA. Paternal diet defines offspring chromatin state and intergenerational obesity. Cell 2014; 159(6): 1352–1364
CrossRef Google scholar
[79]
An Y, Duan H. The role of m6A RNA methylation in cancer metabolism. Mol Cancer 2022; 21(1): 14
CrossRef Google scholar
[80]
Huang H, Weng H, Chen J. m6A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell 2020; 37(3): 270–288
CrossRef Google scholar
[81]
Zhu X, Fu H, Sun J, Xu Q. Interaction between N6-methyladenosine (m6A) modification and environmental chemical-induced diseases in various organ systems. Chem Biol Interact 2023; 373: 110376
CrossRef Google scholar
[82]
Guo X, Lin Y, Lin Y, Zhong Y, Yu H, Huang Y, Yang J, Cai Y, Liu F, Li Y, Zhang QQ, Dai J. PM2.5 induces pulmonary microvascular injury in COPD via METTL16-mediated m6A modification. Environ Pollut 2022; 303: 119115
CrossRef Google scholar
[83]
Li L, Zhou M, Chen B, Wang Q, Pan S, Hou Y, Xia J, Zhou X. ALKBH5 promotes cadmium-induced transformation of human bronchial epithelial cells by regulating PTEN expression in an m6A-dependent manner. Ecotoxicol Environ Saf 2021; 224: 112686
CrossRef Google scholar
[84]
Pavlova NN, Zhu J, Thompson CB. The hallmarks of cancer metabolism: still emerging. Cell Metab 2022; 34(3): 355–377
CrossRef Google scholar
[85]
Gu S, Sun D, Dai H, Zhang Z. N6-methyladenosine mediates the cellular proliferation and apoptosis via microRNAs in arsenite-transformed cells. Toxicol Lett 2018; 292: 1–11
CrossRef Google scholar
[86]
Zhu X, Fu H, Sun J, Xu Q. Interaction between N6-methyladenosine (m6A) modification and environmental chemical-induced diseases in various organ systems. Chem Biol Interact 2023; 373: 110376
CrossRef Google scholar
[87]
Yang F, Jin H, Que B, Chao Y, Zhang H, Ying X, Zhou Z, Yuan Z, Su J, Wu B, Zhang W, Qi D, Chen D, Min W, Lin S, Ji W. Dynamic m6A mRNA methylation reveals the role of METTL3-m6A-CDCP1 signaling axis in chemical carcinogenesis. Oncogene 2019; 38(24): 4755–4772
CrossRef Google scholar
[88]
Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M, Ma J, Wu L. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun 2016; 7(1): 12626
CrossRef Google scholar
[89]
He B, Zhao Z, Cai Q, Zhang Y, Zhang P, Shi S, Xie H, Peng X, Yin W, Tao Y, Wang X. miRNA-based biomarkers, therapies, and resistance in cancer. Int J Biol Sci 2020; 16(14): 2628–2647
CrossRef Google scholar
[90]
Zhang J, Bai R, Li M, Ye H, Wu C, Wang C, Li S, Tan L, Mai D, Li G, Pan L, Zheng Y, Su J, Ye Y, Fu Z, Zheng S, Zuo Z, Liu Z, Zhao Q, Che X, Xie D, Jia W, Zeng MS, Tan W, Chen R, Xu RH, Zheng J, Lin D. Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat Commun 2019; 10(1): 1858
CrossRef Google scholar
[91]
Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, Qian Y, Kryczek I, Sun D, Nagarsheth N, Chen Y, Chen H, Hong J, Zou W, Fang JY. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 2017; 170(3): 548–563.e16
CrossRef Google scholar
[92]
Liu N, Parisien M, Dai Q, Zheng G, He C, Pan T. Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA 2013; 19(12): 1848–1856
CrossRef Google scholar
[93]
Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, Chen Y, Sulman EP, Xie K, Bögler O, Majumder S, He C, Huang S. m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 2017; 31(4): 591–606.e6
CrossRef Google scholar
[94]
Zhang J, Huang L, Ge G, Hu K. Emerging epigenetic-based nanotechnology for cancer therapy: modulating the tumor microenvironment. Adv Sci (Weinh) 2023; 10(7): 2206169
