Progress on early diagnosing Alzheimer’s disease

Yixin Chen, Murad Al-Nusaif, Song Li, Xiang Tan, Huijia Yang, Huaibin Cai, Weidong Le

PDF(3242 KB)
PDF(3242 KB)
Front. Med. ›› 2024, Vol. 18 ›› Issue (3) : 446-464. DOI: 10.1007/s11684-023-1047-1
REVIEW

Progress on early diagnosing Alzheimer’s disease

Author information +
History +

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects both cognition and non-cognition functions. The disease follows a continuum, starting with preclinical stages, progressing to mild cognitive and behavioral impairment, ultimately leading to dementia. Early detection of AD is crucial for better diagnosis and more effective treatment. However, the current AD diagnostic tests of biomarkers using cerebrospinal fluid and/or brain imaging are invasive or expensive, and mostly are still not able to detect early disease state. Consequently, there is an urgent need to develop new diagnostic techniques with higher sensitivity and specificity during the preclinical stages of AD. Various non-cognitive manifestations, including behavioral abnormalities, sleep disturbances, sensory dysfunctions, and physical changes, have been observed in the preclinical AD stage before occurrence of notable cognitive decline. Recent research advances have identified several biofluid biomarkers as early indicators of AD. This review focuses on these non-cognitive changes and newly discovered biomarkers in AD, specifically addressing the preclinical stages of the disease. Furthermore, it is of importance to explore the potential for developing a predictive system or network to forecast disease onset and progression at the early stage of AD.

Keywords

Alzheimer’s disease / early diagnosis / non-cognitive symptoms / biomarkers

Cite this article

Download citation ▾
Yixin Chen, Murad Al-Nusaif, Song Li, Xiang Tan, Huijia Yang, Huaibin Cai, Weidong Le. Progress on early diagnosing Alzheimer’s disease. Front. Med., 2024, 18(3): 446‒464 https://doi.org/10.1007/s11684-023-1047-1

