Progress on early diagnosing Alzheimer’s disease

Yixin Chen , Murad Al-Nusaif , Song Li , Xiang Tan , Huijia Yang , Huaibin Cai , Weidong Le

Front. Med. ›› 2024, Vol. 18 ›› Issue (3) : 446 -464.

PDF (3242KB)
Front. Med. ›› 2024, Vol. 18 ›› Issue (3) : 446 -464. DOI: 10.1007/s11684-023-1047-1
REVIEW

Progress on early diagnosing Alzheimer’s disease

Author information +
History +
PDF (3242KB)

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects both cognition and non-cognition functions. The disease follows a continuum, starting with preclinical stages, progressing to mild cognitive and behavioral impairment, ultimately leading to dementia. Early detection of AD is crucial for better diagnosis and more effective treatment. However, the current AD diagnostic tests of biomarkers using cerebrospinal fluid and/or brain imaging are invasive or expensive, and mostly are still not able to detect early disease state. Consequently, there is an urgent need to develop new diagnostic techniques with higher sensitivity and specificity during the preclinical stages of AD. Various non-cognitive manifestations, including behavioral abnormalities, sleep disturbances, sensory dysfunctions, and physical changes, have been observed in the preclinical AD stage before occurrence of notable cognitive decline. Recent research advances have identified several biofluid biomarkers as early indicators of AD. This review focuses on these non-cognitive changes and newly discovered biomarkers in AD, specifically addressing the preclinical stages of the disease. Furthermore, it is of importance to explore the potential for developing a predictive system or network to forecast disease onset and progression at the early stage of AD.

Keywords

Alzheimer’s disease / early diagnosis / non-cognitive symptoms / biomarkers

Cite this article

Download citation ▾
Yixin Chen, Murad Al-Nusaif, Song Li, Xiang Tan, Huijia Yang, Huaibin Cai, Weidong Le. Progress on early diagnosing Alzheimer’s disease. Front. Med., 2024, 18(3): 446-464 DOI:10.1007/s11684-023-1047-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Doroszkiewicz J, Groblewska M, Mroczko B. Molecular biomarkers and their implications for the early diagnosis of selected neurodegenerative diseases. Int J Mol Sci 2022; 23(9): 4610

[2]

Hu S, Yang C, Luo H. Current trends in blood biomarker detection and imaging for Alzheimer’s disease. Biosens Bioelectron 2022; 210: 114278

[3]

No authors listed. Alzheimer disease. Nat Rev Dis Primers 2021; 7(1): 34

[4]

Gunes S, Aizawa Y, Sugashi T, Sugimoto M, Rodrigues PP. Biomarkers for Alzheimer’s disease in the current state: a narrative review. Int J Mol Sci 2022; 23(9): 4962

[5]

Gatchel JR. Late-life depression and Alzheimer’s disease pathology: an ounce of prevention, a pound of cure. Am J Geriatr Psychiatry 2021; 29(5): 458–461

[6]

Sims JR, Zimmer JA, Evans CD, Lu M, Ardayfio P, Sparks J, Wessels AM, Shcherbinin S, Wang H, Monkul Nery ES, Collins EC, Solomon P, Salloway S, Apostolova LG, Hansson O, Ritchie C, Brooks DA, Mintun M, Skovronsky DM; TRAILBLAZER-ALZ 2 Investigators. Donanemab in early symptomatic Alzheimer disease: the TRAILBLAZER-ALZ 2 randomized clinical trial. JAMA 2023; 330(6): 512–527

[7]

van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, Kanekiyo M, Li D, Reyderman L, Cohen S, Froelich L, Katayama S, Sabbagh M, Vellas B, Watson D, Dhadda S, Irizarry M, Kramer LD, Iwatsubo T. Lecanemab in early Alzheimer’s disease. N Engl J Med 2023; 388(1): 9–21

[8]

Hameed S, Fuh JL, Senanarong V, Ebenezer EGM, Looi I, Dominguez JC, Park KW, Karanam AK, Simon O. Role of fluid biomarkers and PET imaging in early diagnosis and its clinical implication in the management of Alzheimer’s disease. J Alzheimers Dis Rep 2020; 4(1): 21–37

[9]

Hawksworth J, Fernández E, Gevaert K. A new generation of AD biomarkers: 2019 to 2021. Ageing Res Rev 2022; 79: 101654

[10]

Dulewicz M, Kulczyńska-Przybik A, Mroczko P, Kornhuber J, Lewczuk P, Mroczko B. Biomarkers for the diagnosis of Alzheimer’s disease in clinical practice: the role of CSF biomarkers during the evolution of diagnostic criteria. Int J Mol Sci 2022; 23(15): 8598

[11]

Creese B, Ismail Z. Mild behavioral impairment: measurement and clinical correlates of a novel marker of preclinical Alzheimer’s disease. Alzheimers Res Ther 2022; 14(1): 2

[12]

Masters MC, Morris JC, Roe CM. “Noncognitive” symptoms of early Alzheimer disease: a longitudinal analysis. Neurology 2015; 84(6): 617–622

[13]

Hudon C, Escudier F, De Roy J, Croteau J, Cross N, Dang-Vu TT, Zomahoun HTV, Grenier S, Gagnon JF, Parent A, Bruneau MA, Belleville S; Consortium for the Early Identification of Alzheimer’s Disease – Quebec. Behavioral and psychological symptoms that predict cognitive decline or impairment in cognitively normal middle-aged or older adults: a meta-analysis. Neuropsychol Rev 2020; 30(4): 558–579

[14]

Huang YL, Lin CH, Tsai TH, Huang CH, Li JL, Chen LK, Li CH, Tsai TF, Wang PN. Discovery of a metabolic signature predisposing high risk patients with mild cognitive impairment to converting to Alzheimer’s disease. Int J Mol Sci 2021; 22(20): 10903

