2025-10-01 2025, Volume 6 Issue 5

  • Select all
  • review-article
    Jianguo (Jingle) Wu, Julius Addai, Macharia Consolata, Zening Gao, Erica Martin, Emily Sezate Yasutake, Yucang Wang

    Achieving Sustainable Development Goals (SDGs) requires place-based solutions that reconcile global aspirations with local realities. Landscapes and regions represent a pivotal scale domain—large enough to capture cross-boundary ecological and socioeconomic processes, yet sufficiently grounded to enable context-sensitive understanding and governance. Landscape sustainability science offers a robust framework for bridging the global-local divide in SDG implementation. Rooted in the long-standing convergence between ecology and geography—tracing back to Humboldt’s unity of nature—landscape sustainability science advances a spatially explicit, systems-oriented approach guided by the principles of strong sustainability. Here we present the landscape sustainability science framework, structured around the core triad of landscape pattern, ecosystem services, and human wellbeing, and operationalized through dual feedback loops and the analysis–adaptation–assessment cycle. Our assessment shows that landscape sustainability science contributes directly to eight SDGs and indirectly to six others, offering actionable strategies for climate resilience, sustainable land management, and inclusive landscape governance. By helping to spatialize, localize, and operationalize global sustainability targets, landscape sustainability science provides a pragmatic pathway to advance the SDGs in diverse socioecological contexts. If global sustainability is to be achieved, we must think and act like a landscape.

  • review-article
    Xiao Chen, Song Leng, Zhaowu Yu, Ranhao Sun

    Elderly individuals disproportionately face heat exposure risk compared to other demographic groups, with projected amplification in the future. The vast disparities between Global North and South countries necessitate a comprehensive understanding of the underlying factors influencing future heat exposure vulnerabilities. Here, we use factor decomposition method to quantify the contribution of climate change, population, and aging to heat exposure risk under four shared socioeconomic pathways (SSP) (SSP126, SSP245, SSP370, SSP585) from 2000 to 2100 at 20-year intervals. Results demonstrate a projected global escalation in heat exposure risk by 16 and 76 times under SSP126 and SSP585, respectively, with the North generally suffering lower risk than the South. Climate change emerges as a pivotal driver of future heat exposure risk in the North while aging notably influences the South. Despite climate change is projected to reduce heat exposure risk by up to 10 % in the North under SSP1-2.6 by the end of the 21st century, aging remains a critical risk factor.

  • review-article
    Fayong Liu, Xinyu Zou, Yuanyuan Huang

    Due to its impact on cereal yields, vegetation growth, animal wellbeing, and human health, considerable attention has been paid to diurnal temperature range, focusing on the temporal dimension of surface air temperature. However, the characteristics of spatial temperature range and its response to climate change remain unclear, despite its importance to various natural and societal activities. Here, we proposed a daily spatial temperature range (DSTR, difference between spatial maximum and minimum temperature, STmax and STmin) indicator to measure the maximum spatial temperature range within a given region over a day. We analyzed the spatiotemporal pattern of DSTR and its trend under climate change at four scales (global, hemispheric, national, and provincial), with the following main results: (1) DSTR was scale dependent, provincial pattern of which were mainly related to sensible and latent heat fluxes. (2) The key regions affecting DSTR and temporal distribution at different scales were mapped out. (3) Under climate change, DSTR significantly decreased globally, hemispherically, and in several Chinese provinces due to the greater warming of STmin than STmax. The influence of latent heat flux and solar shortwave radiation was larger at global/hemispheric scales, while the albedo was a more critical driver at provincial scale. For the first time, we proposed the DSTR indicator and emphasized the importance of exploring spatial temperature heterogeneity. This spatial information is important to optimize relevant societal activities, and the response of DSTR to climate change has further led to the consideration of the relationship between DSTR and extreme events, biodiversity, etc.