References

[1]
Doroszkiewicz J, Groblewska M, Mroczko B. Molecular biomarkers and their implications for the early diagnosis of selected neurodegenerative diseases. Int J Mol Sci 2022; 23(9): 4610
CrossRef Google scholar
[2]
Hu S, Yang C, Luo H. Current trends in blood biomarker detection and imaging for Alzheimer’s disease. Biosens Bioelectron 2022; 210: 114278
CrossRef Google scholar
[3]
No authors listed. Alzheimer disease. Nat Rev Dis Primers 2021; 7(1): 34
CrossRef Google scholar
[4]
Gunes S, Aizawa Y, Sugashi T, Sugimoto M, Rodrigues PP. Biomarkers for Alzheimer’s disease in the current state: a narrative review. Int J Mol Sci 2022; 23(9): 4962
CrossRef Google scholar
[5]
Gatchel JR. Late-life depression and Alzheimer’s disease pathology: an ounce of prevention, a pound of cure. Am J Geriatr Psychiatry 2021; 29(5): 458–461
CrossRef Google scholar
[6]
Sims JR, Zimmer JA, Evans CD, Lu M, Ardayfio P, Sparks J, Wessels AM, Shcherbinin S, Wang H, Monkul Nery ES, Collins EC, Solomon P, Salloway S, Apostolova LG, Hansson O, Ritchie C, Brooks DA, Mintun M, Skovronsky DM; TRAILBLAZER-ALZ 2 Investigators. Donanemab in early symptomatic Alzheimer disease: the TRAILBLAZER-ALZ 2 randomized clinical trial. JAMA 2023; 330(6): 512–527
CrossRef Google scholar
[7]
van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, Kanekiyo M, Li D, Reyderman L, Cohen S, Froelich L, Katayama S, Sabbagh M, Vellas B, Watson D, Dhadda S, Irizarry M, Kramer LD, Iwatsubo T. Lecanemab in early Alzheimer’s disease. N Engl J Med 2023; 388(1): 9–21
CrossRef Google scholar
[8]
Hameed S, Fuh JL, Senanarong V, Ebenezer EGM, Looi I, Dominguez JC, Park KW, Karanam AK, Simon O. Role of fluid biomarkers and PET imaging in early diagnosis and its clinical implication in the management of Alzheimer’s disease. J Alzheimers Dis Rep 2020; 4(1): 21–37
CrossRef Google scholar
[9]
Hawksworth J, Fernández E, Gevaert K. A new generation of AD biomarkers: 2019 to 2021. Ageing Res Rev 2022; 79: 101654
CrossRef Google scholar
[10]
Dulewicz M, Kulczyńska-Przybik A, Mroczko P, Kornhuber J, Lewczuk P, Mroczko B. Biomarkers for the diagnosis of Alzheimer’s disease in clinical practice: the role of CSF biomarkers during the evolution of diagnostic criteria. Int J Mol Sci 2022; 23(15): 8598
CrossRef Google scholar
[11]
Creese B, Ismail Z. Mild behavioral impairment: measurement and clinical correlates of a novel marker of preclinical Alzheimer’s disease. Alzheimers Res Ther 2022; 14(1): 2
CrossRef Google scholar
[12]
Masters MC, Morris JC, Roe CM. “Noncognitive” symptoms of early Alzheimer disease: a longitudinal analysis. Neurology 2015; 84(6): 617–622
CrossRef Google scholar
[13]
Hudon C, Escudier F, De Roy J, Croteau J, Cross N, Dang-Vu TT, Zomahoun HTV, Grenier S, Gagnon JF, Parent A, Bruneau MA, Belleville S; Consortium for the Early Identification of Alzheimer’s Disease – Quebec. Behavioral and psychological symptoms that predict cognitive decline or impairment in cognitively normal middle-aged or older adults: a meta-analysis. Neuropsychol Rev 2020; 30(4): 558–579
CrossRef Google scholar
[14]
Huang YL, Lin CH, Tsai TH, Huang CH, Li JL, Chen LK, Li CH, Tsai TF, Wang PN. Discovery of a metabolic signature predisposing high risk patients with mild cognitive impairment to converting to Alzheimer’s disease. Int J Mol Sci 2021; 22(20): 10903
CrossRef Google scholar
[15]
Porsteinsson AP, Isaacson RS, Knox S, Sabbagh MN, Rubino I. Diagnosis of early Alzheimer’s disease: clinical practice in 2021. J Prev Alzheimers Dis 2021; 8(3): 371–386
[16]
Montero-Odasso M, Pieruccini-Faria F, Ismail Z, Li K, Lim A, Phillips N, Kamkar N, Sarquis-Adamson Y, Speechley M, Theou O, Verghese J, Wallace L, Camicioli R. CCCDTD5 recommendations on early non cognitive markers of dementia: a Canadian consensus. Alzheimers Dement (N Y) 2020; 6(1): e12068
CrossRef Google scholar
[17]
Frisoni GB, Boccardi M, Barkhof F, Blennow K, Cappa S, Chiotis K, Démonet JF, Garibotto V, Giannakopoulos P, Gietl A, Hansson O, Herholz K, Jack CR Jr, Nobili F, Nordberg A, Snyder HM, Ten Kate M, Varrone A, Albanese E, Becker S, Bossuyt P, Carrillo MC, Cerami C, Dubois B, Gallo V, Giacobini E, Gold G, Hurst S, Lönneborg A, Lovblad KO, Mattsson N, Molinuevo JL, Monsch AU, Mosimann U, Padovani A, Picco A, Porteri C, Ratib O, Saint-Aubert L, Scerri C, Scheltens P, Schott JM, Sonni I, Teipel S, Vineis P, Visser PJ, Yasui Y, Winblad B. Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. Lancet Neurol 2017; 16(8): 661–676
CrossRef Google scholar
[18]
Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, Bakardjian H, Benali H, Bertram L, Blennow K, Broich K, Cavedo E, Crutch S, Dartigues JF, Duyckaerts C, Epelbaum S, Frisoni GB, Gauthier S, Genthon R, Gouw AA, Habert MO, Holtzman DM, Kivipelto M, Lista S, Molinuevo JL, O’Bryant SE, Rabinovici GD, Rowe C, Salloway S, Schneider LS, Sperling R, Teichmann M, Carrillo MC, Cummings J, Jack CR Jr; Proceedings of the Meeting of the International Working Group (IWG), the American Alzheimer’s Association on “The Preclinical State of AD”; July 23, 2015; Washington DC. Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement 2016; 12(3): 292–323
CrossRef Google scholar
[19]
McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984; 34(7): 939–944
CrossRef Google scholar
[20]
Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, Delacourte A, Galasko D, Gauthier S, Jicha G, Meguro K, O’brien J, Pasquier F, Robert P, Rossor M, Salloway S, Stern Y, Visser PJ, Scheltens P. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 2007; 6(8): 734–746