CrossRef Google scholar
[95]
Dixit D, Prager BC, Gimple RC, Miller TE, Wu Q, Yomtoubian S, Kidwell RL, Lv D, Zhao L, Qiu Z, Zhang G, Lee D, Park DE, Wechsler-Reya RJ, Wang X, Bao S, Rich JN. Glioblastoma stem cells reprogram chromatin in vivo to generate selective therapeutic dependencies on DPY30 and phosphodiesterases. Sci Transl Med 2022; 14(626): eabf3917
CrossRef Google scholar
[96]
Lu Z, Zou J, Li S, Topper MJ, Tao Y, Zhang H, Jiao X, Xie W, Kong X, Vaz M, Li H, Cai Y, Xia L, Huang P, Rodgers K, Lee B, Riemer JB, Day CP, Yen RC, Cui Y, Wang Y, Wang Y, Zhang W, Easwaran H, Hulbert A, Kim K, Juergens RA, Yang SC, Battafarano RJ, Bush EL, Broderick SR, Cattaneo SM, Brahmer JR, Rudin CM, Wrangle J, Mei Y, Kim YJ, Zhang B, Wang KK, Forde PM, Margolick JB, Nelkin BD, Zahnow CA, Pardoll DM, Housseau F, Baylin SB, Shen L, Brock MV. Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature 2020; 579(7798): 284–290
CrossRef Google scholar
[97]
Jiang J, Liu J, Sanders D, Qian S, Ren W, Song J, Liu F, Zhong X. UVR8 interacts with de novo DNA methyltransferase and suppresses DNA methylation in Arabidopsis. Nat Plants 2021; 7(2): 184–197
CrossRef Google scholar
[98]
Miousse IR, Kutanzi KR, Koturbash I. Effects of ionizing radiation on DNA methylation: from experimental biology to clinical applications. Int J Radiat Biol 2017; 93(5): 457–469
CrossRef Google scholar
[99]
Lee SY, Jeong EK, Ju MK, Jeon HM, Kim MY, Kim CH, Park HG, Han SI, Kang HS. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer 2017; 16(1): 10
CrossRef Google scholar
[100]
Mazziotta C, Cervellera CF, Lanzillotti C, Touzé A, Gaboriaud P, Tognon M, Martini F, Rotondo JC. MicroRNA dysregulations in Merkel cell carcinoma: molecular mechanisms and clinical applications. J Med Virol 2023; 95(1): e28375
CrossRef Google scholar
[101]
Choi JR, Koh SB, Kim HR, Lee H, Kang DR. Radon exposure-induced genetic variations in lung cancers among never smokers. J Korean Med Sci 2018; 33(29): e207
CrossRef Google scholar
[102]
Guan Y, Xu M, Zhang Z, Liu C, Zhou J, Lin F, Fang J, Zhang Y, Yue Q, Zhen X, Yan G, Sun H, Liu W. Maternal circadian disruption before pregnancy impairs the ovarian function of female offspring in mice. Sci Total Environ 2023; 864: 161161
CrossRef Google scholar
[103]
Zheng R, Xin Z, Li M, Wang T, Xu M, Lu J, Dai M, Zhang D, Chen Y, Wang S, Lin H, Wang W, Ning G, Bi Y, Zhao Z, Xu Y. Outdoor light at night in relation to glucose homoeostasis and diabetes in Chinese adults: a national and cross-sectional study of 98,658 participants from 162 study sites. Diabetologia 2023; 66(2): 336–345
CrossRef Google scholar
[104]
Eze IC, Jeong A, Schaffner E, Rezwan FI, Ghantous A, Foraster M, Vienneau D, Kronenberg F, Herceg Z, Vineis P, Brink M, Wunderli JM, Schindler C, Cajochen C, Röösli M, Holloway JW, Imboden M, Probst-Hensch N. Genome-wide DNA methylation in peripheral blood and long-term exposure to source-specific transportation noise and air pollution: the SAPALDIA Study. Environ Health Perspect 2020; 128(6): 067003
CrossRef Google scholar
[105]
Münzel T, Sørensen M, Daiber A. Transportation noise pollution and cardiovascular disease. Nat Rev Cardiol 2021; 18(9): 619–636
CrossRef Google scholar
[106]
Miguel V, Cui JY, Daimiel L, Espinosa-Díez C, Fernández-Hernando C, Kavanagh TJ, Lamas S. The role of microRNAs in environmental risk factors, noise-induced hearing loss, and mental stress. Antioxid Redox Signal 2018; 28(9): 773–796