  • review-article
    Hu Yu, Xinyue Hu, Ling Yao

    Vegetation restoration (VR) is critical for enhancing the resilience of fragile ecosystems, yet its impact on landscape ecological risk (LER) remains uncertain. The VR project on the Loess Plateau in Shaanxi Province (LPSX) was taken as a case study to address ecological and environmental challenges, including soil erosion and land degradation. This study used multi-source data, including land cover, fractional vegetation cover, and nighttime light. It employed landscape pattern analysis, spatio-temporal correlation analysis, and causality analysis to assess the impacts. This study found a generally positive relationship between VR and the mitigation of LER in LPSX, though spatial and temporal variations exist from 2000 to 2020. Localized VR significantly influenced 17.66 % to 27.03 % of the study area. Positive effects were mainly observed in sandy and gully-hilly regions, showing an upward fluctuating trend that peaked at 21.91 % in 2010. After 2010, negative effects in the Fen-Wei Plain, Qinling Mountains, and Liupan Mountains outweighed the positive effects and continued to expand. Urbanization had a broader impact on LER distribution compared to VR. The findings indicate that future VR projects should focus on the spatial pattern of restoration and its associated eco-social effects to ensure sustainable development.

  • review-article
    Weilong Li, Meng Zhang, Mengyao Han

    Photovoltaics play an essential role in supporting the unprecedented growth of renewable energy transition as well as facing a series of trade risks due to complex international dynamics and intermittent trade disruptions. By combining complex network modeling and shock propagation analysis, the spatial-temporal evolution of photovoltaic supply chains worldwide was depicted, and the potential trade risks under different scenarios were elucidated in this study. The results show that the trade patterns of photovoltaic supply chains have evolved significantly, particularly characterized by the rise of China, Malaysia, Vietnam, and Thailand. The complexity of photovoltaic supply chains increases significantly with the addition of more nodes and edges in the networks. The vulnerability of critical photovoltaic supply chains tends to intensify with the increasing concentration of global supply chains in a geographic sense. The interruption of trade ties between China and Vietnam may lead to the most drastic impact on photovoltaic supply chains, followed by trade disruptions between Southeast Asia and North America. By unveiling the spatial-temporal network evolution and potential trade disruption of global photovoltaic supply chains, it is practical to propose rational and feasible strategies that consider the geographical diversification and international cooperation of photovoltaic supply chains worldwide.

  • review-article
    Hua Liu, Shiliang Liu, Fangfang Wang, Yifei Zhao, Yuhong Dong, Lam-Son Phan Tran

    Ecological restoration is considered an important way to mitigate ecosystem degradation and improve regional nature’s contributions to people (NCPs). Ecological planning is a prerequisite for ecological restoration and the prevention of future ecological risks. However, few studies have focused on integrating ecological plans within the framework of Sustainable Development Goals (SDGs) and shared socioeconomic pathways (SSPs). In this study, taking the Qinghai‒Xizang Plateau (QXP) as a case, we assessed ecological restoration priorities based on NCPs under various SDGs and SSP scenarios. Specifically, the land use demand was predicted using system dynamics (SD) and cellular automata (CA) models between 2030 and 2060 under SDG-SSP scenarios. In addition, habitat maintenance (NCP1), climate regulation (NCP4), and water quantity regulation (NCP6) were assessed based on the predicted land use. Finally, priority areas for ecological restoration were identified using a zonation model. The results indicated that the grassland, forest, and cultivated areas will increase in the SDGs and SSPs scenarios, respectively. The high-value NCP areas are mainly located in the southeast part of the QXP, accounting for 45.16 % of the study area. In addition, the ecological restoration area involves grassland, cultivated and bare land. In the single-objective scenario, NCP1, NCP4, and NCP6 can be improved by 30.29 %, 28.75 % and 25.63 %, respectively, through the restoration of 15.33 % of the priority areas identified in 2015. When shifting to a multi-objective cooperative optimum, NCP1, NCP4 and NCP6 can be improved 35.79 % by restoring 54.96 % of the priority areas. This study provides insight into how SDGs and SSPs can contribute to ecological restoration for mitigating ecosystem degradation under SDG-SSP scenarios.