CrossRef Google scholar
[21]
Dubois B, Feldman HH, Jacova C, Cummings JL, Dekosky ST, Barberger-Gateau P, Delacourte A, Frisoni G, Fox NC, Galasko D, Gauthier S, Hampel H, Jicha GA, Meguro K, O’Brien J, Pasquier F, Robert P, Rossor M, Salloway S, Sarazin M, de Souza LC, Stern Y, Visser PJ, Scheltens P. Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 2010; 9(11): 1118–1127
CrossRef Google scholar
[22]
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 263–269
CrossRef Google scholar
[23]
Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, DeKosky ST, Gauthier S, Selkoe D, Bateman R, Cappa S, Crutch S, Engelborghs S, Frisoni GB, Fox NC, Galasko D, Habert MO, Jicha GA, Nordberg A, Pasquier F, Rabinovici G, Robert P, Rowe C, Salloway S, Sarazin M, Epelbaum S, de Souza LC, Vellas B, Visser PJ, Schneider L, Stern Y, Scheltens P, Cummings JL. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 2014; 13(6): 614–629
CrossRef Google scholar
[24]
Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J, Liu E, Molinuevo JL, Montine T, Phelps C, Rankin KP, Rowe CC, Scheltens P, Siemers E, Snyder HM, Sperling R; Contributors. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018; 14(4): 535–562
CrossRef Google scholar
[25]
Kang JH, Korecka M, Lee EB, Cousins KAQ, Tropea TF, Chen-Plotkin AA, Irwin DJ, Wolk D, Brylska M, Wan Y, Shaw LM. Alzheimer disease biomarkers: moving from CSF to plasma for reliable detection of amyloid and tau pathology. Clin Chem 2023; 69(11): 1247–1259
CrossRef Google scholar
[26]
NIA-AA Revised Diagnostic Criteria: A Biological Definition of Alzheimer’s Disease. 2023
[27]
Cheung CY, Ran AR, Wang S, Chan VTT, Sham K, Hilal S, Venketasubramanian N, Cheng CY, Sabanayagam C, Tham YC, Schmetterer L, McKay GJ, Williams MA, Wong A, Au LWC, Lu Z, Yam JC, Tham CC, Chen JJ, Dumitrascu OM, Heng PA, Kwok TCY, Mok VCT, Milea D, Chen CL, Wong TY. A deep learning model for detection of Alzheimer’s disease based on retinal photographs: a retrospective, multicentre case-control study. Lancet Digit Health 2022; 4(11): e806–e815
CrossRef Google scholar
[28]
Zhou Y, Chia MA, Wagner SK, Ayhan MS, Williamson DJ, Struyven RR, Liu T, Xu M, Lozano MG, Woodward-Court P, Kihara Y; UK Biobank Eye & Vision Consortium; Altmann A, Lee AY, Topol EJ, Denniston AK, Alexander DC, Keane PA. A foundation model for generalizable disease detection from retinal images. Nature 2023; 622(7981): 156–163
CrossRef Google scholar
[29]
Agbavor F, Liang H. Predicting dementia from spontaneous speech using large language models. PLOS Digit Health 2022; 1(12): e0000168
CrossRef Google scholar
[30]
Kales HC, Lyketsos CG, Miller EM, Ballard C. Management of behavioral and psychological symptoms in people with Alzheimer’s disease: an international Delphi consensus. Int Psychogeriatr 2019; 31(1): 83–90
CrossRef Google scholar
[31]
Jost BC, Grossberg GT. The evolution of psychiatric symptoms in Alzheimer’s disease: a natural history study. J Am Geriatr Soc 1996; 44(9): 1078–1081
CrossRef Google scholar
[32]
Wise EA, Rosenberg PB, Lyketsos CG, Leoutsakos JM. Time course of neuropsychiatric symptoms and cognitive diagnosis in National Alzheimer’s Coordinating Centers volunteers. Alzheimers Dement (Amst) 2019; 11(1): 333–339
CrossRef Google scholar
[33]
Nedelec T, Couvy-Duchesne B, Monnet F, Daly T, Ansart M, Gantzer L, Lekens B, Epelbaum S, Dufouil C, Durrleman S. Identifying health conditions associated with Alzheimer’s disease up to 15 years before diagnosis: an agnostic study of French and British health records. Lancet Digit Health 2022; 4(3): e169–e178
CrossRef Google scholar
[34]
Liao Y, Xing Q, Li Q, Zhang J, Pan R, Yuan Z. Astrocytes in depression and Alzheimer’s disease. Front Med 2021; 15(6): 829–841
CrossRef Google scholar
[35]
Desai R, Whitfield T, Said G, John A, Saunders R, Marchant NL, Stott J, Charlesworth G. Affective symptoms and risk of progression to mild cognitive impairment or dementia in subjective cognitive decline: a systematic review and meta-analysis. Ageing Res Rev 2021; 71: 101419
CrossRef Google scholar
[36]
Geda YE, Roberts RO, Mielke MM, Knopman DS, Christianson TJH, Pankratz VS, Boeve BF, Sochor O, Tangalos EG, Petersen RC, Rocca WA. Baseline neuropsychiatric symptoms and the risk of incident mild cognitive impairment: a population-based study. Am J Psychiatry 2014; 171(5): 572–581
CrossRef Google scholar
[37]
Liew TM. Neuropsychiatric symptoms in early stage of Alzheimer’s and non-Alzheimer’s dementia, and the risk of progression to severe dementia. Age Ageing 2021; 50(5): 1709–1718
CrossRef Google scholar
[38]
Garre-Olmo J, López-Pousa S, Vilalta-Franch J, de Gracia Blanco M, Vilarrasa AB. Grouping and trajectories of neuropsychiatric symptoms in patients with Alzheimer’s disease. Part II: two-year patient trajectories. J Alzheimers Dis 2010; 22(4): 1169–1180
CrossRef Google scholar
[39]
Wang X, Wang R, Li J. Influence of sleep disruption on protein accumulation in neurodegenerative diseases. Ageing Neur Dis 2022; 2: 4
CrossRef Google scholar
[40]
Shi L, Chen SJ, Ma MY, Bao YP, Han Y, Wang YM, Shi J, Vitiello MV, Lu L. Sleep disturbances increase the risk of dementia: a systematic review and meta-analysis. Sleep Med Rev 2018; 40: 4–16
CrossRef Google scholar
[41]
Lysen TS, Luik AI, Ikram MK, Tiemeier H, Ikram MA. Actigraphy-estimated sleep and 24-hour activity rhythms and the risk of dementia. Alzheimers Dement 2020; 16(9): 1259–1267
CrossRef Google scholar
[42]