CrossRef Google scholar
[107]
Meerson A, Cacheaux L, Goosens KA, Sapolsky RM, Soreq H, Kaufer D. Changes in brain microRNAs contribute to cholinergic stress reactions. J Mol Neurosci 2010; 40(1–2): 47–55
CrossRef Google scholar
[108]
Greco CM, Condorelli G. Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure. Nat Rev Cardiol 2015; 12(8): 488–497
CrossRef Google scholar
[109]
Guo L, Li PH, Li H, Colicino E, Colicino S, Wen Y, Zhang R, Feng X, Barrow TM, Cayir A, Baccarelli AA, Byun HM. Effects of environmental noise exposure on DNA methylation in the brain and metabolic health. Environ Res 2017; 153: 73–82
CrossRef Google scholar
[110]
Drozdz D, Alvarez-Pitti J, Wójcik M, Borghi C, Gabbianelli R, Mazur A, Herceg-Čavrak V, Lopez-Valcarcel BG, Brzeziński M, Lurbe E, Wühl E. Obesity and cardiometabolic risk factors: from childhood to adulthood. Nutrients 2021; 13(11): 4176
CrossRef Google scholar
[111]
Carlberg C. Nutrigenomics of vitamin D. Nutrients 2019; 11(3): 676
CrossRef Google scholar
[112]
Charkiewicz AE, Backstrand JR. Lead toxicity and pollution in Poland. Int J Environ Res Public Health 2020; 17(12): 4385
CrossRef Google scholar
[113]
Zhang W, Wan H, Feng G, Qu J, Wang J, Jing Y, Ren R, Liu Z, Zhang L, Chen Z, Wang S, Zhao Y, Wang Z, Yuan Y, Zhou Q, Li W, Liu GH, Hu B. SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature 2018; 560(7720): 661–665
CrossRef Google scholar
[114]
Chin-Chan M, Cobos-Puc L, Alvarado-Cruz I, Bayar M, Ermolaeva M. Early-life Pb exposure as a potential risk factor for Alzheimer’s disease: are there hazards for the Mexican population?. Eur J Biochem 2019; 24(8): 1285–1303
CrossRef Google scholar
[115]
Martinez-Zamudio R, Ha HC. Environmental epigenetics in metal exposure. Epigenetics 2011; 6(7): 820–827
CrossRef Google scholar
[116]
Zuo C, Ai L, Ratliff P, Suen JY, Hanna E, Brent TP, Fan CY. O6-methylguanine-DNA methyltransferase gene: epigenetic silencing and prognostic value in head and neck squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 2004; 13(6): 967–975
CrossRef Google scholar
[117]
Kim S, Thapar I, Brooks BW. Epigenetic changes by per- and polyfluoroalkyl substances (PFAS). Environ Pollut 2021; 279: 116929
CrossRef Google scholar
[118]
Singh S, Li SS. Epigenetic effects of environmental chemicals bisphenol A and phthalates. Int J Mol Sci 2012; 13(8): 10143–10153
CrossRef Google scholar
[119]
Ryu DY, Pang WK, Adegoke EO, Rahman MS, Park YJ, Pang MG. Abnormal histone replacement following BPA exposure affects spermatogenesis and fertility sequentially. Environ Int 2022; 170: 107617
CrossRef Google scholar
[120]
Tran MTMT, Kuo FC, Low JT, Chuang YM, Sultana S, Huang WL, Lin ZY, Lin GL, Wu CF, Li SS, Suen JL, Hung CH, Wu MT, Chan MWY. Prenatal DEHP exposure predicts neurological disorders via transgenerational epigenetics. Sci Rep 2023; 13(1): 7399
CrossRef Google scholar
[121]
Vuong NQ, Breznan D, Goegan P, O’Brien JS, Williams A, Karthikeyan S, Kumarathasan P, Vincent R. In vitro toxicoproteomic analysis of A549 human lung epithelial cells exposed to urban air particulate matter and its water-soluble and insoluble fractions. Part Fibre Toxicol 2017; 14(1): 39
CrossRef Google scholar
[122]
Ural BB, Caron DP, Dogra P, Wells SB, Szabo PA, Granot T, Senda T, Poon MML, Lam N, Thapa P, Lee YS, Kubota M, Matsumoto R, Farber DL. Inhaled particulate accumulation with age impairs immune function and architecture in human lung lymph nodes. Nat Med 2022; 28(12): 2622–2632
