Epigenetic silencing of BEND4, a novel DNA damage repair gene, is a synthetic lethal marker for ATM inhibitor in pancreatic cancer

Yuanxin Yao, Honghui Lv, Meiying Zhang, Yuan Li, James G. Herman, Malcolm V. Brock, Aiai Gao, Qian Wang, Francois Fuks, Lirong Zhang, Mingzhou Guo

PDF(16163 KB)
PDF(16163 KB)
Front. Med. ›› 2024, Vol. 18 ›› Issue (4) : 721-734. DOI: 10.1007/s11684-023-1053-3
RESEARCH ARTICLE

Epigenetic silencing of BEND4, a novel DNA damage repair gene, is a synthetic lethal marker for ATM inhibitor in pancreatic cancer

Author information +
History +

Abstract

Synthetic lethality is a novel model for cancer therapy. To understand the function and mechanism of BEN domain-containing protein 4 (BEND4) in pancreatic cancer, eight cell lines and a total of 492 cases of pancreatic neoplasia samples were included in this study. Methylation-specific polymerase chain reaction, CRISPR/Cas9, immunoprecipitation assay, comet assay, and xenograft mouse model were used. BEND4 is a new member of the BEN domain family. The expression of BEND4 is regulated by promoter region methylation. It is methylated in 58.1% (176/303) of pancreatic ductal adenocarcinoma (PDAC), 33.3% (14/42) of intraductal papillary mucinous neoplasm, 31.0% (13/42) of pancreatic neuroendocrine tumor, 14.3% (3/21) of mucinous cystic neoplasm, 4.3% (2/47) of solid pseudopapillary neoplasm, and 2.7% (1/37) of serous cystic neoplasm. BEND4 methylation is significantly associated with late-onset PDAC (> 50 years, P < 0.01) and tumor differentiation (P < 0.0001), and methylation of BEND4 is an independent poor prognostic marker (P < 0.01) in PDAC. Furthermore, BEND4 plays tumor-suppressive roles in vitro and in vivo. Mechanistically, BEND4 involves non-homologous end joining signaling by interacting with Ku80 and promotes DNA damage repair. Loss of BEND4 increased the sensitivity of PDAC cells to ATM inhibitor. Collectively, the present study revealed an uncharacterized tumor suppressor BEND4 and indicated that methylation of BEND4 may serve as a potential synthetic lethal marker for ATM inhibitor in PDAC treatment.

Keywords

BEND4 / DNA methylation / synthetic lethality / NHEJ pathway

Cite this article

Download citation ▾
Yuanxin Yao, Honghui Lv, Meiying Zhang, Yuan Li, James G. Herman, Malcolm V. Brock, Aiai Gao, Qian Wang, Francois Fuks, Lirong Zhang, Mingzhou Guo. Epigenetic silencing of BEND4, a novel DNA damage repair gene, is a synthetic lethal marker for ATM inhibitor in pancreatic cancer. Front. Med., 2024, 18(4): 721‒734 https://doi.org/10.1007/s11684-023-1053-3