[15]

Porsteinsson AP, Isaacson RS, Knox S, Sabbagh MN, Rubino I. Diagnosis of early Alzheimer’s disease: clinical practice in 2021. J Prev Alzheimers Dis 2021; 8(3): 371–386

[16]

Montero-Odasso M, Pieruccini-Faria F, Ismail Z, Li K, Lim A, Phillips N, Kamkar N, Sarquis-Adamson Y, Speechley M, Theou O, Verghese J, Wallace L, Camicioli R. CCCDTD5 recommendations on early non cognitive markers of dementia: a Canadian consensus. Alzheimers Dement (N Y) 2020; 6(1): e12068

[17]

Frisoni GB, Boccardi M, Barkhof F, Blennow K, Cappa S, Chiotis K, Démonet JF, Garibotto V, Giannakopoulos P, Gietl A, Hansson O, Herholz K, Jack CR Jr, Nobili F, Nordberg A, Snyder HM, Ten Kate M, Varrone A, Albanese E, Becker S, Bossuyt P, Carrillo MC, Cerami C, Dubois B, Gallo V, Giacobini E, Gold G, Hurst S, Lönneborg A, Lovblad KO, Mattsson N, Molinuevo JL, Monsch AU, Mosimann U, Padovani A, Picco A, Porteri C, Ratib O, Saint-Aubert L, Scerri C, Scheltens P, Schott JM, Sonni I, Teipel S, Vineis P, Visser PJ, Yasui Y, Winblad B. Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. Lancet Neurol 2017; 16(8): 661–676

[18]

Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, Bakardjian H, Benali H, Bertram L, Blennow K, Broich K, Cavedo E, Crutch S, Dartigues JF, Duyckaerts C, Epelbaum S, Frisoni GB, Gauthier S, Genthon R, Gouw AA, Habert MO, Holtzman DM, Kivipelto M, Lista S, Molinuevo JL, O’Bryant SE, Rabinovici GD, Rowe C, Salloway S, Schneider LS, Sperling R, Teichmann M, Carrillo MC, Cummings J, Jack CR Jr; Proceedings of the Meeting of the International Working Group (IWG), the American Alzheimer’s Association on “The Preclinical State of AD”; July 23, 2015; Washington DC. Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement 2016; 12(3): 292–323

[19]

McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984; 34(7): 939–944

[20]

Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, Delacourte A, Galasko D, Gauthier S, Jicha G, Meguro K, O’brien J, Pasquier F, Robert P, Rossor M, Salloway S, Stern Y, Visser PJ, Scheltens P. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 2007; 6(8): 734–746

[21]

Dubois B, Feldman HH, Jacova C, Cummings JL, Dekosky ST, Barberger-Gateau P, Delacourte A, Frisoni G, Fox NC, Galasko D, Gauthier S, Hampel H, Jicha GA, Meguro K, O’Brien J, Pasquier F, Robert P, Rossor M, Salloway S, Sarazin M, de Souza LC, Stern Y, Visser PJ, Scheltens P. Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 2010; 9(11): 1118–1127

[22]

McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 263–269

[23]

Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, DeKosky ST, Gauthier S, Selkoe D, Bateman R, Cappa S, Crutch S, Engelborghs S, Frisoni GB, Fox NC, Galasko D, Habert MO, Jicha GA, Nordberg A, Pasquier F, Rabinovici G, Robert P, Rowe C, Salloway S, Sarazin M, Epelbaum S, de Souza LC, Vellas B, Visser PJ, Schneider L, Stern Y, Scheltens P, Cummings JL. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 2014; 13(6): 614–629

[24]

Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J, Liu E, Molinuevo JL, Montine T, Phelps C, Rankin KP, Rowe CC, Scheltens P, Siemers E, Snyder HM, Sperling R; Contributors. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018; 14(4): 535–562

[25]

Kang JH, Korecka M, Lee EB, Cousins KAQ, Tropea TF, Chen-Plotkin AA, Irwin DJ, Wolk D, Brylska M, Wan Y, Shaw LM. Alzheimer disease biomarkers: moving from CSF to plasma for reliable detection of amyloid and tau pathology. Clin Chem 2023; 69(11): 1247–1259

[26]

NIA-AA Revised Diagnostic Criteria: A Biological Definition of Alzheimer’s Disease. 2023

[27]

Cheung CY, Ran AR, Wang S, Chan VTT, Sham K, Hilal S, Venketasubramanian N, Cheng CY, Sabanayagam C, Tham YC, Schmetterer L, McKay GJ, Williams MA, Wong A, Au LWC, Lu Z, Yam JC, Tham CC, Chen JJ, Dumitrascu OM, Heng PA, Kwok TCY, Mok VCT, Milea D, Chen CL, Wong TY. A deep learning model for detection of Alzheimer’s disease based on retinal photographs: a retrospective, multicentre case-control study. Lancet Digit Health 2022; 4(11): e806–e815

[28]

Zhou Y, Chia MA, Wagner SK, Ayhan MS, Williamson DJ, Struyven RR, Liu T, Xu M, Lozano MG, Woodward-Court P, Kihara Y; UK Biobank Eye & Vision Consortium; Altmann A, Lee AY, Topol EJ, Denniston AK, Alexander DC, Keane PA. A foundation model for generalizable disease detection from retinal images. Nature 2023; 622(7981): 156–163

[29]

Agbavor F, Liang H. Predicting dementia from spontaneous speech using large language models. PLOS Digit Health 2022; 1(12): e0000168

[30]

Kales HC, Lyketsos CG, Miller EM, Ballard C. Management of behavioral and psychological symptoms in people with Alzheimer’s disease: an international Delphi consensus. Int Psychogeriatr 2019; 31(1): 83–90

[31]