  • review-article
    Xianlei Fan, Yangjian Zhang, Jing Zhang, Edith Bai

    Although Vegetation Restoration Programs (VRPs) on the Loess Plateau, China, have significantly improved the region’s ecological condition, their impact on the local economy and agriculture remain unclear. Here we used the difference-in-differences analysis to quantify the effects of the VRPs on population, economic, and agricultural aspects. Results suggest that the implementation of the VRPs increased mean county-based Gross Domestic Product by 148 % and per capita grain production by 30 %, but decreased rural labor resources by 11 %. VRPs promoted the transfer of population to the secondary industry and increased the income of local farmers. We predict that grain production will likely start to decline when the restoration area exceeds approximately 55 % of the total county area in the future. Our study suggests that while VRPs on the Loess Plateau are economically sustainable, their expansion beyond a certain threshold could jeopardize agriculture.

  • review-article
    Peifang Leng, Zhipin Ai, Fadong Li

    Water is an indispensable resource for agricultural production. However, its value in agriculture remains largely unknown. This oversight results in agriculture water value being seldom integrated into water pricing, thereby restricting the information available for water allocation decisions. In this study, we estimated irrigation water value over the last 30 years on the north slope of the Tianshan Mountains, where agriculture is largely dependent on irrigation water supply. Using a data-parsimonious biophysical framework with a function of crop growth and water-demanding dynamics, we estimate the additional net economic benefit of irrigated agriculture relative to rainfed conditions for three major crops at the county level. Our results reveal that mean irrigation water values were 0.27, 0.32, and 0.16 USD m–3 for cotton, maize, and wheat, respectively, which were 2.0 − 3.2 times higher than global estimates. The value of irrigation water significantly increased over time, primarily driven by rising crop prices and improved water use efficiency. Our findings indicate that farmers in arid regions with water limitations may favor crops with high irrigation water use efficiency. Wheat is suggested to be spatially reallocated in light of the economic benefit, given its relatively low output price and water use efficiency. Irrigation water value was more sensitive to precipitation than air temperature by lowering crop prices and narrowing the gap between rain-fed and irrigated yields. The inclusion of irrigation water value in planning could lead to more efficient use of water resources and support decisions regarding irrigation investments, water use rights, and, ultimately, food sustainability.

  • review-article
    Fangli Wei, Lanhui Wang, Lizhi Jia, Yuanyuan Huang

    Soil erosion is a critical process influencing the global carbon cycle. However, erosion-induced carbon changes remain inadequately understood, particularly for soil inorganic carbon (SIC). There is also limited knowledge about the factors influencing soil carbon dynamics during erosion processes. Here we quantify the global translocation of soil organic carbon (SOC) and SIC due to soil erosion using data-driven global soil carbon estimates combined with a soil erosion map derived from the Revised Universal Soil Loss Equation (RUSLE) model. Our analysis reveals that global SIC and SOC translocations from soil erosion are 107.1 Tg C yr−1 and 898.4 Tg C yr−1, respectively. These translocations exhibit distinct patterns across aridity gradients and different biomes and soil types, with SIC translocation increasing while SOC translocation decreasing with aridity. Croplands exhibit significantly higher soil carbon translocation compared to natural vegetation, with SIC translocation being 2.41 times higher and SOC translocation 0.65 times higher than in forests. Topographic features (slope length and steepness) predominantly determine soil carbon translocation during erosion, with steeper and longer slopes exacerbating erosion and subsequent SIC/SOC translocation. Land use change, particularly agricultural practices, is also a critical driver. Our findings provide valuable insights into the factors influencing SIC and SOC translocation, enhancing our understanding of the global patterns and determinants of erosion-induced soil carbon dynamics.