References

[1]
Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014; 74(11): 2913–2921
CrossRef Google scholar
[2]
Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. Lancet 2020; 395(10242): 2008–2020
CrossRef Google scholar
[3]
Strobel O, Neoptolemos J, Jäger D, Büchler MW. Optimizing the outcomes of pancreatic cancer surgery. Nat Rev Clin Oncol 2019; 16(1): 11–26
CrossRef Google scholar
[4]
Dreyer SB, Chang DK, Bailey P, Biankin AV. Pancreatic cancer genomes: implications for clinical management and therapeutic development. Clin Cancer Res 2017; 23(7): 1638–1646
CrossRef Google scholar
[5]
Huang A, Garraway LA, Ashworth A, Weber B. Synthetic lethality as an engine for cancer drug target discovery. Nat Rev Drug Discov 2020; 19(1): 23–38
CrossRef Google scholar
[6]
Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005; 434(7035): 917–921
CrossRef Google scholar
[7]
Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005; 434(7035): 913–917
CrossRef Google scholar
[8]
Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science 2017; 355(6330): 1152–1158
CrossRef Google scholar
[9]
Lord CJ, Ashworth A. BRCAness revisited. Nat Rev Cancer 2016; 16(2): 110–120
CrossRef Google scholar
[10]
Guo M, Peng Y, Gao A, Du C, Herman JG. Epigenetic heterogeneity in cancer. Biomark Res 2019; 7(1): 23
CrossRef Google scholar
[11]
Gao A, Guo M. Epigenetic based synthetic lethal strategies in human cancers. Biomark Res 2020; 8: 44
CrossRef Google scholar
[12]
Cui Y, Chen H, Xi R, Cui H, Zhao Y, Xu E, Yan T, Lu X, Huang F, Kong P, Li Y, Zhu X, Wang J, Zhu W, Wang J, Ma Y, Zhou Y, Guo S, Zhang L, Liu Y, Wang B, Xi Y, Sun R, Yu X, Zhai Y, Wang F, Yang J, Yang B, Cheng C, Liu J, Song B, Li H, Wang Y, Zhang Y, Cheng X, Zhan Q, Li Y, Liu Z. Whole-genome sequencing of 508 patients identifies key molecular features associated with poor prognosis in esophageal squamous cell carcinoma. Cell Res 2020; 30(10): 902–913
CrossRef Google scholar
[13]
Abhiman S, Iyer LM, Aravind L. BEN: a novel domain in chromatin factors and DNA viral proteins. Bioinformatics 2008; 24(4): 458–461
CrossRef Google scholar
[14]
Sathyan KM, Shen Z, Tripathi V, Prasanth KV, Prasanth SG. A BEN-domain-containing protein associates with heterochromatin and represses transcription. J Cell Sci 2011; 124(Pt 18): 3149–3163
CrossRef Google scholar
[15]
Kurniawan F, Prasanth SG. A BEN-domain protein and polycomb complex work coordinately to regulate transcription. Transcription 2022; 13(1–3): 82–87
CrossRef Google scholar
[16]
Zhang J, Zhang Y, You Q, Huang C, Zhang T, Wang M, Zhang T, Yang X, Xiong J, Li Y, Liu CP, Zhang Z, Xu RM, Zhu B. Highly enriched BEND3 prevents the premature activation of bivalent genes during differentiation. Science 2022; 375(6584): 1053–1058
CrossRef Google scholar
[17]
Babu S, Takeuchi Y, Masai I. Banp regulates DNA damage response and chromosome segregation during the cell cycle in zebrafish retina. eLife 2022; 11: e74611
CrossRef Google scholar
[18]
Ma L, Xie D, Luo M, Lin X, Nie H, Chen J, Gao C, Duo S, Han C. Identification and characterization of BEND2 as a key regulator of meiosis during mouse spermatogenesis. Sci Adv 2022; 8(21): eabn1606
CrossRef Google scholar
[19]
Shi Y, Zhang D, Chen J, Jiang Q, Song S, Mi Y, Wang T, Ye Q. Interaction between BEND5 and RBPJ suppresses breast cancer growth and metastasis via inhibiting Notch signaling. Int J Biol Sci 2022; 18(10): 4233–4244
CrossRef Google scholar
[20]