CrossRef Google scholar
[123]
Chang CY, You R, Armstrong D, Bandi A, Cheng YT, Burkhardt PM, Becerra-Dominguez L, Madison MC, Tung HY, Zeng Z, Wu Y, Song L, Phillips PE, Porter P, Knight JM, Putluri N, Yuan X, Marcano DC, McHugh EA, Tour JM, Catic A, Maneix L, Burt BM, Lee HS, Corry DB, Kheradmand F. Chronic exposure to carbon black ultrafine particles reprograms macrophage metabolism and accelerates lung cancer. Sci Adv 2022; 8(46): eabq0615
CrossRef Google scholar
[124]
Perfilyev A, Dahlman I, Gillberg L, Rosqvist F, Iggman D, Volkov P, Nilsson E, Risérus U, Ling C. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. Am J Clin Nutr 2017; 105(4): 991–1000
CrossRef Google scholar
[125]
Lu X, Zhu Y, Bai R, Wu Z, Qian W, Yang L, Cai R, Yan H, Li T, Pandey V, Liu Y, Lobie PE, Chen C, Zhu T. Long-term pulmonary exposure to multi-walled carbon nanotubes promotes breast cancer metastatic cascades. Nat Nanotechnol 2019; 14(7): 719–727
CrossRef Google scholar
[126]
Chen Y, Xu M, Zhang J, Ma J, Gao M, Zhang Z, Xu Y, Liu S. Genome-wide DNA methylation variations upon exposure to engineered nanomaterials and their implications in nanosafety assessment. Adv Mater 2017; 29(6): 1604580
CrossRef Google scholar
[127]
Wang X, Liu Y, Wang J, Nie Y, Chen S, Hei TK, Deng Z, Wu L, Zhao G, Xu A. Amplification of arsenic genotoxicity by TiO2 nanoparticles in mammalian cells: new insights from physicochemical interactions and mitochondria. Nanotoxicology 2017; 11(8): 978–995
CrossRef Google scholar
[128]
Chang S, Min J, Lu X, Zhang Q, Shangguan S, Zhang T, Wang L. Effect of epigenetic activating of Dlk1-Dio3 imprinted cluster on miR-370 expression due to folate deficiency during nerve development. J Nutr Biochem 2023; 116: 109297
CrossRef Google scholar
[129]
An Y, Feng L, Zhang X, Wang Y, Wang Y, Tao L, Qin Z, Xiao R. Dietary intakes and biomarker patterns of folate, vitamin B6, and vitamin B12 can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1. Clin Epigenetics 2019; 11(1): 139
CrossRef Google scholar
[130]
Glimelius B, Stintzing S, Marshall J, Yoshino T, de Gramont A. Metastatic colorectal cancer: advances in the folate-fluoropyrimidine chemotherapy backbone. Cancer Treat Rev 2021; 98: 102218
CrossRef Google scholar
[131]
Li JT, Yang H, Lei MZ, Zhu WP, Su Y, Li KY, Zhu WY, Wang J, Zhang L, Qu J, Lv L, Lu HJ, Chen ZJ, Wang L, Yin M, Lei QY. Dietary folate drives methionine metabolism to promote cancer development by stabilizing MAT IIA. Signal Transduct Target Ther 2022; 7(1): 192
CrossRef Google scholar
[132]
Holland ML, Lowe R, Caton PW, Gemma C, Carbajosa G, Danson AF, Carpenter AA, Loche E, Ozanne SE, Rakyan VK. Early-life nutrition modulates the epigenetic state of specific rDNA genetic variants in mice. Science 2016; 353(6298): 495–498
CrossRef Google scholar
[133]
Han L, Ren C, Li L, Li X, Ge J, Wang H, Miao YL, Guo X, Moley KH, Shu W, Wang Q. Embryonic defects induced by maternal obesity in mice derive from Stella insufficiency in oocytes. Nat Genet 2018; 50(3): 432–442
CrossRef Google scholar
[134]
Laker RC, Lillard TS, Okutsu M, Zhang M, Hoehn KL, Connelly JJ, Yan Z. Exercise prevents maternal high-fat diet-induced hypermethylation of the Pgc-1α gene and age-dependent metabolic dysfunction in the offspring. Diabetes 2014; 63(5): 1605–1611
CrossRef Google scholar
[135]