  • review-article
    Jun Wang, Xiaochi Liu, Xiao Zhang, Yan Gao

    The Qinghai–Xizang Plateau is a primary water supply region in Asia. The Lhasa River Basin is the political, economic, and cultural core area and main cultivation area of Qinghai–Xizang Plateau and is considered ecologically fragile. With uneven spatial and temporal distribution of water resources, mismatched supply and demand may accentuate differences in distribution and affect the security of regional water resources. This study employed system dynamics (SD) to measure the supply and demand of water supply services and analyzed the correlation between supply and beneficiary areas by evaluating the supply and demand overlap. Moreover, the 2030 supply–demand relationship was predicted, the pattern of sustainable development of the basin is discussed, and optimization suggestions are proposed. The range of water supply service beneficiary areas in the Lhasa River Basin shows an increasing trend from 2005 to 2020. The spatial distribution of water supply in 2030 is predicted to be the same as that in 2020, while the total amount of water supply is expected to decrease. By 2030, the largest proportion of water demand will be industry, followed by agriculture, forestry, and animal husbandry. Overall, there is a mismatch between water supply and demand services in the Lhasa River Basin, and it is essential to develop a reasonable water resource management and allocation policy as well as an optimized ecological management strategy for the basin through integrated planning. Here, we provide suggestions for the sustainable development and ecological environmental protection of the Lhasa River Basin.

  • review-article
    Xi Chen, Jinwei Dong, Zhichao Li, Li Sun, Chuantao Ren, Guoming Du, Yuanyuan Di, Nanshan You, Xiaoyong Liao

    State farms, although a minority in China’s agricultural sector, play a critical role in regions like Heilongjiang, leading national food production. However, how state farms (SFs) and rural household farms (RFs) respond to food policies, especially the 2017 soybean subsidy policy (post-Sino–U.S. trade war) and the 2019 soybean revitalization policy, remains unclear. This study examines changes in cropping patterns on SFs and RFs in Heilongjiang from 2013 to 2022 using annual crop maps. We find that SFs, with larger and more clustered fields, responded more effectively to the soybean policies: soybean acreage recovery (2019–2021) reached 91.51 % of pre-trade war levels for RFs and 98.2 % for SFs; following the revitalization policy, maize-soybean rotations were implemented four times in 62.3 % of SFs and 45.4 % of RFs. These results highlight the influence of global trade and agricultural policies on cropland management, providing critical insights into sustainable practices and food security across different agricultural systems.

  • review-article
    Qin Zhou, Changgao Cheng, Zhou Fang, Shi Xue, Qiuya Zhao, Zhongde Huang, Jie Wang, Wei Jin, Chenjun Zhang, Yang Bai, Ni Geng, Hengquan Zhang

    Urbanization develops with the goal of establishing improved and more sustainable habitats for residents. Environmental and social performance must be simultaneously monitored to ascertain whether regions are progressing towards or deviating from the safe and just space (SJS) in urbanization. Despite relevant studies, the absence of indicators that bridge ecological preservation and human well-beings renders dual monitoring challenging. This study bridged the gap by exploring the interactions between urbanization, ecosystem services (ESs), and basic water, energy, and food (WEF) needs within the SJS framework across China and its provinces. By quantifying the minimum and actual demands for freshwater withdrawal, carbon emissions, phosphorus emissions, and land use, as well as the supply of ESs into unified biophysical indicators, we found that: (1) China can meet the basic WEF needs for all from 2000 to 2020, but only water and land provisioning ESs can operate within the SJS. Carbon emissions surpassed the sequestration capacity in 2010, while phosphorus purification ES has consistently been unsafe. (2) The SJS performance in terms of ecological and social fulfilment exhibited scale differences and undergone changes with urbanization. Overall, no province in China can consistently operate within all SJSs. (3) In the process of urbanization, improvements in ecological protection and production practices in most provinces expanded the size of SJS, but the continuous increase in total demand failed to steer regions toward safer spaces. Our framework emphasized the common but differentiated pathways that regions at varying stages of urbanization navigate to achieve safety and justice. It also provides an applicable solution for regions aiming to pursue urban growth while maintaining ecological conservation and social justice, ultimately achieving sustainable development.