Jost BC, Grossberg GT. The evolution of psychiatric symptoms in Alzheimer’s disease: a natural history study. J Am Geriatr Soc 1996; 44(9): 1078–1081

[32]

Wise EA, Rosenberg PB, Lyketsos CG, Leoutsakos JM. Time course of neuropsychiatric symptoms and cognitive diagnosis in National Alzheimer’s Coordinating Centers volunteers. Alzheimers Dement (Amst) 2019; 11(1): 333–339

[33]

Nedelec T, Couvy-Duchesne B, Monnet F, Daly T, Ansart M, Gantzer L, Lekens B, Epelbaum S, Dufouil C, Durrleman S. Identifying health conditions associated with Alzheimer’s disease up to 15 years before diagnosis: an agnostic study of French and British health records. Lancet Digit Health 2022; 4(3): e169–e178

[34]

Liao Y, Xing Q, Li Q, Zhang J, Pan R, Yuan Z. Astrocytes in depression and Alzheimer’s disease. Front Med 2021; 15(6): 829–841

[35]

Desai R, Whitfield T, Said G, John A, Saunders R, Marchant NL, Stott J, Charlesworth G. Affective symptoms and risk of progression to mild cognitive impairment or dementia in subjective cognitive decline: a systematic review and meta-analysis. Ageing Res Rev 2021; 71: 101419

[36]

Geda YE, Roberts RO, Mielke MM, Knopman DS, Christianson TJH, Pankratz VS, Boeve BF, Sochor O, Tangalos EG, Petersen RC, Rocca WA. Baseline neuropsychiatric symptoms and the risk of incident mild cognitive impairment: a population-based study. Am J Psychiatry 2014; 171(5): 572–581

[37]

Liew TM. Neuropsychiatric symptoms in early stage of Alzheimer’s and non-Alzheimer’s dementia, and the risk of progression to severe dementia. Age Ageing 2021; 50(5): 1709–1718

[38]

Garre-Olmo J, López-Pousa S, Vilalta-Franch J, de Gracia Blanco M, Vilarrasa AB. Grouping and trajectories of neuropsychiatric symptoms in patients with Alzheimer’s disease. Part II: two-year patient trajectories. J Alzheimers Dis 2010; 22(4): 1169–1180

[39]

Wang X, Wang R, Li J. Influence of sleep disruption on protein accumulation in neurodegenerative diseases. Ageing Neur Dis 2022; 2: 4

[40]

Shi L, Chen SJ, Ma MY, Bao YP, Han Y, Wang YM, Shi J, Vitiello MV, Lu L. Sleep disturbances increase the risk of dementia: a systematic review and meta-analysis. Sleep Med Rev 2018; 40: 4–16

[41]

Lysen TS, Luik AI, Ikram MK, Tiemeier H, Ikram MA. Actigraphy-estimated sleep and 24-hour activity rhythms and the risk of dementia. Alzheimers Dement 2020; 16(9): 1259–1267

[42]

Zhang F, Zhong R, Li S, Fu Z, Wang R, Wang T, Huang Z, Le W. Alteration in sleep architecture and electroencephalogram as an early sign of Alzheimer’s disease preceding the disease pathology and cognitive decline. Alzheimers Dement 2019; 15(4): 590–597

[43]

Sabia S, Fayosse A, Dumurgier J, van Hees VT, Paquet C, Sommerlad A, Kivimäki M, Dugravot A, Singh-Manoux A. Association of sleep duration in middle and old age with incidence of dementia. Nat Commun 2021; 12(1): 2289

[44]

Pulver RL, Kronberg E, Medenblik LM, Kheyfets VO, Ramos AR, Holtzman DM, Morris JC, Toedebusch CD, Sillau SH, Bettcher BM, Lucey BP, McConnell BV. Mapping sleep’s oscillatory events as a biomarker of Alzheimer’s disease. Alzheimers Dement 2024; 20(1): 301–315

[45]

Zhou JN, Liu RY, Kamphorst W, Hofman MA, Swaab DF. Early neuropathological Alzheimer’s changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J Pineal Res 2003; 35(2): 125–130

[46]

Spinedi E, Cardinali DP. Neuroendocrine-metabolic dysfunction and sleep disturbances in neurodegenerative disorders: focus on Alzheimer’s disease and melatonin. Neuroendocrinology 2019; 108(4): 354–364

[47]

Reed NS, Oh ES. New insights into sensory impairment and dementia risk. JAMA Netw Open 2022; 5(5): e2210740

[48]

Powell DS, Oh ES, Reed NS, Lin FR, Deal JA. Hearing loss and cognition: what we know and where we need to go. Front Aging Neurosci 2022; 13: 769405

[49]

Murphy C. Olfactory and other sensory impairments in Alzheimer disease. Nat Rev Neurol 2019; 15(1): 11–24

[50]

Fischer ME, Cruickshanks KJ, Schubert CR, Pinto AA, Carlsson CM, Klein BEK, Klein R, Tweed TS. Age-related sensory impairments and risk of cognitive impairment. J Am Geriatr Soc 2016; 64(10): 1981–1987

[51]

Pacyna RR, Han SD, Wroblewski KE, McClintock MK, Pinto JM. Rapid olfactory decline during aging predicts dementia and GMV loss in AD brain regions. Alzheimers Dement 2023; 19(4): 1479–1490

[52]

Tahmasebi R, Zehetmayer S, Pusswald G, Kovacs G, Stögmann E, Lehrner J. Identification of odors, faces, cities and naming of objects in patients with subjective cognitive decline, mild cognitive impairment and Alzheimer’s disease: a longitudinal study. Int Psychogeriatr 2019; 31(4): 537–549

[53]

Roberts RO, Christianson TJ, Kremers WK, Mielke MM, Machulda MM, Vassilaki M, Alhurani RE, Geda YE, Knopman DS, Petersen RC. Association between olfactory dysfunction and amnestic mild cognitive impairment and Alzheimer disease dementia. JAMA Neurol 2016; 73(1): 93–101