Shi G, Bai Y, Zhang X, Su J, Pang J, He Q, Zeng P, Ding J, Xiong Y, Zhang J, Wang J, Liu D, Ma W, Huang J, Songyang Z. Bend family proteins mark chromatin boundaries and synergistically promote early germ cell differentiation. Protein Cell 2022; 13(10): 721–741
CrossRef Google scholar
[21]
Du W, Gao A, Herman JG, Wang L, Zhang L, Jiao S, Guo M. Methylation of NRN1 is a novel synthetic lethal marker of PI3K-Akt-mTOR and ATR inhibitors in esophageal cancer. Cancer Sci 2021; 112(7): 2870–2883
CrossRef Google scholar
[22]
Li H, Zhang M, Linghu E, Zhou F, Herman JG, Hu L, Guo M. Epigenetic silencing of TMEM176A activates ERK signaling in human hepatocellular carcinoma. Clin Epigenetics 2018; 10(1): 137
CrossRef Google scholar
[23]
Pierce AJ, Johnson RD, Thompson LH, Jasin M. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev 1999; 13(20): 2633–2638
CrossRef Google scholar
[24]
Guirouilh-Barbat J, Huck S, Bertrand P, Pirzio L, Desmaze C, Sabatier L, Lopez BS. Impact of the KU80 pathway on NHEJ-induced genome rearrangements in mammalian cells. Mol Cell 2004; 14(5): 611–623
CrossRef Google scholar
[25]
Olive PL, Banáth JP. The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 2006; 1(1): 23–29
CrossRef Google scholar
[26]
Zhang C, Zhou B, Gu F, Liu H, Wu H, Yao F, Zheng H, Fu H, Chong W, Cai S, Huang M, Ma X, Guo Z, Li T, Deng W, Zheng M, Ji Q, Zhao Y, Ma Y, Wang QE, Tang TS, Guo C. Micropeptide PACMP inhibition elicits synthetic lethal effects by decreasing CtIP and poly(ADP-ribosyl)ation. Mol Cell 2022; 82(7): 1297–1312.e8
CrossRef Google scholar
[27]
Zhao B, Rothenberg E, Ramsden DA, Lieber MR. The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol 2020; 21(12): 765–781
CrossRef Google scholar
[28]
Yue X, Bai C, Xie D, Ma T, Zhou PK. DNA-PKcs: a multi-faceted player in DNA damage response. Front Genet 2020; 11: 607428
CrossRef Google scholar
[29]
Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 1988; 53(4): 549–554
CrossRef Google scholar
[30]
Scarpa A, Capelli P, Mukai K, Zamboni G, Oda T, Iacono C, Hirohashi S. Pancreatic adenocarcinomas frequently show p53 gene mutations. Am J Pathol 1993; 142(5): 1534–1543
[31]
Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong SM, Fu B, Lin MT, Calhoun ES, Kamiyama M, Walter K, Nikolskaya T, Nikolsky Y, Hartigan J, Smith DR, Hidalgo M, Leach SD, Klein AP, Jaffee EM, Goggins M, Maitra A, Iacobuzio-Donahue C, Eshleman JR, Kern SE, Hruban RH, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008; 321(5897): 1801–1806
CrossRef Google scholar
[32]
Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, Miller DK, Wilson PJ, Patch AM, Wu J, Chang DK, Cowley MJ, Gardiner BB, Song S, Harliwong I, Idrisoglu S, Nourse C, Nourbakhsh E, Manning S, Wani S, Gongora M, Pajic M, Scarlett CJ, Gill AJ, Pinho AV, Rooman I, Anderson M, Holmes O, Leonard C, Taylor D, Wood S, Xu Q, Nones K, Fink JL, Christ A, Bruxner T, Cloonan N, Kolle G, Newell F, Pinese M, Mead RS, Humphris JL, Kaplan W, Jones MD, Colvin EK, Nagrial AM, Humphrey ES, Chou A, Chin VT, Chantrill LA, Mawson A, Samra JS, Kench JG, Lovell JA, Daly RJ, Merrett ND, Toon C, Epari K, Nguyen NQ, Barbour A, Zeps N; Australian Pancreatic Cancer Genome Initiative; Kakkar N, Zhao F, Wu YQ, Wang M, Muzny DM, Fisher WE, Brunicardi FC, Hodges SE, Reid JG, Drummond J, Chang K, Han Y, Lewis LR, Dinh H, Buhay CJ, Beck T, Timms L, Sam M, Begley K, Brown A, Pai D, Panchal A, Buchner N, De Borja R, Denroche RE, Yung CK, Serra S, Onetto N, Mukhopadhyay D, Tsao MS, Shaw PA, Petersen GM, Gallinger S, Hruban RH, Maitra A, Iacobuzio-Donahue CA, Schulick RD, Wolfgang CL, Morgan RA, Lawlor RT, Capelli P, Corbo V, Scardoni M, Tortora G, Tempero MA, Mann KM, Jenkins NA, Perez-Mancera PA, Adams DJ, Largaespada DA, Wessels LF, Rust AG, Stein LD, Tuveson DA, Copeland NG, Musgrove EA, Scarpa A, Eshleman JR, Hudson TJ, Sutherland RL, Wheeler DA, Pearson JV, McPherson JD, Gibbs RA, Grimmond SM. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 2012; 491(7424): 399–405