  • review-article
    Lingxue Yu, Zhuoran Yan, Tingxiang Liu, Xuan Li, Jiaxuan Li, Kun Bu, Wen J. Wang

    Temperate forests exert significant biogeophysical influences on local and regional climates through modulating the energy and moisture exchanges between the land surface and the atmosphere, thereby serving as crucial barriers with significant buffering impacts on the productivity of adjacent agricultural ecosystems. However, the extent and underlying mechanisms of these biogeophysical and buffering effects of temperate forest barriers remains insufficiently understood. In this study, we integrated the dynamic crop model Noah-MP-Crop with the Weather Research and Forecasting (WRF) model to investigate the biogeophysical climate regulation of temperate forests and its buffering effects on crop yields in adjacent agricultural lands across Northeast China. Our findings revealed that temperate forest barriers induced significant local climate effects by cooling air and surface temperatures and reducing wind speeds within forested areas during the growing season, while also regulating non-local climate, particularly by altering regional precipitation patterns, 2 m water vapor mixing ratio (Q2), and soil moisture, predominantly in adjacent cropland areas. Furthermore, these forest barriers were found to modulate climate extremes, through affecting maximum temperature and wind speed on a local scale, as well as both maximum and minimum Q2 in non-local croplands. Our study also observed that temperate forest barriers, through biogeophysical climate regulation, enhanced GPP, NPP, and grain yields across most cropland areas. This productivity boost was especially pronounced, with yield increases up to 20 % in certain regions during the extreme drought conditions of 2017, underscoring the critical role of temperate forest barriers in sustaining and enhancing crop yields under severe climatic stress. Our findings underscore the significant buffering effects of temperate forest barriers on regional agricultural production, having important implications for climate adaptation strategies aimed at bolstering agricultural resilience in the face of increasing climate variability and extremes.

  • review-article
    Kejing Zhou, Fanhua Kong, Haiwei Yin, Georgia Destouni, Xueying Zhuang, Yulong Ban, Liding Chen

    Over the period of rainfall, urban green infrastructures (UGI) function like a sponge by absorbing surface runoff as sinks; however, they will shift to sources once their runoff reduction capacities are exceeded. This dynamic of sink-source shifts, and its dependence on the vegetation structure, remain poorly understood, limiting the action of flood-resilient UGI strategies. This study employs MIKE SHE/11 model coupled with statistical analysis for such resolution. Across four scenarios ranging from light to heavy rainfall, we identified regime shifts in UGI system through the decreasing to increasing trends of sink fractions, typically occurring around 13–18 h after rainfall starts. Based on these regime shifts, we categorized the UGI system into vulnerable, reliable, and recoverable components, highlighting its heterogeneous performance. In addition, by examining the influence of vegetation structure on sink–source dynamics, we found that a higher probability of sinks under light rainfalls was associated with a greater leaf area index (LAI) and vegetation height standard deviation (VHSTD), while green volume (GV) and canopy height (CH) played a more prominent role under heavier rainfalls. Threshold effect analysis further revealed that, a high proportion of the recoverable parts met the thresholds of CH (82 %) and GV (85 %), whereas fewer reached the thresholds of LAI (15 %–19 %) and VHSTD (3 %–6 %). These findings underscore the importance of enhancing 3D vegetation configuration for UGI to adapt to flood impacts. Our study expects to provide actionable knowledge for understanding, quantification, and management of the runoff sink-source dynamics, informing UGI design and planning to achieve urban flood resilience.