[54]

Ge YJ, Xu W, Ou YN, Qu Y, Ma YH, Huang YY, Shen XN, Chen SD, Tan L, Zhao QH, Yu JT. Retinal biomarkers in Alzheimer’s disease and mild cognitive impairment: a systematic review and meta-analysis. Ageing Res Rev 2021; 69: 101361

[55]

van de Kreeke JA, Nguyen HT, Konijnenberg E, Tomassen J, den Braber A, Ten Kate M, Yaqub M, van Berckel B, Lammertsma AA, Boomsma DI, Tan HS, Visser PJ, Verbraak FD. Longitudinal retinal layer changes in preclinical Alzheimer’s disease. Acta Ophthalmol 2021; 99(5): 538–544

[56]

O’Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP. Association of preclinical Alzheimer disease with optical coherence tomographic angiography findings. JAMA Ophthalmol 2018; 136(11): 1242–1248

[57]

O’Bryhim BE, Lin JB, Van Stavern GP, Apte RS. OCT angiography findings in preclinical Alzheimer’s disease: 3-year follow-up. Ophthalmology 2021; 128(10): 1489–1491

[58]

Dinet V, Arouche-Delaperche L, Dégardin J, Naud MC, Picaud S, Krantic S. Concomitant retinal alterations in neuronal activity and TNFα pathway are detectable during the pre-symptomatic stage in a mouse model of Alzheimer’s disease. Cells 2022; 11(10): 1650

[59]

Villemagne VL, Chételat G. Neuroimaging biomarkers in Alzheimer’s disease and other dementias. Ageing Res Rev 2016; 30: 4–16

[60]

Nag S, Miranda-Azpiazu P, Jia Z, Datta P, Arakawa R, Moein MM, Yang Z, Tu Y, Lemoine L, Ågren H, Nordberg A, Långström B, Halldin C. Development of 11C-labeled ASEM analogues for the detection of neuronal nicotinic acetylcholine receptors (α7-nAChR). ACS Chem Neurosci 2022; 13(3): 352–362

[61]

Fontana IC, Kumar A, Nordberg A. The role of astrocytic α7 nicotinic acetylcholine receptors in Alzheimer disease. Nat Rev Neurol 2023; 19(5): 278–288

[62]

Pascoal TA, Therriault J, Benedet AL, Savard M, Lussier FZ, Chamoun M, Tissot C, Qureshi MNI, Kang MS, Mathotaarachchi S, Stevenson J, Hopewell R, Massarweh G, Soucy JP, Gauthier S, Rosa-Neto P. 18F-MK-6240 PET for early and late detection of neurofibrillary tangles. Brain 2020; 143(9): 2818–2830

[63]

Swinford CG, Risacher SL, Charil A, Schwarz AJ, Saykin AJ. Memory concerns in the early Alzheimer’s disease prodrome: regional association with tau deposition. Alzheimers Dement (Amst) 2018; 10(1): 322–331

[64]

Quan L, Moreno-Gonzalez I, Xie Z, Gamez N, Vegas-Gomez L, Song Q, Gu J, Lin W, Gomez-Gutierrez R, Wu T. A near-infrared probe for detecting and interposing amyloid beta oligomerization in early Alzheimer’s disease. Alzheimers Dement 2023; 19(2): 456–466

[65]

Montal V, Barroeta I, Bejanin A, Pegueroles J, Carmona-Iragui M, Altuna M, Benejam B, Videla L, Fernández S, Padilla C, Aranha MR, Iulita MF, Vidal-Piñeiro D, Alcolea D, Blesa R, Lleó A, Fortea J; Down Alzheimer Barcelona Neuroimaging Initiative. Metabolite signature of Alzheimer’s disease in adults with Down syndrome. Ann Neurol 2021; 90(3): 407–416

[66]

Stevenson JS, Clifton L, Kuźma E, Littlejohns TJ. Speech-in-noise hearing impairment is associated with an increased risk of incident dementia in 82,039 UK Biobank participants. Alzheimers Dement 2022; 18(3): 445–456

[67]

Mohammed A, Gibbons LE, Gates G, Anderson ML, McCurry SM, McCormick W, Bowen JD, Grabowski TJ, Crane PK, Larson EB. Association of performance on dichotic auditory tests with risk for incident dementia and Alzheimer dementia. JAMA Otolaryngol Head Neck Surg 2022; 148(1): 20–27

[68]

Hwang PH, Longstreth WT Jr, Thielke SM, Francis CE, Carone M, Kuller LH, Fitzpatrick AL. Longitudinal changes in hearing and visual impairments and risk of dementia in older adults in the United States. JAMA Netw Open 2022; 5(5): e2210734

[69]

Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, Zhu D, Koya JB, Wei L, Li J, Chen ZS. Microbiota in health and diseases. Signal Transduct Target Ther 2022; 7(1): 135

[70]

Megur A, Baltriukienė D, Bukelskienė V, Burokas A. The microbiota–gut–brain axis and Alzheimer’s disease: neuroinflammation is to blame?. Nutrients 2020; 13(1): 37

[71]

Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, Carlsson CM, Asthana S, Zetterberg H, Blennow K, Bendlin BB, Rey FE. Gut microbiome alterations in Alzheimer’s disease. Sci Rep 2017; 7(1): 13537

[72]

Bello-Medina PC, Corona-Cervantes K, Zavala Torres NG, González A, Pérez-Morales M, González-Franco DA, Gómez A, García-Mena J, Díaz-Cintra S, Pacheco-López G. Chronic-antibiotics induced gut microbiota dysbiosis rescues memory impairment and reduces β-amyloid aggregation in a preclinical Alzheimer’s disease model. Int J Mol Sci 2022; 23(15): 8209