Zhang F, Zhong R, Li S, Fu Z, Wang R, Wang T, Huang Z, Le W. Alteration in sleep architecture and electroencephalogram as an early sign of Alzheimer’s disease preceding the disease pathology and cognitive decline. Alzheimers Dement 2019; 15(4): 590–597
CrossRef Google scholar
[43]
Sabia S, Fayosse A, Dumurgier J, van Hees VT, Paquet C, Sommerlad A, Kivimäki M, Dugravot A, Singh-Manoux A. Association of sleep duration in middle and old age with incidence of dementia. Nat Commun 2021; 12(1): 2289
CrossRef Google scholar
[44]
Pulver RL, Kronberg E, Medenblik LM, Kheyfets VO, Ramos AR, Holtzman DM, Morris JC, Toedebusch CD, Sillau SH, Bettcher BM, Lucey BP, McConnell BV. Mapping sleep’s oscillatory events as a biomarker of Alzheimer’s disease. Alzheimers Dement 2024; 20(1): 301–315
CrossRef Google scholar
[45]
Zhou JN, Liu RY, Kamphorst W, Hofman MA, Swaab DF. Early neuropathological Alzheimer’s changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J Pineal Res 2003; 35(2): 125–130
CrossRef Google scholar
[46]
Spinedi E, Cardinali DP. Neuroendocrine-metabolic dysfunction and sleep disturbances in neurodegenerative disorders: focus on Alzheimer’s disease and melatonin. Neuroendocrinology 2019; 108(4): 354–364
CrossRef Google scholar
[47]
Reed NS, Oh ES. New insights into sensory impairment and dementia risk. JAMA Netw Open 2022; 5(5): e2210740
CrossRef Google scholar
[48]
Powell DS, Oh ES, Reed NS, Lin FR, Deal JA. Hearing loss and cognition: what we know and where we need to go. Front Aging Neurosci 2022; 13: 769405
CrossRef Google scholar
[49]
Murphy C. Olfactory and other sensory impairments in Alzheimer disease. Nat Rev Neurol 2019; 15(1): 11–24
CrossRef Google scholar
[50]
Fischer ME, Cruickshanks KJ, Schubert CR, Pinto AA, Carlsson CM, Klein BEK, Klein R, Tweed TS. Age-related sensory impairments and risk of cognitive impairment. J Am Geriatr Soc 2016; 64(10): 1981–1987
CrossRef Google scholar
[51]
Pacyna RR, Han SD, Wroblewski KE, McClintock MK, Pinto JM. Rapid olfactory decline during aging predicts dementia and GMV loss in AD brain regions. Alzheimers Dement 2023; 19(4): 1479–1490
CrossRef Google scholar
[52]
Tahmasebi R, Zehetmayer S, Pusswald G, Kovacs G, Stögmann E, Lehrner J. Identification of odors, faces, cities and naming of objects in patients with subjective cognitive decline, mild cognitive impairment and Alzheimer’s disease: a longitudinal study. Int Psychogeriatr 2019; 31(4): 537–549
CrossRef Google scholar
[53]
Roberts RO, Christianson TJ, Kremers WK, Mielke MM, Machulda MM, Vassilaki M, Alhurani RE, Geda YE, Knopman DS, Petersen RC. Association between olfactory dysfunction and amnestic mild cognitive impairment and Alzheimer disease dementia. JAMA Neurol 2016; 73(1): 93–101
CrossRef Google scholar
[54]
Ge YJ, Xu W, Ou YN, Qu Y, Ma YH, Huang YY, Shen XN, Chen SD, Tan L, Zhao QH, Yu JT. Retinal biomarkers in Alzheimer’s disease and mild cognitive impairment: a systematic review and meta-analysis. Ageing Res Rev 2021; 69: 101361
CrossRef Google scholar
[55]
van de Kreeke JA, Nguyen HT, Konijnenberg E, Tomassen J, den Braber A, Ten Kate M, Yaqub M, van Berckel B, Lammertsma AA, Boomsma DI, Tan HS, Visser PJ, Verbraak FD. Longitudinal retinal layer changes in preclinical Alzheimer’s disease. Acta Ophthalmol 2021; 99(5): 538–544
CrossRef Google scholar
[56]
O’Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP. Association of preclinical Alzheimer disease with optical coherence tomographic angiography findings. JAMA Ophthalmol 2018; 136(11): 1242–1248
CrossRef Google scholar
[57]
O’Bryhim BE, Lin JB, Van Stavern GP, Apte RS. OCT angiography findings in preclinical Alzheimer’s disease: 3-year follow-up. Ophthalmology 2021; 128(10): 1489–1491
CrossRef Google scholar
[58]
Dinet V, Arouche-Delaperche L, Dégardin J, Naud MC, Picaud S, Krantic S. Concomitant retinal alterations in neuronal activity and TNFα pathway are detectable during the pre-symptomatic stage in a mouse model of Alzheimer’s disease. Cells 2022; 11(10): 1650
CrossRef Google scholar
[59]
Villemagne VL, Chételat G. Neuroimaging biomarkers in Alzheimer’s disease and other dementias. Ageing Res Rev 2016; 30: 4–16
CrossRef Google scholar
[60]
Nag S, Miranda-Azpiazu P, Jia Z, Datta P, Arakawa R, Moein MM, Yang Z, Tu Y, Lemoine L, Ågren H, Nordberg A, Långström B, Halldin C. Development of 11C-labeled ASEM analogues for the detection of neuronal nicotinic acetylcholine receptors (α7-nAChR). ACS Chem Neurosci 2022; 13(3): 352–362
CrossRef Google scholar
[61]
Fontana IC, Kumar A, Nordberg A. The role of astrocytic α7 nicotinic acetylcholine receptors in Alzheimer disease. Nat Rev Neurol 2023; 19(5): 278–288
CrossRef Google scholar
[62]
Pascoal TA, Therriault J, Benedet AL, Savard M, Lussier FZ, Chamoun M, Tissot C, Qureshi MNI, Kang MS, Mathotaarachchi S, Stevenson J, Hopewell R, Massarweh G, Soucy JP, Gauthier S, Rosa-Neto P. 18F-MK-6240 PET for early and late detection of neurofibrillary tangles. Brain 2020; 143(9): 2818–2830
CrossRef Google scholar
[63]
Swinford CG, Risacher SL, Charil A, Schwarz AJ, Saykin AJ. Memory concerns in the early Alzheimer’s disease prodrome: regional association with tau deposition. Alzheimers Dement (Amst) 2018; 10(1): 322–331
CrossRef Google scholar
[64]
Quan L, Moreno-Gonzalez I, Xie Z, Gamez N, Vegas-Gomez L, Song Q, Gu J, Lin W, Gomez-Gutierrez R, Wu T. A near-infrared probe for detecting and interposing amyloid beta oligomerization in early Alzheimer’s disease. Alzheimers Dement 2023; 19(2): 456–466
CrossRef Google scholar
[65]