  • review-article
    Guirui Yu, Zongxu Yu, Zhi Chen, Qiufeng Wang

    Ecosystems are complex systems shaped by both self-organization and anthropogenic regulation, emerging from the dynamic interplay among water, land, climate, biota, and human activities. As the foundational habitat for human well-being, they provide essential services including ecological goods, natural resources, cultural value, and livable environments. Amid accelerating global change, intensifying environmental pressures, and deepening disciplinary integration, ecosystem science is entering a period of transformative development. This study identifies macrosystems ecology, grounded in the principles of large-scale ecological processes, as a pivotal framework for driving the future of ecosystem science. We propose an integrated theoretical, epistemological, engineering and technological system to support this evolution, and retrospectively examine the origins and scientific mission of macrosystems ecology. Core questions, practical applications, research subjects, paradigms, and methodological systems are systematically outlined. In addition, we articulate the multidisciplinary principles, epistemological framework, and axiomatic system that underpin a coherent structure for macrosystems ecology. Together, these components offer strategic guidance for advancing both theoretical understanding and practical innovation in sustainable ecosystem management.

  • review-article
    Edward Park, Dung Duc Tran, Philip S.J. Minderhoud, Ryan Clarke, Faith Ka Shun Chan

    Although the Vietnamese Mekong Delta (VMD) is recognised as one of the world’s most vulnerable deltas, scholars have yet to provide an integrated diagnosis linking locally driven pressures to actionable pathways for halting its rapid elevation loss. The VMD—39,000 km² that feeds 18 million people—is sinking because four pressures act in concert: upstream dams have already cut sediment delivery by 70 %–83 % (projected 96 % if all planned projects proceed), mean sea level is rising 1.5–2 cm/yr, river-bed sand mining now removes about 3 Mm³/yr and deepens channels by up to 15 cm/yr, and groundwater withdrawals of approximately 2.5 Mm³/day have accelerated land-surface subsidence from smaller than 3 cm/yr in 2006–2010 to peaks of 5–6 cm/yr today. Scenario modelling shows that halving pumping would stabilize aquifer heads and cut subsidence by about 50 % within a decade, while provincial sand-quota cuts of 30 %–50 % would slow bed incision and ease salinity intrusion, reducing the irrigation deficits that drive further pumping. While the large-scale causes of subsidence (dams, sea level rise, sand mining, groundwater extraction) are well recognized, actionable, local-level management solutions to immediately slow subsidence and salinity intrusion—independent of slow international negotiations—have been underexplored and under-implemented. Because dam and climate remedies rely on slow transboundary negotiations, we target the more practical local pressures—sand mining and groundwater extraction—by first tightening sand-mining licenses, enforcing tiered groundwater tariffs, and scaling up rain- and surface-water alternatives, buying time for longer-term basin and climate agreements. These locally actionable measures can significantly reduce subsidence and provide a scalable model for sustaining deltas around the world.

  • review-article
    Miao Liu, Le Sun, Yanli Zhang, Yuqing Liu, Yang Li, Ziyin Du, Fei Peng

    Maintaining community stability has profound positive impacts on the ecological functions and sustainable utilization of grassland ecosystems. Numerous studies have explored how community stability responds to climate change and its relationship with plant species diversity. Nevertheless, the impact and underlying mechanisms of belowground ecosystem multifunctionality (BGEMF) on community stability along a precipitation gradient in alpine grasslands remain poorly understood. To address this knowledge gap, we conducted field surveys from 2015 to 2020, measuring plant species diversity, annual net primary productivity (ANPP), and soil physicochemical properties across 79 sites in alpine grassland ecosystems on the Qinghai-Xizang Plateau. Our findings highlight both plant species diversity (standardized total effect: 32 %) and BGEMF (standardized total effect: 75 %) had an indirect effect on stability viaregulating mean ANPP within alpine grasslands. Furthermore, mean annual precipitation substantially impacted both plant species diversity and BGEMF, subsequently affecting community stability. However, temperature had a strong negative regulatory effect on species diversity, the mean and variability of ANPP. Thus, we emphasized the pivotal role of plant species diversity and BGEMF in shaping community stability, and stated the imperative need for species conservation and BGEMF improvement to sustain alpine ecosystems in the face of ongoing climate change.