Vaz M, Hwang SY, Kagiampakis I, Phallen J, Patil A, O’Hagan HM, Murphy L, Zahnow CA, Gabrielson E, Velculescu VE, Easwaran HP, Baylin SB. Chronic cigarette smoke-induced epigenomic changes precede sensitization of bronchial epithelial cells to single-step transformation by KRAS mutations. Cancer Cell 2017; 32(3): 360–376.e6
CrossRef Google scholar
[136]
Xavier MJ, Roman SD, Aitken RJ, Nixon B. Transgenerational inheritance: how impacts to the epigenetic and genetic information of parents affect offspring health. Hum Reprod Update 2019; 25(5): 518–540
CrossRef Google scholar
[137]
Liu F, Killian JK, Yang M, Walker RL, Hong JA, Zhang M, Davis S, Zhang Y, Hussain M, Xi S, Rao M, Meltzer PA, Schrump DS. Epigenomic alterations and gene expression profiles in respiratory epithelia exposed to cigarette smoke condensate. Oncogene 2010; 29(25): 3650–3664
CrossRef Google scholar
[138]
Okabe A, Huang KK, Matsusaka K, Fukuyo M, Xing M, Ong X, Hoshii T, Usui G, Seki M, Mano Y, Rahmutulla B, Kanda T, Suzuki T, Rha SY, Ushiku T, Fukayama M, Tan P, Kaneda A. Cross-species chromatin interactions drive transcriptional rewiring in Epstein–Barr virus-positive gastric adenocarcinoma. Nat Genet 2020; 52(9): 919–930
CrossRef Google scholar
[139]
Xie J, Wang Z, Fan W, Liu Y, Liu F, Wan X, Liu M, Wang X, Zeng D, Wang Y, He B, Yan M, Zhang Z, Zhang M, Hou Z, Wang C, Kang Z, Fang W, Zhang L, Lam EW, Guo X, Yan J, Zeng Y, Chen M, Liu Q. Targeting cancer cell plasticity by HDAC inhibition to reverse EBV-induced dedifferentiation in nasopharyngeal carcinoma. Signal Transduct Target Ther 2021; 6(1): 333
CrossRef Google scholar
[140]
Guo R, Gewurz BE. Epigenetic control of the Epstein–Barr lifecycle. Curr Opin Virol 2022; 52: 78–88
CrossRef Google scholar
[141]
Chen X, Loo JX, Shi X, Xiong W, Guo Y, Ke H, Yang M, Jiang Y, Xia S, Zhao M, Zhong S, He C, Fu L, Li F. E6 protein expressed by high-risk HPV activates super-enhancers of the EGFR and c-MET oncogenes by destabilizing the histone demethylase KDM5C. Cancer Res 2018; 78(6): 1418–1430
CrossRef Google scholar
[142]
Shen Z, Wu J, Gao Z, Zhang S, Chen J, He J, Guo Y, Deng Q, Xie Y, Liu J, Zhang J. High mobility group AT-hook 1 (HMGA1) is an important positive regulator of hepatitis B virus (HBV) that is reciprocally upregulated by HBV X protein. Nucleic Acids Res 2022; 50(4): 2157–2171
CrossRef Google scholar
[143]
Lee S, Yu Y, Trimpert J, Benthani F, Mairhofer M, Richter-Pechanska P, Wyler E, Belenki D, Kaltenbrunner S, Pammer M, Kausche L, Firsching TC, Dietert K, Schotsaert M, Martínez-Romero C, Singh G, Kunz S, Niemeyer D, Ghanem R, Salzer HJF, Paar C, Mülleder M, Uccellini M, Michaelis EG, Khan A, Lau A, Schönlein M, Habringer A, Tomasits J, Adler JM, Kimeswenger S, Gruber AD, Hoetzenecker W, Steinkellner H, Purfürst B, Motz R, Di Pierro F, Lamprecht B, Osterrieder N, Landthaler M, Drosten C, García-Sastre A, Langer R, Ralser M, Eils R, Reimann M, Fan DNY, Schmitt CA. Virus-induced senescence is a driver and therapeutic target in COVID-19. Nature 2021; 599(7884): 283–289
CrossRef Google scholar
[144]
Zazhytska M, Kodra A, Hoagland DA, Frere J, Fullard JF, Shayya H, McArthur NG, Moeller R, Uhl S, Omer AD, Gottesman ME, Firestein S, Gong Q, Canoll PD, Goldman JE, Roussos P, tenOever BR, Jonathan B Overdevest, Lomvardas S. Non-cell-autonomous disruption of nuclear architecture as a potential cause of COVID-19-induced anosmia. Cell 2022; 185(6): 1052–1064.e12
CrossRef Google scholar
[145]