[73]

Tian Q, Studenski SA, An Y, Kuo PL, Schrack JA, Wanigatunga AA, Simonsick EM, Resnick SM, Ferrucci L. Association of combined slow gait and low activity fragmentation with later onset of cognitive impairment. JAMA Netw Open 2021; 4(11): e2135168

[74]

Skillbäck T, Blennow K, Zetterberg H, Skoog J, Rydén L, Wetterberg H, Guo X, Sacuiu S, Mielke MM, Zettergren A, Skoog I, Kern S. Slowing gait speed precedes cognitive decline by several years. Alzheimers Dement 2022; 18(9): 1667–1676

[75]

Li P, Yu L, Lim ASP, Buchman AS, Scheer FAJL, Shea SA, Schneider JA, Bennett DA, Hu K. Fractal regulation and incident Alzheimer’s disease in elderly individuals. Alzheimers Dement 2018; 14(9): 1114–1125

[76]

Hiller AJ, Ishii M. Disorders of body weight, sleep and circadian rhythm as manifestations of hypothalamic dysfunction in Alzheimer’s disease. Front Cell Neurosci 2018; 12: 471

[77]

Purnell C, Gao S, Callahan CM, Hendrie HC. Cardiovascular risk factors and incident Alzheimer disease: a systematic review of the literature. Alzheimer Dis Assoc Disord 2009; 23(1): 1–10

[78]

Turana Y, Tengkawan J, Chia YC, Hoshide S, Shin J, Chen CH, Buranakitjaroen P, Nailes J, Park S, Siddique S, Sison J, Ann Soenarta A, Chin Tay J, Sogunuru GP, Zhang Y, Wang JG, Kario K. Hypertension and dementia: a comprehensive review from the HOPE Asia Network. J Clin Hypertens (Greenwich) 2019; 21(8): 1091–1098

[79]

Köbe T, Binette AP, Vogel JW, Meyer PF, Breitner JCS, Poirier J, Villeneuve S; Presymptomatic Evaluation of Novel or Experimental Treatments for Alzheimer Disease (PREVENT-AD) Research Group. Vascular risk factors are associated with a decline in resting-state functional connectivity in cognitively unimpaired individuals at risk for Alzheimer’s disease: vascular risk factors and functional connectivity changes. Neuroimage 2021; 231: 117832

[80]

de Heus RAA, Tzourio C, Lee EJL, Opozda M, Vincent AD, Anstey KJ, Hofman A, Kario K, Lattanzi S, Launer LJ, Ma Y, Mahajan R, Mooijaart SP, Nagai M, Peters R, Turnbull D, Yano Y; VARIABLE BRAIN Consortium; Claassen JAHR, Tully PJ. Association between blood pressure variability with dementia and cognitive impairment: a systematic review and meta-analysis. Hypertension 2021; 78(5): 1478–1489

[81]

Sabbagh MN, Boada M, Borson S, Doraiswamy PM, Dubois B, Ingram J, Iwata A, Porsteinsson AP, Possin KL, Rabinovici GD, Vellas B, Chao S, Vergallo A, Hampel H. Early detection of mild cognitive impairment (MCI) in an at-home setting. J Prev Alzheimers Dis 2020; 7(3): 171–178

[82]

Gordon BA, Blazey TM, Su Y, Hari-Raj A, Dincer A, Flores S, Christensen J, McDade E, Wang G, Xiong C, Cairns NJ, Hassenstab J, Marcus DS, Fagan AM, Jack CR Jr, Hornbeck RC, Paumier KL, Ances BM, Berman SB, Brickman AM, Cash DM, Chhatwal JP, Correia S, Förster S, Fox NC, Graff-Radford NR, la Fougère C, Levin J, Masters CL, Rossor MN, Salloway S, Saykin AJ, Schofield PR, Thompson PM, Weiner MM, Holtzman DM, Raichle ME, Morris JC, Bateman RJ, Benzinger TLS. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study. Lancet Neurol 2018; 17(3): 241–250

[83]

Xiao H, Choi SR, Zhao R, Ploessl K, Alexoff D, Zhu L, Zha Z, Kung HF. A new highly deuterated [18F]AV-45, [18F]D15FSP, for imaging β-amyloid plaques in the brain. ACS Med Chem Lett 2021; 12(7): 1086–1092

[84]

Grimmer T, Shi K, Diehl-Schmid J, Natale B, Drzezga A, Förster S, Förstl H, Schwaiger M, Yakushev I, Wester HJ, Kurz A, Yousefi BH. 18F-FIBT may expand PET for β-amyloid imaging in neurodegenerative diseases. Mol Psychiatry 2020; 25(10): 2608–2619

[85]

Tian M, Zuo C, Civelek AC, Carrio I, Watanabe Y, Kang KW, Murakami K, Garibotto V, Prior JO, Barthel H, Guan Y, Lu J, Zhou R, Jin C, Wu S, Zhang X, Zhong Y, Zhang H; Molecular Imaging-Based Precision Medicine Task Group of A3 (China-Japan-Korea) Foresight Program. International Nuclear Medicine Consensus on the Clinical Use of Amyloid Positron Emission Tomography in Alzheimer’s Disease. Phenomics 2022; 3(4): 375–389

[86]

Wang X, Huang W, Su L, Xing Y, Jessen F, Sun Y, Shu N, Han Y. Neuroimaging advances regarding subjective cognitive decline in preclinical Alzheimer’s disease. Mol Neurodegener 2020; 15(1): 55

[87]

Viejo L, Noori A, Merrill E, Das S, Hyman BT, Serrano-Pozo A. Systematic review of human post-mortem immunohistochemical studies and bioinformatics analyses unveil the complexity of astrocyte reaction in Alzheimer’s disease. Neuropathol Appl Neurobiol 2022; 48(1): e12753