  • review-article
    Shijie Li, Xin Cao, Luling Liu, Anqi Li

    The inequality of socio-economic resources has threatened individual well-being and urban sustainability. However, the inequality in different resource allocation scenarios is still unclear, and the accessibility distance to resources has not been considered. We developed a large-scale, long-term, and multi-perspective quantitative evaluation framework of inequality in the dividing-resource and sharing-resource scenarios over the past 31 years (1992–2022) within 15-minute cities. This framework is informed by patterns of urban development and the spatial distribution of resources and population. The results from 334 Chinese cities demonstrate the differences in inequality between developed and developing cities. When individuals share resources within 15-minute accessibility distance, inequality is lower in developed cities relative to developing cities due to more spatially balanced resources, with a decreasing trend over the past 31 years. However, due to the uneven spatial distribution of the population in developed cities, inequality among individuals has increased when resources are divided within 15-minute accessibility distance. We suggest that the government avoid policy lagging and reduce inequality by rationalizing the spatial configuration of socio-economic resources. Developed cities could adopt policies to direct the overpopulation of city centers outward, and developing cities should care about resources for suburban citizens.

  • review-article
    Yanhua He, Yi Liu, Xuening Fang

    Promoting positive urban–rural interactions is a key strategy for addressing rural decline and advancing regional sustainable development. This study examines the impacts of urban–rural interactions on rural development and explores their mechanisms for advancing sustainability within urban agglomeration areas. Using the Chang–Zhu–Tan (CZT) urban agglomeration as a case study, with an indicator system to measure urban–rural interactions and rural sustainable development, we analyze the mediating effects of resource flows in the process of urban–rural interactions driving rural sustainability through a mediation model. The results show that spatial connectivity, industrial convergence, and social integration between urban and rural areas positively contribute to the economic and social sustainability of rural areas. However, urban–rural spatial connectivity and social integration may negatively impact on rural environment. In this process, capital, technology, and labor play significant mediating roles, whereas the influence of land is less pronounced. Based on these findings, we propose several recommendations for strategically leveraging the benefits of urban–rural interactions across various social-ecological contexts while mitigating their drawbacks.

  • review-article
    Qiancheng Lv, Zeyu Yang, Yuheng Fu, Shaohua Wang, Manchun Li, Bingbo Gao, Jing Yang, Chaoqun Zhang, Jianqiang Hu, Ziyue Chen

    Forest biomass carbon storage (BC) plays a critical role in mitigating climate change. However, the spatiotemporal patterns and stability of BC growth in China remain unclear. Using the latest BC maps (2002–2021) and multi-source remote sensing data, we analyzed the spatiotemporal dynamics of BC and applied resilience indicators to reliably assess its stability. Our results show that while China’s long-term BC has continued to increase, the risk of BC losses has also intensified, particularly in old forests (>70 years), where approximately half exhibit a declining trend. Moreover, BC dynamics do not consistently align with resilience changes. About 53.4 % of forests display weakening resilience, directly reducing BC accumulation rates by 23.1 % and amplifying interannual variability. Alarmingly, 10.4 % of forests (BC-, resilience-), predominantly high-BC-density forests (mean: 28.3 tC/ha), face an extremely high risk of carbon loss (carbon emissions: -118 Tg C). We further found that the accelerating effect of resilience weakening on BC losses significantly outweighs the promoting effect of resilience enhancement on BC accumulation (-17.79 ± 4.72 Mg/ha vs. 11.47 ± 3.42 Mg/ha). Our study highlights that China’s BC growth is characterized by unstable components and faces substantial loss risks. In future efforts to enhance forest carbon sinks, greater attention should be paid to changes in forest resilience to improve the stability of biomass carbon sinks and achieve sustainable, long-term carbon sequestration.