Montal V, Barroeta I, Bejanin A, Pegueroles J, Carmona-Iragui M, Altuna M, Benejam B, Videla L, Fernández S, Padilla C, Aranha MR, Iulita MF, Vidal-Piñeiro D, Alcolea D, Blesa R, Lleó A, Fortea J; Down Alzheimer Barcelona Neuroimaging Initiative. Metabolite signature of Alzheimer’s disease in adults with Down syndrome. Ann Neurol 2021; 90(3): 407–416
CrossRef Google scholar
[66]
Stevenson JS, Clifton L, Kuźma E, Littlejohns TJ. Speech-in-noise hearing impairment is associated with an increased risk of incident dementia in 82,039 UK Biobank participants. Alzheimers Dement 2022; 18(3): 445–456
CrossRef Google scholar
[67]
Mohammed A, Gibbons LE, Gates G, Anderson ML, McCurry SM, McCormick W, Bowen JD, Grabowski TJ, Crane PK, Larson EB. Association of performance on dichotic auditory tests with risk for incident dementia and Alzheimer dementia. JAMA Otolaryngol Head Neck Surg 2022; 148(1): 20–27
CrossRef Google scholar
[68]
Hwang PH, Longstreth WT Jr, Thielke SM, Francis CE, Carone M, Kuller LH, Fitzpatrick AL. Longitudinal changes in hearing and visual impairments and risk of dementia in older adults in the United States. JAMA Netw Open 2022; 5(5): e2210734
CrossRef Google scholar
[69]
Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, Zhu D, Koya JB, Wei L, Li J, Chen ZS. Microbiota in health and diseases. Signal Transduct Target Ther 2022; 7(1): 135
CrossRef Google scholar
[70]
Megur A, Baltriukienė D, Bukelskienė V, Burokas A. The microbiota–gut–brain axis and Alzheimer’s disease: neuroinflammation is to blame?. Nutrients 2020; 13(1): 37
CrossRef Google scholar
[71]
Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, Carlsson CM, Asthana S, Zetterberg H, Blennow K, Bendlin BB, Rey FE. Gut microbiome alterations in Alzheimer’s disease. Sci Rep 2017; 7(1): 13537
CrossRef Google scholar
[72]
Bello-Medina PC, Corona-Cervantes K, Zavala Torres NG, González A, Pérez-Morales M, González-Franco DA, Gómez A, García-Mena J, Díaz-Cintra S, Pacheco-López G. Chronic-antibiotics induced gut microbiota dysbiosis rescues memory impairment and reduces β-amyloid aggregation in a preclinical Alzheimer’s disease model. Int J Mol Sci 2022; 23(15): 8209
CrossRef Google scholar
[73]
Tian Q, Studenski SA, An Y, Kuo PL, Schrack JA, Wanigatunga AA, Simonsick EM, Resnick SM, Ferrucci L. Association of combined slow gait and low activity fragmentation with later onset of cognitive impairment. JAMA Netw Open 2021; 4(11): e2135168
CrossRef Google scholar
[74]
Skillbäck T, Blennow K, Zetterberg H, Skoog J, Rydén L, Wetterberg H, Guo X, Sacuiu S, Mielke MM, Zettergren A, Skoog I, Kern S. Slowing gait speed precedes cognitive decline by several years. Alzheimers Dement 2022; 18(9): 1667–1676
CrossRef Google scholar
[75]
Li P, Yu L, Lim ASP, Buchman AS, Scheer FAJL, Shea SA, Schneider JA, Bennett DA, Hu K. Fractal regulation and incident Alzheimer’s disease in elderly individuals. Alzheimers Dement 2018; 14(9): 1114–1125
CrossRef Google scholar
[76]
Hiller AJ, Ishii M. Disorders of body weight, sleep and circadian rhythm as manifestations of hypothalamic dysfunction in Alzheimer’s disease. Front Cell Neurosci 2018; 12: 471
CrossRef Google scholar
[77]
Purnell C, Gao S, Callahan CM, Hendrie HC. Cardiovascular risk factors and incident Alzheimer disease: a systematic review of the literature. Alzheimer Dis Assoc Disord 2009; 23(1): 1–10
CrossRef Google scholar
[78]
Turana Y, Tengkawan J, Chia YC, Hoshide S, Shin J, Chen CH, Buranakitjaroen P, Nailes J, Park S, Siddique S, Sison J, Ann Soenarta A, Chin Tay J, Sogunuru GP, Zhang Y, Wang JG, Kario K. Hypertension and dementia: a comprehensive review from the HOPE Asia Network. J Clin Hypertens (Greenwich) 2019; 21(8): 1091–1098
CrossRef Google scholar
[79]
Köbe T, Binette AP, Vogel JW, Meyer PF, Breitner JCS, Poirier J, Villeneuve S; Presymptomatic Evaluation of Novel or Experimental Treatments for Alzheimer Disease (PREVENT-AD) Research Group. Vascular risk factors are associated with a decline in resting-state functional connectivity in cognitively unimpaired individuals at risk for Alzheimer’s disease: vascular risk factors and functional connectivity changes. Neuroimage 2021; 231: 117832
CrossRef Google scholar
[80]
de Heus RAA, Tzourio C, Lee EJL, Opozda M, Vincent AD, Anstey KJ, Hofman A, Kario K, Lattanzi S, Launer LJ, Ma Y, Mahajan R, Mooijaart SP, Nagai M, Peters R, Turnbull D, Yano Y; VARIABLE BRAIN Consortium; Claassen JAHR, Tully PJ. Association between blood pressure variability with dementia and cognitive impairment: a systematic review and meta-analysis. Hypertension 2021; 78(5): 1478–1489
CrossRef Google scholar
[81]
Sabbagh MN, Boada M, Borson S, Doraiswamy PM, Dubois B, Ingram J, Iwata A, Porsteinsson AP, Possin KL, Rabinovici GD, Vellas B, Chao S, Vergallo A, Hampel H. Early detection of mild cognitive impairment (MCI) in an at-home setting. J Prev Alzheimers Dis 2020; 7(3): 171–178
[82]
Gordon BA, Blazey TM, Su Y, Hari-Raj A, Dincer A, Flores S, Christensen J, McDade E, Wang G, Xiong C, Cairns NJ, Hassenstab J, Marcus DS, Fagan AM, Jack CR Jr, Hornbeck RC, Paumier KL, Ances BM, Berman SB, Brickman AM, Cash DM, Chhatwal JP, Correia S, Förster S, Fox NC, Graff-Radford NR, la Fougère C, Levin J, Masters CL, Rossor MN, Salloway S, Saykin AJ, Schofield PR, Thompson PM, Weiner MM, Holtzman DM, Raichle ME, Morris JC, Bateman RJ, Benzinger TLS. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study. Lancet Neurol 2018; 17(3): 241–250
CrossRef Google scholar
[83]
Xiao H, Choi SR, Zhao R, Ploessl K, Alexoff D, Zhu L, Zha Z, Kung HF. A new highly deuterated [18F]AV-45, [18F]D15FSP, for imaging β-amyloid plaques in the brain. ACS Med Chem Lett 2021; 12(7): 1086–1092