[88]

Shea D, Colasurdo E, Smith A, Paschall C, Jayadev S, Keene CD, Galasko D, Ko A, Li G, Peskind E, Daggett V. SOBA: development and testing of a soluble oligomer binding assay for detection of amyloidogenic toxic oligomers. Proc Natl Acad Sci USA 2022; 119(50): e2213157119

[89]

Chatterjee P, Pedrini S, Doecke JD, Thota R, Villemagne VL, Doré V, Singh AK, Wang P, Rainey-Smith S, Fowler C, Taddei K, Sohrabi HR, Molloy MP, Ames D, Maruff P, Rowe CC, Masters CL, Martins RN; AIBL Research Group. Plasma Aβ42/40 ratio, p-tau181, GFAP, and NfL across the Alzheimer’s disease continuum: a cross-sectional and longitudinal study in the AIBL cohort. Alzheimers Dement 2023; 19(4): 1117–1134

[90]

Lee YJ, Lin SY, Peng SW, Lin YC, Chen TB, Wang PN, Cheng IH. Predictive utility of plasma amyloid and tau for cognitive decline in cognitively normal adults. J Prev Alzheimers Dis 2023; 10(2): 178–185

[91]

Bellaver B, Povala G, Ferreira PCL, Ferrari-Souza JP, Leffa DT, Lussier FZ, Benedet AL, Ashton NJ, Triana-Baltzer G, Kolb HC, Tissot C, Therriault J, Servaes S, Stevenson J, Rahmouni N, Lopez OL, Tudorascu DL, Villemagne VL, Ikonomovic MD, Gauthier S, Zimmer ER, Zetterberg H, Blennow K, Aizenstein HJ, Klunk WE, Snitz BE, Maki P, Thurston RC, Cohen AD, Ganguli M, Karikari TK, Rosa-Neto P, Pascoal TA. Astrocyte reactivity influences amyloid-β effects on tau pathology in preclinical Alzheimer’s disease. Nat Med 2023; 29(7): 1775–1781

[92]

Rajan KB, Aggarwal NT, McAninch EA, Weuve J, Barnes LL, Wilson RS, DeCarli C, Evans DA. Remote blood biomarkers of longitudinal cognitive outcomes in a population study. Ann Neurol 2020; 88(6): 1065–1076

[93]

Husain M. Blood tests to screen for Alzheimer’s disease. Brain 2021; 144(2): 355–356

[94]

Mattsson-Carlgren N, Salvadó G, Ashton NJ, Tideman P, Stomrud E, Zetterberg H, Ossenkoppele R, Betthauser TJ, Cody KA, Jonaitis EM, Langhough R, Palmqvist S, Blennow K, Janelidze S, Johnson SC, Hansson O. Prediction of longitudinal cognitive decline in preclinical alzheimer disease using plasma biomarkers. JAMA Neurol 2023; 80(4): 360–369

[95]

Pascoal TA, Benedet AL, Ashton NJ, Kang MS, Therriault J, Chamoun M, Savard M, Lussier FZ, Tissot C, Karikari TK, Ottoy J, Mathotaarachchi S, Stevenson J, Massarweh G, Schöll M, de Leon MJ, Soucy JP, Edison P, Blennow K, Zetterberg H, Gauthier S, Rosa-Neto P. Microglial activation and tau propagate jointly across Braak stages. Nat Med 2021; 27(9): 1592–1599

[96]

Johansson C, Thordardottir S, Laffita-Mesa J, Rodriguez-Vieitez E, Zetterberg H, Blennow K, Graff C. Plasma biomarker profiles in autosomal dominant Alzheimer’s disease. Brain 2023; 146(3): 1132–1140

[97]

Teunissen CE, Verberk IMW, Thijssen EH, Vermunt L, Hansson O, Zetterberg H, van der Flier WM, Mielke MM, Del Campo M. Blood-based biomarkers for Alzheimer’s disease: towards clinical implementation. Lancet Neurol 2022; 21(1): 66–77

[98]

Olsson B, Lautner R, Andreasson U, Öhrfelt A, Portelius E, Bjerke M, Hölttä M, Rosén C, Olsson C, Strobel G, Wu E, Dakin K, Petzold M, Blennow K, Zetterberg H. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol 2016; 15(7): 673–684

[99]

Ryan D, Robards K. Metabolomics: the greatest omics of them all?. Anal Chem 2006; 78(23): 7954–7958

[100]

Johnson ECB, Dammer EB, Duong DM, Ping L, Zhou M, Yin L, Higginbotham LA, Guajardo A, White B, Troncoso JC, Thambisetty M, Montine TJ, Lee EB, Trojanowski JQ, Beach TG, Reiman EM, Haroutunian V, Wang M, Schadt E, Zhang B, Dickson DW, Ertekin-Taner N, Golde TE, Petyuk VA, De Jager PL, Bennett DA, Wingo TS, Rangaraju S, Hajjar I, Shulman JM, Lah JJ, Levey AI, Seyfried NT. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med 2020; 26(5): 769–780

[101]

Sriwichaiin S, Chattipakorn N, Chattipakorn SC. Metabolomic alterations in the blood and brain in association with Alzheimer’s disease: evidence from in vivo to clinical studies. J Alzheimers Dis 2021; 84(1): 23–50

[102]

Sakr F, Dyrba M, Brauer A, Teipel S; Alzheimer’s Disease Neuroimaging Initiative. Association of lipidomics signatures in blood with clinical progression in preclinical and prodromal Alzheimer’s disease. J Alzheimers Dis 2022; 85: 1115–1127

[103]

Casas-Fernández E, Peña-Bautista C, Baquero M, Cháfer-Pericás C. Lipids as early and minimally invasive biomarkers for Alzheimer’s disease. Curr Neuropharmacol 2022; 20(8): 1613–1631