Kee J, Thudium S, Renner DM, Glastad K, Palozola K, Zhang Z, Li Y, Lan Y, Cesare J, Poleshko A, Kiseleva AA, Truitt R, Cardenas-Diaz FL, Zhang X, Xie X, Kotton DN, Alysandratos KD, Epstein JA, Shi PY, Yang W, Morrisey E, Garcia BA, Berger SL, Weiss SR, Korb E. SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry. Nature 2022; 610(7931): 381–388
CrossRef Google scholar
[146]
Li Z, Hao Q, Luo J, Xiong J, Zhang S, Wang T, Bai L, Wang W, Chen M, Wang W, Gu L, Lv K, Chen J. USP4 inhibits p53 and NF-κB through deubiquitinating and stabilizing HDAC2. Oncogene 2016; 35(22): 2902–2912
CrossRef Google scholar
[147]
Woo V, Alenghat T. Epigenetic regulation by gut microbiota. Gut Microbes 2022; 14(1): 2022407
CrossRef Google scholar
[148]
Wu J, Zhao Y, Wang X, Kong L, Johnston LJ, Lu L, Ma X. Dietary nutrients shape gut microbes and intestinal mucosa via epigenetic modifications. Crit Rev Food Sci Nutr 2022; 62(3): 783–797
CrossRef Google scholar
[149]
Bubendorfer S, Krebes J, Yang I, Hage E, Schulz TF, Bahlawane C, Didelot X, Suerbaum S. Genome-wide analysis of chromosomal import patterns after natural transformation of Helicobacter pylori. Nat Commun 2016; 7(1): 11995
CrossRef Google scholar
[150]
Capparelli R, Iannelli D. Epigenetics and Helicobacter pylori. Int J Mol Sci 2022; 23(3): 1759
CrossRef Google scholar
[151]
Krebes J, Morgan RD, Bunk B, Spröer C, Luong K, Parusel R, Anton BP, König C, Josenhans C, Overmann J, Roberts RJ, Korlach J, Suerbaum S. The complex methylome of the human gastric pathogen Helicobacter pylori. Nucleic Acids Res 2014; 42(4): 2415–2432
CrossRef Google scholar
[152]
Fol M, Włodarczyk M, Druszczyńska M. Host epigenetics in intracellular pathogen infections. Int J Mol Sci 2020; 21(13): 4573
CrossRef Google scholar
[153]
Yaseen I, Kaur P, Nandicoori VK, Khosla S. Mycobacteria modulate host epigenetic machinery by Rv1988 methylation of a non-tail arginine of histone H3. Nat Commun 2015; 6(1): 8922
CrossRef Google scholar
[154]
Semenkovich NP, Planer JD, Ahern PP, Griffin NW, Lin CY, Gordon JI. Impact of the gut microbiota on enhancer accessibility in gut intraepithelial lymphocytes. Proc Natl Acad Sci USA 2016; 113(51): 14805–14810
CrossRef Google scholar
[155]
Wang Y, Li H. Gut microbiota modulation: a tool for the management of colorectal cancer. J Transl Med 2022; 20(1): 178
CrossRef Google scholar
[156]
Lecoeur H, Prina E, Gutiérrez-Sanchez M, Späth GF. Going ballistic: Leishmania nuclear subversion of host cell plasticity. Trends Parasitol 2022; 38(3): 205–216
CrossRef Google scholar
[157]
Roy G, Brar HK, Muthuswami R, Madhubala R. Epigenetic regulation of defense genes by histone deacetylase1 in human cell line-derived macrophages promotes intracellular survival of Leishmania donovani. PLoS Negl Trop Dis 2020; 14(4): e0008167
CrossRef Google scholar
[158]
Jõgi NO, Kitaba N, Storaas T, Schlünssen V, Triebner K, Holloway JW, Horsnell WGC, Svanes C, Bertelsen RJ. Ascaris exposure and its association with lung function, asthma, and DNA methylation in Northern Europe. J Allergy Clin Immunol 2022; 149(6): 1960–1969
CrossRef Google scholar
[159]
Tripathi J, Zhu L, Nayak S, Stoklasa M, Bozdech Z. Stochastic expression of invasion genes in Plasmodium falciparum schizonts. Nat Commun 2022; 13(1): 3004
CrossRef Google scholar
[160]
Hakimi MA. Epigenetic reprogramming in host-parasite coevolution: the Toxoplasma paradigm. Annu Rev Microbiol 2022; 76(1): 135–155
CrossRef Google scholar
[161]
Sharma M, Tollefsbol TO. Combinatorial epigenetic mechanisms of sulforaphane, genistein and sodium butyrate in breast cancer inhibition. Exp Cell Res 2022; 416(1): 113160