CrossRef Google scholar
[84]
Grimmer T, Shi K, Diehl-Schmid J, Natale B, Drzezga A, Förster S, Förstl H, Schwaiger M, Yakushev I, Wester HJ, Kurz A, Yousefi BH. 18F-FIBT may expand PET for β-amyloid imaging in neurodegenerative diseases. Mol Psychiatry 2020; 25(10): 2608–2619
CrossRef Google scholar
[85]
Tian M, Zuo C, Civelek AC, Carrio I, Watanabe Y, Kang KW, Murakami K, Garibotto V, Prior JO, Barthel H, Guan Y, Lu J, Zhou R, Jin C, Wu S, Zhang X, Zhong Y, Zhang H; Molecular Imaging-Based Precision Medicine Task Group of A3 (China-Japan-Korea) Foresight Program. International Nuclear Medicine Consensus on the Clinical Use of Amyloid Positron Emission Tomography in Alzheimer’s Disease. Phenomics 2022; 3(4): 375–389
CrossRef Google scholar
[86]
Wang X, Huang W, Su L, Xing Y, Jessen F, Sun Y, Shu N, Han Y. Neuroimaging advances regarding subjective cognitive decline in preclinical Alzheimer’s disease. Mol Neurodegener 2020; 15(1): 55
CrossRef Google scholar
[87]
Viejo L, Noori A, Merrill E, Das S, Hyman BT, Serrano-Pozo A. Systematic review of human post-mortem immunohistochemical studies and bioinformatics analyses unveil the complexity of astrocyte reaction in Alzheimer’s disease. Neuropathol Appl Neurobiol 2022; 48(1): e12753
CrossRef Google scholar
[88]
Shea D, Colasurdo E, Smith A, Paschall C, Jayadev S, Keene CD, Galasko D, Ko A, Li G, Peskind E, Daggett V. SOBA: development and testing of a soluble oligomer binding assay for detection of amyloidogenic toxic oligomers. Proc Natl Acad Sci USA 2022; 119(50): e2213157119
CrossRef Google scholar
[89]
Chatterjee P, Pedrini S, Doecke JD, Thota R, Villemagne VL, Doré V, Singh AK, Wang P, Rainey-Smith S, Fowler C, Taddei K, Sohrabi HR, Molloy MP, Ames D, Maruff P, Rowe CC, Masters CL, Martins RN; AIBL Research Group. Plasma Aβ42/40 ratio, p-tau181, GFAP, and NfL across the Alzheimer’s disease continuum: a cross-sectional and longitudinal study in the AIBL cohort. Alzheimers Dement 2023; 19(4): 1117–1134
CrossRef Google scholar
[90]
Lee YJ, Lin SY, Peng SW, Lin YC, Chen TB, Wang PN, Cheng IH. Predictive utility of plasma amyloid and tau for cognitive decline in cognitively normal adults. J Prev Alzheimers Dis 2023; 10(2): 178–185
[91]
Bellaver B, Povala G, Ferreira PCL, Ferrari-Souza JP, Leffa DT, Lussier FZ, Benedet AL, Ashton NJ, Triana-Baltzer G, Kolb HC, Tissot C, Therriault J, Servaes S, Stevenson J, Rahmouni N, Lopez OL, Tudorascu DL, Villemagne VL, Ikonomovic MD, Gauthier S, Zimmer ER, Zetterberg H, Blennow K, Aizenstein HJ, Klunk WE, Snitz BE, Maki P, Thurston RC, Cohen AD, Ganguli M, Karikari TK, Rosa-Neto P, Pascoal TA. Astrocyte reactivity influences amyloid-β effects on tau pathology in preclinical Alzheimer’s disease. Nat Med 2023; 29(7): 1775–1781
CrossRef Google scholar
[92]
Rajan KB, Aggarwal NT, McAninch EA, Weuve J, Barnes LL, Wilson RS, DeCarli C, Evans DA. Remote blood biomarkers of longitudinal cognitive outcomes in a population study. Ann Neurol 2020; 88(6): 1065–1076
CrossRef Google scholar
[93]
Husain M. Blood tests to screen for Alzheimer’s disease. Brain 2021; 144(2): 355–356
CrossRef Google scholar
[94]
Mattsson-Carlgren N, Salvadó G, Ashton NJ, Tideman P, Stomrud E, Zetterberg H, Ossenkoppele R, Betthauser TJ, Cody KA, Jonaitis EM, Langhough R, Palmqvist S, Blennow K, Janelidze S, Johnson SC, Hansson O. Prediction of longitudinal cognitive decline in preclinical alzheimer disease using plasma biomarkers. JAMA Neurol 2023; 80(4): 360–369
CrossRef Google scholar
[95]
Pascoal TA, Benedet AL, Ashton NJ, Kang MS, Therriault J, Chamoun M, Savard M, Lussier FZ, Tissot C, Karikari TK, Ottoy J, Mathotaarachchi S, Stevenson J, Massarweh G, Schöll M, de Leon MJ, Soucy JP, Edison P, Blennow K, Zetterberg H, Gauthier S, Rosa-Neto P. Microglial activation and tau propagate jointly across Braak stages. Nat Med 2021; 27(9): 1592–1599
CrossRef Google scholar
[96]
Johansson C, Thordardottir S, Laffita-Mesa J, Rodriguez-Vieitez E, Zetterberg H, Blennow K, Graff C. Plasma biomarker profiles in autosomal dominant Alzheimer’s disease. Brain 2023; 146(3): 1132–1140
CrossRef Google scholar
[97]
Teunissen CE, Verberk IMW, Thijssen EH, Vermunt L, Hansson O, Zetterberg H, van der Flier WM, Mielke MM, Del Campo M. Blood-based biomarkers for Alzheimer’s disease: towards clinical implementation. Lancet Neurol 2022; 21(1): 66–77
CrossRef Google scholar
[98]
Olsson B, Lautner R, Andreasson U, Öhrfelt A, Portelius E, Bjerke M, Hölttä M, Rosén C, Olsson C, Strobel G, Wu E, Dakin K, Petzold M, Blennow K, Zetterberg H. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol 2016; 15(7): 673–684
CrossRef Google scholar
[99]
Ryan D, Robards K. Metabolomics: the greatest omics of them all?. Anal Chem 2006; 78(23): 7954–7958
CrossRef Google scholar
[100]
Johnson ECB, Dammer EB, Duong DM, Ping L, Zhou M, Yin L, Higginbotham LA, Guajardo A, White B, Troncoso JC, Thambisetty M, Montine TJ, Lee EB, Trojanowski JQ, Beach TG, Reiman EM, Haroutunian V, Wang M, Schadt E, Zhang B, Dickson DW, Ertekin-Taner N, Golde TE, Petyuk VA, De Jager PL, Bennett DA, Wingo TS, Rangaraju S, Hajjar I, Shulman JM, Lah JJ, Levey AI, Seyfried NT. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med 2020; 26(5): 769–780
CrossRef Google scholar
[101]
Sriwichaiin S, Chattipakorn N, Chattipakorn SC. Metabolomic alterations in the blood and brain in association with Alzheimer’s disease: evidence from in vivo to clinical studies. J Alzheimers Dis 2021; 84(1): 23–50
CrossRef Google scholar