CrossRef Google scholar
[33]
Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, Miller DK, Christ AN, Bruxner TJ, Quinn MC, Nourse C, Murtaugh LC, Harliwong I, Idrisoglu S, Manning S, Nourbakhsh E, Wani S, Fink L, Holmes O, Chin V, Anderson MJ, Kazakoff S, Leonard C, Newell F, Waddell N, Wood S, Xu Q, Wilson PJ, Cloonan N, Kassahn KS, Taylor D, Quek K, Robertson A, Pantano L, Mincarelli L, Sanchez LN, Evers L, Wu J, Pinese M, Cowley MJ, Jones MD, Colvin EK, Nagrial AM, Humphrey ES, Chantrill LA, Mawson A, Humphris J, Chou A, Pajic M, Scarlett CJ, Pinho AV, Giry-Laterriere M, Rooman I, Samra JS, Kench JG, Lovell JA, Merrett ND, Toon CW, Epari K, Nguyen NQ, Barbour A, Zeps N, Moran-Jones K, Jamieson NB, Graham JS, Duthie F, Oien K, Hair J, Grützmann R, Maitra A, Iacobuzio-Donahue CA, Wolfgang CL, Morgan RA, Lawlor RT, Corbo V, Bassi C, Rusev B, Capelli P, Salvia R, Tortora G, Mukhopadhyay D, Petersen GM; Australian Pancreatic Cancer Genome Initiative; Munzy DM, Fisher WE, Karim SA, Eshleman JR, Hruban RH, Pilarsky C, Morton JP, Sansom OJ, Scarpa A, Musgrove EA, Bailey UM, Hofmann O, Sutherland RL, Wheeler DA, Gill AJ, Gibbs RA, Pearson JV, Waddell N, Biankin AV, Grimmond SM. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 2016; 531(7592): 47–52
CrossRef Google scholar
[34]
Dreyer SB, Upstill-Goddard R, Legrini A, Biankin AV; Glasgow Precision Oncology Laboratory; Jamieson NB, Chang DK; Australian Pancreatic Genome Initiative; Jamieson NB, Chang DK. Genomic and molecular analyses identify molecular subtypes of pancreatic cancer recurrence. Gastroenterology 2022; 162(1): 320–324.e4
CrossRef Google scholar
[35]
Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, Johns AL, Miller D, Nones K, Quek K, Quinn MC, Robertson AJ, Fadlullah MZ, Bruxner TJ, Christ AN, Harliwong I, Idrisoglu S, Manning S, Nourse C, Nourbakhsh E, Wani S, Wilson PJ, Markham E, Cloonan N, Anderson MJ, Fink JL, Holmes O, Kazakoff SH, Leonard C, Newell F, Poudel B, Song S, Taylor D, Waddell N, Wood S, Xu Q, Wu J, Pinese M, Cowley MJ, Lee HC, Jones MD, Nagrial AM, Humphris J, Chantrill LA, Chin V, Steinmann AM, Mawson A, Humphrey ES, Colvin EK, Chou A, Scarlett CJ, Pinho AV, Giry-Laterriere M, Rooman I, Samra JS, Kench JG, Pettitt JA, Merrett ND, Toon C, Epari K, Nguyen NQ, Barbour A, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grützmann R, Aust D, Hruban RH, Maitra A, Iacobuzio-Donahue CA, Wolfgang CL, Morgan RA, Lawlor RT, Corbo V, Bassi C, Falconi M, Zamboni G, Tortora G, Tempero MA; Australian Pancreatic Cancer Genome Initiative; Gill AJ, Eshleman JR, Pilarsky C, Scarpa A, Musgrove EA, Pearson JV, Biankin AV, Grimmond SM. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015; 518(7540): 495–501
CrossRef Google scholar
[36]
Cancer Genome Atlas Research Network. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 2017; 32(2): 185–203.e13
CrossRef Google scholar
[37]
Singhi AD, George B, Greenbowe JR, Chung J, Suh J, Maitra A, Klempner SJ, Hendifar A, Milind JM, Golan T, Brand RE, Zureikat AH, Roy S, Schrock AB, Miller VA, Ross JS, Ali SM, Bahary N. Real-time targeted genome profile analysis of pancreatic ductal adenocarcinomas identifies genetic alterations that might be targeted with existing drugs or used as biomarkers. Gastroenterology 2019; 156(8): 2242–2253.e4