CrossRef Google scholar
[162]
Katsyuba E, Romani M, Hofer D, Auwerx J. NAD+ homeostasis in health and disease. Nat Metab 2020; 2(1): 9–31
CrossRef Google scholar
[163]
McReynolds MR, Chellappa K, Chiles E, Jankowski C, Shen Y, Chen L, Descamps HC, Mukherjee S, Bhat YR, Lingala SR, Chu Q, Botolin P, Hayat F, Doke T, Susztak K, Thaiss CA, Lu W, Migaud ME, Su X, Rabinowitz JD, Baur JA. NAD+ flux is maintained in aged mice despite lower tissue concentrations. Cell Syst 2021; 12(12): 1160–1172.e4
CrossRef Google scholar
[164]
Lv JW, Song YP, Zhang ZC, Fan YJ, Xu FX, Gao L, Zhang XY, Zhang C, Wang H, Xu DX. Gestational arsenic exposure induces anxiety-like behaviors in adult offspring by reducing DNA hydroxymethylation in the developing brain. Ecotoxicol Environ Saf 2021; 227: 112901
CrossRef Google scholar
[165]
Hou H, Zhao H. Epigenetic factors in atherosclerosis: DNA methylation, folic acid metabolism, and intestinal microbiota. Clin Chim Acta 2021; 512: 7–11
CrossRef Google scholar
[166]
Schwiertz A. Microbiota of the human body: implications in health and disease. Adv Exp Med Biol 2016; 902: v
CrossRef Google scholar
[167]
Chen M, Li S, Arora I, Yi N, Sharma M, Li Z, Tollefsbol TO, Li Y. Maternal soybean diet on prevention of obesity-related breast cancer through early-life gut microbiome and epigenetic regulation. J Nutr Biochem 2022; 110: 109119
CrossRef Google scholar
[168]
Intlekofer AM, Shih AH, Wang B, Nazir A, Rustenburg AS, Albanese SK, Patel M, Famulare C, Correa FM, Takemoto N, Durani V, Liu H, Taylor J, Farnoud N, Papaemmanuil E, Cross JR, Tallman MS, Arcila ME, Roshal M, Petsko GA, Wu B, Choe S, Konteatis ZD, Biller SA, Chodera JD, Thompson CB, Levine RL, Stein EM. Acquired resistance to IDH inhibition through trans or cis dimer-interface mutations. Nature 2018; 559(7712): 125–129
CrossRef Google scholar
[169]
Ferrari A, Longo R, Silva R, Mitro N, Caruso D, De Fabiani E, Crestani M. Epigenome modifiers and metabolic rewiring: new frontiers in therapeutics. Pharmacol Ther 2019; 193: 178–193
CrossRef Google scholar
[170]
Zhong J, Colicino E, Lin X, Mehta A, Kloog I, Zanobetti A, Byun HM, Bind MA, Cantone L, Prada D, Tarantini L, Trevisi L, Sparrow D, Vokonas P, Schwartz J, Baccarelli AA. Cardiac autonomic dysfunction: particulate air pollution effects are modulated by epigenetic immunoregulation of Toll-like receptor 2 and dietary flavonoid intake. J Am Heart Assoc 2015; 4(1): e001423
CrossRef Google scholar
[171]
Arora I, Li S, Crowley MR, Li Y, Tollefsbol TO. Genome-wide analysis on transcriptome and methylome in prevention of mammary tumor induced by early life combined botanicals. Cells 2022; 12(1): 14
CrossRef Google scholar
[172]
Li S, Chen M, Li Y, Tollefsbol TO. Prenatal epigenetics diets play protective roles against environmental pollution. Clin Epigenetics 2019; 11(1): 82
CrossRef Google scholar
[173]
Lucock M. Vitamin-related phenotypic adaptation to exposomal factors: the folate-vitamin D-exposome triad. Mol Aspects Med 2022; 87: 100944
CrossRef Google scholar
[174]
Wu H, Van Der Pol WJ, Dubois LG, Morrow CD, Tollefsbol TO. Dietary supplementation of inulin contributes to the prevention of estrogen receptor-negative mammary cancer by alteration of gut microbial communities and epigenetic regulations. Int J Mol Sci 2023; 24(10): 9015
CrossRef Google scholar
[175]