[102]
Sakr F, Dyrba M, Brauer A, Teipel S; Alzheimer’s Disease Neuroimaging Initiative. Association of lipidomics signatures in blood with clinical progression in preclinical and prodromal Alzheimer’s disease. J Alzheimers Dis 2022; 85: 1115–1127
CrossRef Google scholar
[103]
Casas-Fernández E, Peña-Bautista C, Baquero M, Cháfer-Pericás C. Lipids as early and minimally invasive biomarkers for Alzheimer’s disease. Curr Neuropharmacol 2022; 20(8): 1613–1631
CrossRef Google scholar
[104]
Zheng Y, Xu Q, Jin Q, Du Y, Yan J, Gao H, Zheng H. Urinary and faecal metabolic characteristics in APP/PS1 transgenic mouse model of Alzheimer’s disease with and without cognitive decline. Biochem Biophys Res Commun 2022; 604: 130–136
CrossRef Google scholar
[105]
Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H. New technologies for analysis of extracellular vesicles. Chem Rev 2018; 118(4): 1917–1950
CrossRef Google scholar
[106]
Hamlett ED, Ledreux A, Potter H, Chial HJ, Patterson D, Espinosa JM, Bettcher BM, Granholm AC. Exosomal biomarkers in Down syndrome and Alzheimer’s disease. Free Radic Biol Med 2018; 114: 110–121
CrossRef Google scholar
[107]
Jia L, Qiu Q, Zhang H, Chu L, Du Y, Zhang J, Zhou C, Liang F, Shi S, Wang S, Qin W, Wang Q, Li F, Wang Q, Li Y, Shen L, Wei Y, Jia J. Concordance between the assessment of Aβ42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid. Alzheimers Dement 2019; 15(8): 1071–1080
CrossRef Google scholar
[108]
Jia L, Zhu M, Yang J, Pang Y, Wang Q, Li T, Li F, Wang Q, Li Y, Wei Y. Exosomal microRNA-based predictive model for preclinical Alzheimer’s disease: a multicenter study. Biol Psychiatry 2022; 92(1): 44–53
CrossRef Google scholar
[109]
Naughton SX, Raval U, Pasinetti GM. The viral hypothesis in Alzheimer’s disease: novel insights and pathogen-based biomarkers. J Pers Med 2020; 10(3): 74
CrossRef Google scholar
[110]
Seaks CE, Wilcock DM. Infectious hypothesis of Alzheimer disease. PLoS Pathog 2020; 16(11): e1008596
CrossRef Google scholar
[111]
Pastore A, Raimondi F, Rajendran L, Temussi PA. Why does the Aβ peptide of Alzheimer share structural similarity with antimicrobial peptides?. Commun Biol 2020; 3(1): 135
CrossRef Google scholar
[112]
French PW. Unfolded p53 in non-neuronal cells supports bacterial etiology of Alzheimer’s disease. Neural Regen Res 2022; 17(12): 2619–2622
CrossRef Google scholar
[113]
Ishii M, Iadecola C. Metabolic and non-cognitive manifestations of Alzheimer’s disease: the hypothalamus as both culprit and target of pathology. Cell Metab 2015; 22(5): 761–776
CrossRef Google scholar
[114]
Ghosh A. Endocrine, metabolic, nutritional, and toxic disorders leading to dementia. Ann Indian Acad Neurol 2010; 13(Suppl 2): S63–S68
CrossRef Google scholar
[115]
Berlanga-Acosta J, Guillén-Nieto G, Rodríguez-Rodríguez N, Bringas-Vega ML, García-Del-Barco-Herrera D, Berlanga-Saez JO, García-Ojalvo A, Valdés-Sosa MJ, Valdés-Sosa PA. Insulin resistance at the crossroad of Alzheimer disease pathology: a review. Front Endocrinol (Lausanne) 2020; 11: 560375
CrossRef Google scholar
[116]
Zhou C, Dong C, Xie Z, Hao W, Fu C, Sun H, Zhu D. Sex-specific associations between diabetes and dementia: the role of age at onset of disease, insulin use and complications. Biol Sex Differ 2023; 14(1): 9
CrossRef Google scholar
[117]
Ennis GE, An Y, Resnick SM, Ferrucci L, O’Brien RJ, Moffat SD. Long-term cortisol measures predict Alzheimer disease risk. Neurology 2017; 88(4): 371–378
CrossRef Google scholar
[118]
Ouanes S, Popp J. High cortisol and the risk of dementia and Alzheimer’s disease: a review of the literature. Front Aging Neurosci 2019; 11: 43
CrossRef Google scholar
[119]
Udeh-Momoh CT, Su B, Evans S, Zheng B, Sindi S, Tzoulaki I, Perneczky R, Middleton LT; Alzheimer’s Disease Neuroimaging Initiative. Cortisol, amyloid-β, and reserve predicts Alzheimer’s disease progression for cognitively normal older adults. J Alzheimers Dis 2019; 70(2): 553–562
CrossRef Google scholar
[120]
Li H, Chen K, Yang L, Wang Q, Zhang J, He J. The role of plasma cortisol in dementia, epilepsy, and multiple sclerosis: a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14: 1107780
CrossRef Google scholar
[121]
Tan ZS, Beiser A, Vasan RS, Au R, Auerbach S, Kiel DP, Wolf PA, Seshadri S. Thyroid function and the risk of Alzheimer disease: the Framingham Study. Arch Intern Med 2008; 168(14): 1514–1520
CrossRef Google scholar
[122]
Marriott RJ, Murray K, Flicker L, Hankey GJ, Matsumoto AM, Dwivedi G, Antonio L, Almeida OP, Bhasin S, Dobs AS, Handelsman DJ, Haring R, O’Neill TW, Ohlsson C, Orwoll ES, Vanderschueren D, Wittert GA, Wu FCW, Yeap BB. Lower serum testosterone concentrations are associated with a higher incidence of dementia in men: the UK Biobank prospective cohort study. Alzheimers Dement 2022; 18(10): 1907–1918
CrossRef Google scholar
[123]
Keyvani K, Münster Y, Kurapati NK, Rubach S, Schönborn A, Kocakavuk E, Karout M, Hammesfahr P, Wang YC, Hermann DM, Teuber-Hanselmann S, Herring A. Higher levels of kallikrein-8 in female brain may increase the risk for Alzheimer’s disease. Brain Pathol 2018; 28(6): 947–964
CrossRef Google scholar
[124]
Azocar I, Rapaport P, Burton A, Meisel G, Orgeta V. Risk factors for apathy in Alzheimer’s disease: a systematic review of longitudinal evidence. Ageing Res Rev 2022; 79: 101672
CrossRef Google scholar
[125]
Ng KP, Chiew H, Rosa-Neto P, Kandiah N, Ismail Z, Gauthier S. Associations of AT(N) biomarkers with neuropsychiatric symptoms in preclinical Alzheimer’s disease and cognitively unimpaired individuals. Transl Neurodegener 2021; 10(1): 11