[104]

Zheng Y, Xu Q, Jin Q, Du Y, Yan J, Gao H, Zheng H. Urinary and faecal metabolic characteristics in APP/PS1 transgenic mouse model of Alzheimer’s disease with and without cognitive decline. Biochem Biophys Res Commun 2022; 604: 130–136

[105]

Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H. New technologies for analysis of extracellular vesicles. Chem Rev 2018; 118(4): 1917–1950

[106]

Hamlett ED, Ledreux A, Potter H, Chial HJ, Patterson D, Espinosa JM, Bettcher BM, Granholm AC. Exosomal biomarkers in Down syndrome and Alzheimer’s disease. Free Radic Biol Med 2018; 114: 110–121

[107]

Jia L, Qiu Q, Zhang H, Chu L, Du Y, Zhang J, Zhou C, Liang F, Shi S, Wang S, Qin W, Wang Q, Li F, Wang Q, Li Y, Shen L, Wei Y, Jia J. Concordance between the assessment of Aβ42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid. Alzheimers Dement 2019; 15(8): 1071–1080

[108]

Jia L, Zhu M, Yang J, Pang Y, Wang Q, Li T, Li F, Wang Q, Li Y, Wei Y. Exosomal microRNA-based predictive model for preclinical Alzheimer’s disease: a multicenter study. Biol Psychiatry 2022; 92(1): 44–53

[109]

Naughton SX, Raval U, Pasinetti GM. The viral hypothesis in Alzheimer’s disease: novel insights and pathogen-based biomarkers. J Pers Med 2020; 10(3): 74

[110]

Seaks CE, Wilcock DM. Infectious hypothesis of Alzheimer disease. PLoS Pathog 2020; 16(11): e1008596

[111]

Pastore A, Raimondi F, Rajendran L, Temussi PA. Why does the Aβ peptide of Alzheimer share structural similarity with antimicrobial peptides?. Commun Biol 2020; 3(1): 135

[112]

French PW. Unfolded p53 in non-neuronal cells supports bacterial etiology of Alzheimer’s disease. Neural Regen Res 2022; 17(12): 2619–2622

[113]

Ishii M, Iadecola C. Metabolic and non-cognitive manifestations of Alzheimer’s disease: the hypothalamus as both culprit and target of pathology. Cell Metab 2015; 22(5): 761–776

[114]

Ghosh A. Endocrine, metabolic, nutritional, and toxic disorders leading to dementia. Ann Indian Acad Neurol 2010; 13(Suppl 2): S63–S68

[115]

Berlanga-Acosta J, Guillén-Nieto G, Rodríguez-Rodríguez N, Bringas-Vega ML, García-Del-Barco-Herrera D, Berlanga-Saez JO, García-Ojalvo A, Valdés-Sosa MJ, Valdés-Sosa PA. Insulin resistance at the crossroad of Alzheimer disease pathology: a review. Front Endocrinol (Lausanne) 2020; 11: 560375

[116]

Zhou C, Dong C, Xie Z, Hao W, Fu C, Sun H, Zhu D. Sex-specific associations between diabetes and dementia: the role of age at onset of disease, insulin use and complications. Biol Sex Differ 2023; 14(1): 9

[117]

Ennis GE, An Y, Resnick SM, Ferrucci L, O’Brien RJ, Moffat SD. Long-term cortisol measures predict Alzheimer disease risk. Neurology 2017; 88(4): 371–378

[118]

Ouanes S, Popp J. High cortisol and the risk of dementia and Alzheimer’s disease: a review of the literature. Front Aging Neurosci 2019; 11: 43

[119]

Udeh-Momoh CT, Su B, Evans S, Zheng B, Sindi S, Tzoulaki I, Perneczky R, Middleton LT; Alzheimer’s Disease Neuroimaging Initiative. Cortisol, amyloid-β, and reserve predicts Alzheimer’s disease progression for cognitively normal older adults. J Alzheimers Dis 2019; 70(2): 553–562

[120]

Li H, Chen K, Yang L, Wang Q, Zhang J, He J. The role of plasma cortisol in dementia, epilepsy, and multiple sclerosis: a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14: 1107780

[121]

Tan ZS, Beiser A, Vasan RS, Au R, Auerbach S, Kiel DP, Wolf PA, Seshadri S. Thyroid function and the risk of Alzheimer disease: the Framingham Study. Arch Intern Med 2008; 168(14): 1514–1520

[122]

Marriott RJ, Murray K, Flicker L, Hankey GJ, Matsumoto AM, Dwivedi G, Antonio L, Almeida OP, Bhasin S, Dobs AS, Handelsman DJ, Haring R, O’Neill TW, Ohlsson C, Orwoll ES, Vanderschueren D, Wittert GA, Wu FCW, Yeap BB. Lower serum testosterone concentrations are associated with a higher incidence of dementia in men: the UK Biobank prospective cohort study. Alzheimers Dement 2022; 18(10): 1907–1918

[123]

Keyvani K, Münster Y, Kurapati NK, Rubach S, Schönborn A, Kocakavuk E, Karout M, Hammesfahr P, Wang YC, Hermann DM, Teuber-Hanselmann S, Herring A. Higher levels of kallikrein-8 in female brain may increase the risk for Alzheimer’s disease. Brain Pathol 2018; 28(6): 947–964

[124]

Azocar I, Rapaport P, Burton A, Meisel G, Orgeta V. Risk factors for apathy in Alzheimer’s disease: a systematic review of longitudinal evidence. Ageing Res Rev 2022; 79: 101672

[125]

Ng KP, Chiew H, Rosa-Neto P, Kandiah N, Ismail Z, Gauthier S. Associations of AT(N) biomarkers with neuropsychiatric symptoms in preclinical Alzheimer’s disease and cognitively unimpaired individuals. Transl Neurodegener 2021; 10(1): 11