Yuan Z, Chen S, Gao C, Dai Q, Zhang C, Sun Q, Lin JS, Guo C, Chen Y, Jiang Y. Development of a versatile DNMT and HDAC inhibitor C02S modulating multiple cancer hallmarks for breast cancer therapy. Bioorg Chem 2019; 87: 200–208
CrossRef Google scholar
[176]
Zhang S, Tang B, Fan C, Shi L, Zhang X, Sun L, Li Z. Effect of DNMT inhibitor on bovine parthenogenetic embryo development. Biochem Biophys Res Commun 2015; 466(3): 505–511
CrossRef Google scholar
[177]
Segovia C, San José-Enériz E, Munera-Maravilla E, Martínez-Fernández M, Garate L, Miranda E, Vilas-Zornoza A, Lodewijk I, Rubio C, Segrelles C, Valcárcel LV, Rabal O, Casares N, Bernardini A, Suarez-Cabrera C, López-Calderón FF, Fortes P, Casado JA, Dueñas M, Villacampa F, Lasarte JJ, Guerrero-Ramos F, de Velasco G, Oyarzabal J, Castellano D, Agirre X, Prósper F, Paramio JM. Inhibition of a G9a/DNMT network triggers immune-mediated bladder cancer regression. Nat Med 2019; 25(7): 1073–1081
CrossRef Google scholar
[178]
Zhang X, Yang J, Shi D, Cao Z. TET2 suppresses nasopharyngeal carcinoma progression by inhibiting glycolysis metabolism. Cancer Cell Int 2020; 20(1): 363
CrossRef Google scholar
[179]
Garmpis N, Damaskos C, Garmpi A, Dimitroulis D, Spartalis E, Margonis GA, Schizas D, Deskou I, Doula C, Magkouti E, Andreatos N, Antoniou EA, Nonni A, Kontzoglou K, Mantas D. Targeting histone deacetylases in malignant melanoma: a future therapeutic agent or just great expectations?. Anticancer Res 2017; 37(10): 5355–5362
[180]
Zhu YN, Gan XW, Pan F, Ni XT, Myatt L, Wang WS, Sun K. Role of EZH2-mediated H3K27me3 in placental ADAM12-S expression: implications for fetoplacental growth. BMC Med 2022; 20(1): 189
CrossRef Google scholar
[181]
Sun X, Bieber JM, Hammerlindl H, Chalkley RJ, Li KH, Burlingame AL, Jacobson MP, Wu LF, Altschuler SJ. Modulating environmental signals to reveal mechanisms and vulnerabilities of cancer persisters. Sci Adv 2022; 8(4): eabi7711
CrossRef Google scholar
[182]
Vicioso-Mantis M, Fueyo R, Navarro C, Cruz-Molina S, van Ijcken WFJ, Rebollo E, Rada-Iglesias Á, Martínez-Balbás MA. JMJD3 intrinsically disordered region links the 3D-genome structure to TGFβ-dependent transcription activation. Nat Commun 2022; 13(1): 3263
CrossRef Google scholar
[183]
You Y, Fu Y, Huang M, Shen D, Zhao B, Liu H, Zheng Y, Huang L. Recent advances of m6A demethylases inhibitors and their biological functions in human diseases. Int J Mol Sci 2022; 23(10): 5815
CrossRef Google scholar
[184]
Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga G, Pilka ES, Aspris D, Leggate D, Hendrick AG, Webster NA, Andrews B, Fosbeary R, Guest P, Irigoyen N, Eleftheriou M, Gozdecka M, Dias JML, Bannister AJ, Vick B, Jeremias I, Vassiliou GS, Rausch O, Tzelepis K, Kouzarides T. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 2021; 593(7860): 597–601
CrossRef Google scholar

Acknowledgements

This work was supported by grants from National Natural Science Foundation of China (Nos. 41931291, 42125707, and 82273403), Major State Basic Research Development Program of China (No. 2022YFA1103402), Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (Nos. 2019PT310027 and 2021-RC310-006), Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (No. 2021-I2M-1-018).

Compliance with ethics guidelines

Conflicts of interest Min Zhang, Ting Hu, Tianyu Ma, Wei Huang, and Yan Wang declare that they have no conflict of interest.
This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(3383 KB)

Accesses

Citations

Detail

Sections
Recommended

/