CrossRef Google scholar
[126]
Mosaferi B, Jand Y, Salari AA. Gut microbiota depletion from early adolescence alters anxiety and depression-related behaviours in male mice with Alzheimer-like disease. Sci Rep 2021; 11(1): 22941
CrossRef Google scholar
[127]
He C, Hu Z, Jiang C. Sleep disturbance: an early sign of Alzheimer’s disease. Neurosci Bull 2020; 36(4): 449–451
CrossRef Google scholar
[128]
Xiong X, Hu T, Yin Z, Zhang Y, Chen F, Lei P. Research advances in the study of sleep disorders, circadian rhythm disturbances and Alzheimer’s disease. Front Aging Neurosci 2022; 14: 944283
CrossRef Google scholar
[129]
Oh JY, Walsh CM, Ranasinghe K, Mladinov M, Pereira FL, Petersen C, Falgàs N, Yack L, Lamore T, Nasar R, Lew C, Li S, Metzler T, Coppola Q, Pandher N, Le M, Heuer HW, Heinsen H, Spina S, Seeley WW, Kramer J, Rabinovici GD, Boxer AL, Miller BL, Vossel K, Neylan TC, Grinberg LT. Subcortical neuronal correlates of sleep in neurodegenerative diseases. JAMA Neurol 2022; 79(5): 498–508
CrossRef Google scholar
[130]
Lew CH, Petersen C, Neylan TC, Grinberg LT. Tau-driven degeneration of sleep- and wake-regulating neurons in Alzheimer’s disease. Sleep Med Rev 2021; 60: 101541
CrossRef Google scholar
[131]
Kang SS, Meng L, Zhang X, Wu Z, Mancieri A, Xie B, Liu X, Weinshenker D, Peng J, Zhang Z, Ye K. Tau modification by the norepinephrine metabolite DOPEGAL stimulates its pathology and propagation. Nat Struct Mol Biol 2022; 29(4): 292–305
CrossRef Google scholar
[132]
Guo Y, Li S, Zeng LH, Tan J. Tau-targeting therapy in Alzheimer’s disease: critical advances and future opportunities. Ageing Neur Dis 2022; 2: 11
CrossRef Google scholar
[133]
Hernández-Soto R, Rojas-García KD, Peña-Ortega F. Sudden intrabulbar amyloid increase simultaneously disrupts olfactory bulb oscillations and odor detection. Neural Plast 2019; 2019: 3424906
CrossRef Google scholar
[134]
López-de-Eguileta A, López-García S, Lage C, Pozueta A, García-Martínez M, Kazimierczak M, Bravo M, Irure J, López-Hoyos M, Muñoz-Cacho P, Rodríguez-Perez N, Tordesillas-Gutiérrez D, Goikoetxea A, Nebot C, Rodríguez-Rodríguez E, Casado A, Sánchez-Juan P. The retinal ganglion cell layer reflects neurodegenerative changes in cognitively unimpaired individuals. Alzheimers Res Ther 2022; 14(1): 57
CrossRef Google scholar
[135]
Bartley SC, Proctor MT, Xia H, Ho E, Kang DS, Schuster K, Bicca MA, Seckler HS, Viola KL, Patrie SM, Kelleher NL, De Mello FG, Klein WL. An essential role for Alzheimer’s-linked amyloid beta oligomers in neurodevelopment: transient expression of multiple proteoforms during retina histogenesis. Int J Mol Sci 2022; 23(4): 2208
CrossRef Google scholar
[136]
Habiba U, Morley J, Krockenberger M, Summers BA, Tayebi M. A sequential deposition of amyloid beta oligomers, plaques and phosphorylated tau occurs throughout life in the canine retina. Ageing Neur Dis 2022; 2: 7
CrossRef Google scholar
[137]
Gupta VB, Chitranshi N, den Haan J, Mirzaei M, You Y, Lim JK, Basavarajappa D, Godinez A, Di Angelantonio S, Sachdev P, Salekdeh GH, Bouwman F, Graham S, Gupta V. Retinal changes in Alzheimer’s disease—integrated prospects of imaging, functional and molecular advances. Prog Retin Eye Res 2021; 82: 100899
CrossRef Google scholar
[138]
Chang M, Kim HJ, Mook-Jung I, Oh SH. Hearing loss as a risk factor for cognitive impairment and loss of synapses in the hippocampus. Behav Brain Res 2019; 372: 112069
CrossRef Google scholar
[139]
Brenowitz WD, Filshtein TJ, Yaffe K, Walter S, Ackley SF, Hoffmann TJ, Jorgenson E, Whitmer RA, Glymour MM. Association of genetic risk for Alzheimer disease and hearing impairment. Neurology 2020; 95(16): e2225–e2234
CrossRef Google scholar
[140]
Abdulrahman H, van Dalen JW, den Brok M, Latimer CS, Larson EB, Richard E. Hypertension and Alzheimer’s disease pathology at autopsy: a systematic review. Alzheimers Dement 2022; 18(11): 2308–2326
CrossRef Google scholar
[141]
Hu X, Wang T, Jin F. Alzheimer’s disease and gut microbiota. Sci China Life Sci 2016; 59(10): 1006–1023
CrossRef Google scholar
[142]
van de Wouw M, Boehme M, Lyte JM, Wiley N, Strain C, O’Sullivan O, Clarke G, Stanton C, Dinan TG, Cryan JF. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations. J Physiol 2018; 596(20): 4923–4944
CrossRef Google scholar
[143]
Gonzalez-Escamilla G, Atienza M, Garcia-Solis D, Cantero JL. Cerebral and blood correlates of reduced functional connectivity in mild cognitive impairment. Brain Struct Funct 2016; 221(1): 631–645
CrossRef Google scholar
[144]
Muurling M, Rhodius-Meester HFM, Pärkkä J, van Gils M, Frederiksen KS, Bruun M, Hasselbalch SG, Soininen H, Herukka SK, Hallikainen M, Teunissen CE, Visser PJ, Scheltens P, van der Flier WM, Mattila J, Lötjönen J, de Boer C. Gait disturbances are associated with increased cognitive impairment and cerebrospinal fluid tau levels in a memory clinic cohort. J Alzheimers Dis 2020; 76(3): 1061–1070
CrossRef Google scholar

Acknowledgements

This review work was supported by funding from the National Natural Science Foundation of China (Nos. 32220103006 and 82271524) and the Intramural Research Program of NIH, National Institute on Aging (Nos. ZIA AG000944 and AG000928).

Compliance with ethics guidelines

Conflicts of interest Yixin Chen, Murad Al-Nusaif, Song Li, Xiang Tan, Huijia Yang, Huaibin Cai, and Weidong Le declare that they have no competing interests.
This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(3242 KB)

Accesses

Citations

Detail

Sections
Recommended

/