CrossRef Google scholar
[38]
Qian Y, Gong Y, Fan Z, Luo G, Huang Q, Deng S, Cheng H, Jin K, Ni Q, Yu X, Liu C. Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma. J Hematol Oncol 2020; 13(1): 130
CrossRef Google scholar
[39]
Rémond MS, Pellat A, Brezault C, Dhooge M, Coriat R. Are targeted therapies or immunotherapies effective in metastatic pancreatic adenocarcinoma?. ESMO Open 2022; 7(6): 100638
CrossRef Google scholar
[40]
Golan T, Hammel P, Reni M, Van Cutsem E, Macarulla T, Hall MJ, Park JO, Hochhauser D, Arnold D, Oh DY, Reinacher-Schick A, Tortora G, Algül H, O’Reilly EM, McGuinness D, Cui KY, Schlienger K, Locker GY, Kindler HL. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med 2019; 381(4): 317–327
CrossRef Google scholar
[41]
Perkhofer L, Gout J, Roger E, Kude de Almeida F, Baptista Simões C, Wiesmüller L, Seufferlein T, Kleger A. DNA damage repair as a target in pancreatic cancer: state-of-the-art and future perspectives. Gut 2021; 70(3): 606–617
CrossRef Google scholar
[42]
Hayashi A, Hong J, Iacobuzio-Donahue CA. The pancreatic cancer genome revisited. Nat Rev Gastroenterol Hepatol 2021; 18(7): 469–481
CrossRef Google scholar
[43]
Gourley C, Balmaña J, Ledermann JA, Serra V, Dent R, Loibl S, Pujade-Lauraine E, Boulton SJ. Moving from Poly (ADP-ribose) polymerase inhibition to targeting DNA repair and DNA damage response in cancer therapy. J Clin Oncol 2019; 37(25): 2257–2269
CrossRef Google scholar
[44]
Li H, Yang W, Zhang M, He T, Zhou F, G Herman J, Hu L, Guo M. Methylation of TMEM176A, a key ERK signaling regulator, is a novel synthetic lethality marker of ATM inhibitors in human lung cancer. Epigenomics 2021; 13(17): 1403–1419
CrossRef Google scholar
[45]
Davalos V, Esteller M. Cancer epigenetics in clinical practice. CA Cancer J Clin 2023; 73(4): 376–424
CrossRef Google scholar
[46]
Topper MJ, Vaz M, Marrone KA, Brahmer JR, Baylin SB. The emerging role of epigenetic therapeutics in immuno-oncology. Nat Rev Clin Oncol 2020; 17(2): 75–90
CrossRef Google scholar
[47]
Wang D, Wu W, Callen E, Pavani R, Zolnerowich N, Kodali S, Zong D, Wong N, Noriega S, Nathan WJ, Matos-Rodrigues G, Chari R, Kruhlak MJ, Livak F, Ward M, Caldecott K, Di Stefano B, Nussenzweig A. Active DNA demethylation promotes cell fate specification and the DNA damage response. Science 2022; 378(6623): 983–989
CrossRef Google scholar
[48]
Weber AR, Krawczyk C, Robertson AB, Kuśnierczyk A, Vågbø CB, Schuermann D, Klungland A, Schär P. Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Nat Commun 2016; 7(1): 10806
CrossRef Google scholar

Acknowledgements

We sincerely thank Xiaomo Su for experimental preparation. This work was supported by grants from the National Key Research and Development Program of China (Nos. 2018YFA0208902 and 2020YFC2002705), the National Natural Science Foundation of China (Nos. 82272632 and 81672138), and Beijing Science Foundation of China (No. 7171008).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-023-1053-3 and is accessible for authorized users.

Compliance with ethics guidelines

Conflicts of interest Yuanxin Yao, Honghui Lv, Meiying Zhang, Yuan Li, James G. Herman, Malcolm V. Brock, Aiai Gao, Qian Wang, Francois Fuks, Lirong Zhang and Mingzhou Guo declare that they have no conflict of interest.
All institutional and national guidelines for the care and use of laboratory animals were followed.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(16163 KB)

Accesses

Citations

Detail

Sections
Recommended

/