[126]

Mosaferi B, Jand Y, Salari AA. Gut microbiota depletion from early adolescence alters anxiety and depression-related behaviours in male mice with Alzheimer-like disease. Sci Rep 2021; 11(1): 22941

[127]

He C, Hu Z, Jiang C. Sleep disturbance: an early sign of Alzheimer’s disease. Neurosci Bull 2020; 36(4): 449–451

[128]

Xiong X, Hu T, Yin Z, Zhang Y, Chen F, Lei P. Research advances in the study of sleep disorders, circadian rhythm disturbances and Alzheimer’s disease. Front Aging Neurosci 2022; 14: 944283

[129]

Oh JY, Walsh CM, Ranasinghe K, Mladinov M, Pereira FL, Petersen C, Falgàs N, Yack L, Lamore T, Nasar R, Lew C, Li S, Metzler T, Coppola Q, Pandher N, Le M, Heuer HW, Heinsen H, Spina S, Seeley WW, Kramer J, Rabinovici GD, Boxer AL, Miller BL, Vossel K, Neylan TC, Grinberg LT. Subcortical neuronal correlates of sleep in neurodegenerative diseases. JAMA Neurol 2022; 79(5): 498–508

[130]

Lew CH, Petersen C, Neylan TC, Grinberg LT. Tau-driven degeneration of sleep- and wake-regulating neurons in Alzheimer’s disease. Sleep Med Rev 2021; 60: 101541

[131]

Kang SS, Meng L, Zhang X, Wu Z, Mancieri A, Xie B, Liu X, Weinshenker D, Peng J, Zhang Z, Ye K. Tau modification by the norepinephrine metabolite DOPEGAL stimulates its pathology and propagation. Nat Struct Mol Biol 2022; 29(4): 292–305

[132]

Guo Y, Li S, Zeng LH, Tan J. Tau-targeting therapy in Alzheimer’s disease: critical advances and future opportunities. Ageing Neur Dis 2022; 2: 11

[133]

Hernández-Soto R, Rojas-García KD, Peña-Ortega F. Sudden intrabulbar amyloid increase simultaneously disrupts olfactory bulb oscillations and odor detection. Neural Plast 2019; 2019: 3424906

[134]

López-de-Eguileta A, López-García S, Lage C, Pozueta A, García-Martínez M, Kazimierczak M, Bravo M, Irure J, López-Hoyos M, Muñoz-Cacho P, Rodríguez-Perez N, Tordesillas-Gutiérrez D, Goikoetxea A, Nebot C, Rodríguez-Rodríguez E, Casado A, Sánchez-Juan P. The retinal ganglion cell layer reflects neurodegenerative changes in cognitively unimpaired individuals. Alzheimers Res Ther 2022; 14(1): 57

[135]

Bartley SC, Proctor MT, Xia H, Ho E, Kang DS, Schuster K, Bicca MA, Seckler HS, Viola KL, Patrie SM, Kelleher NL, De Mello FG, Klein WL. An essential role for Alzheimer’s-linked amyloid beta oligomers in neurodevelopment: transient expression of multiple proteoforms during retina histogenesis. Int J Mol Sci 2022; 23(4): 2208

[136]

Habiba U, Morley J, Krockenberger M, Summers BA, Tayebi M. A sequential deposition of amyloid beta oligomers, plaques and phosphorylated tau occurs throughout life in the canine retina. Ageing Neur Dis 2022; 2: 7

[137]

Gupta VB, Chitranshi N, den Haan J, Mirzaei M, You Y, Lim JK, Basavarajappa D, Godinez A, Di Angelantonio S, Sachdev P, Salekdeh GH, Bouwman F, Graham S, Gupta V. Retinal changes in Alzheimer’s disease—integrated prospects of imaging, functional and molecular advances. Prog Retin Eye Res 2021; 82: 100899

[138]

Chang M, Kim HJ, Mook-Jung I, Oh SH. Hearing loss as a risk factor for cognitive impairment and loss of synapses in the hippocampus. Behav Brain Res 2019; 372: 112069

[139]

Brenowitz WD, Filshtein TJ, Yaffe K, Walter S, Ackley SF, Hoffmann TJ, Jorgenson E, Whitmer RA, Glymour MM. Association of genetic risk for Alzheimer disease and hearing impairment. Neurology 2020; 95(16): e2225–e2234

[140]

Abdulrahman H, van Dalen JW, den Brok M, Latimer CS, Larson EB, Richard E. Hypertension and Alzheimer’s disease pathology at autopsy: a systematic review. Alzheimers Dement 2022; 18(11): 2308–2326

[141]

Hu X, Wang T, Jin F. Alzheimer’s disease and gut microbiota. Sci China Life Sci 2016; 59(10): 1006–1023

[142]

van de Wouw M, Boehme M, Lyte JM, Wiley N, Strain C, O’Sullivan O, Clarke G, Stanton C, Dinan TG, Cryan JF. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations. J Physiol 2018; 596(20): 4923–4944

[143]

Gonzalez-Escamilla G, Atienza M, Garcia-Solis D, Cantero JL. Cerebral and blood correlates of reduced functional connectivity in mild cognitive impairment. Brain Struct Funct 2016; 221(1): 631–645

[144]

Muurling M, Rhodius-Meester HFM, Pärkkä J, van Gils M, Frederiksen KS, Bruun M, Hasselbalch SG, Soininen H, Herukka SK, Hallikainen M, Teunissen CE, Visser PJ, Scheltens P, van der Flier WM, Mattila J, Lötjönen J, de Boer C. Gait disturbances are associated with increased cognitive impairment and cerebrospinal fluid tau levels in a memory clinic cohort. J Alzheimers Dis 2020; 76(3): 1061–1070

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3242KB)

4467

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/