Geographical linkage and trade disruption within global photovoltaic supply chains

Weilong Li , Meng Zhang , Mengyao Han

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) : 100323

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) :100323 DOI: 10.1016/j.geosus.2025.100323
Research Article
review-article

Geographical linkage and trade disruption within global photovoltaic supply chains

Author information +
History +
PDF

Abstract

Photovoltaics play an essential role in supporting the unprecedented growth of renewable energy transition as well as facing a series of trade risks due to complex international dynamics and intermittent trade disruptions. By combining complex network modeling and shock propagation analysis, the spatial-temporal evolution of photovoltaic supply chains worldwide was depicted, and the potential trade risks under different scenarios were elucidated in this study. The results show that the trade patterns of photovoltaic supply chains have evolved significantly, particularly characterized by the rise of China, Malaysia, Vietnam, and Thailand. The complexity of photovoltaic supply chains increases significantly with the addition of more nodes and edges in the networks. The vulnerability of critical photovoltaic supply chains tends to intensify with the increasing concentration of global supply chains in a geographic sense. The interruption of trade ties between China and Vietnam may lead to the most drastic impact on photovoltaic supply chains, followed by trade disruptions between Southeast Asia and North America. By unveiling the spatial-temporal network evolution and potential trade disruption of global photovoltaic supply chains, it is practical to propose rational and feasible strategies that consider the geographical diversification and international cooperation of photovoltaic supply chains worldwide.

Keywords

Photovoltaic trade / Complex networks / Trade risks / Vulnerability assessment / Global supply chains

Cite this article

Download citation ▾
Weilong Li, Meng Zhang, Mengyao Han. Geographical linkage and trade disruption within global photovoltaic supply chains. Geography and Sustainability, 2025, 6(5): 100323 DOI:10.1016/j.geosus.2025.100323

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability

For data stored in a repository, datasets for this research are available in open-access databases as follows: Trade data of the four main products in photovoltaic supply chains is obtained from the UN Comtrade Database, queried by the Harmonization System Code (HS Code) 280469 for impure silicon, 280461 for high-purity silicon, 381800 for silicon wafers, and 854140 for photovoltaic modules.

CRediT authorship contribution statement

Weilong Li: Writing – original draft, Methodology, Formal analysis. Meng Zhang: Validation, Investigation, Data curation. Mengyao Han: Writing – review & editing, Methodology, Investigation, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research is supported by the National Social Science Fund of China (Grant No. 22CJY202), the National Natural Science Foundation of China (Grants No. 42371183 and 72348003), the Programme of Kezhen-Bingwei Excellent Young Talents (Grant No. 2023RC002), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2023058).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100323.

References

[1]

Appiah, M., Ashraf, S., Tiwari, A., Gyamfi, B., Onifade, S., 2023. Does financialization enhance renewable energy development in Sub-Saharan African countries?. Energy Econ., 125, Article 106898. doi: 10.1016/j.eneco.2023.106898.

[2]

Binz, C., Tang, T., Huenteler, J., 2017. Spatial lifecycles of cleantech industries —the global development history of solar photovoltaics. Energy Policy 101, 386–402. doi: 10.1016/j.enpol.2016.10.034.

[3]

Cai, J., Sharkawi, I., Taasim, S., 2024. How does digital transformation promote supply chain diversification? From the perspective of supply chain transaction costs. Financ. Res. Lett. 63, 105399. doi: 10.1016/j.frl.2024.105399.

[4]

Cai, X., Liu, C., Zheng, S., Hu, H., Tan, Z., 2023. Analysis on the evolution characteristics of barite international trade pattern based on complex networks. Resour. Policy, 83, Article 103593. doi: 10.1016/j.resourpol.2023.103593.

[5]

Cao, Y., Xiao, X., Liu, Z., Yang, M., Sun, D., Guo, W., Cui, L., Zhang, P., 2020. Detecting vulnerable plaque with vulnerability index based on convolutional neural networks. Comput. Med. Imaging Graph., 81, Article 101711. doi: 10.1016/j.compmedimag.2020.101711.

[6]

Cary, M., 2023. Climate policy boosts trade competitiveness: evidence from timber trade networks. Renew. Sust. Energ. Rev., 188, Article 113869. doi: 10.1016/j.rser.2023.113869.

[7]

Chang, N., Dehghanimadvar, M., Egan, R., 2022. The cost of risk mitigation —diversifying the global solar PV supply chain. Joule 6 (12), 2686–2688. doi: 10.1016/j.joule.2022. 12.003.

[8]

Che, X., Zhou, P., Chai, K., 2022. 162, Article 112807. doi: 10.1016/j.enpol.2022.112807.

[9]

Chen, Z., Su, S., 2020. International competition and trade conflict in a dual photovoltaic supply chain system. Renew. Energy, 151, pp. 816-828. doi: 10.1016/j.renene.2019.11.085.

[10]

Dehghanimadvar, M., Egan, R., Chang, N., 2024. 8 (5), pp. 1322-1349. doi: 10.1016/j.joule.2024.02.006.

[11]

Ding, J., Kong, D., Xiao, C., Hao, L., 2024. Characteristics of the evolution of the global photovoltaic industry trade pattern from the industrial chain perspective. World Reg. Stud., 33 (7), pp. 1-17. doi: 10.3969/j.issn.1004-9479.2024.07.2022490.

[12]

Dogan, B., Nketiah, E., Ghosh, S., Nassani, A., 2025. The impact of the green technology on the renewable energy innovation: fresh pieces of evidence under the role of research & development and digital economy. Renew. Sust. Energ. Rev., 210, Article 115193. doi: 10.1016/j.rser.2024.115193.

[13]

Elavarasan, R., Pugazhendhi, R., Jamal, T., Dyduch, J., Arif, M., Kumar, N., Shafiullah, G., Chopra, S., Nadarajah, M., 2021. Envisioning the UN Sustainable Development Goals (SDGs) through the lens of energy sustainability (SDG 7) in the post-COVID-19 world. Appl. Energy, 292, Article 116665. doi: 10.1016/j.apenergy.2021.116665.

[14]

Fu, X., Yang, Y., Dong, W., Wang, C., Liu, Y., 2017. Spatial structure, inequality and trading community of renewable energy networks: a comparative study of solar and hydro energy product trades. Energy Policy, 106, pp. 22-31. doi: 10.1016/j.enpol.2017.03.038.

[15]

Gervais, E., Sprecher, B., Nold, S., Brailovsky, P., Kleijn, R., 2025. Tracing the propagation of disruptions in supply chain scenarios: a case study of photovoltaics diversification. Resour. Conserv. Recycl., 212, Article 107948. doi: 10.1016/j.resconrec.2024.107948.

[16]

Goldthau, A., Hughes, L., 2020. Protect global supply chains for low-carbon technologies. Nature, 585 (2020), pp. 28-30. doi: 10.1038/d41586-020-02499-8.

[17]

Guan, D., Wang, D., Hallegatte, S., Davis, S., Huo, J., Li, S., Bai, Y., Lei, T., Xue, Q., Coffman, D., Cheng, D., Chen, P., Liang, X., Xu, B., Lu, X., Wang, S., Hubacek, K., Gong, P., 2020. Global supply-chain effects of COVID-19 control measures. Nat. Hum. Behav., 4, pp. 577-587. doi: 10.1038/s41562-020-0896-8.

[18]

Guan, Q., An, H., Hao, X., Jia, X., 2016. The impact of countries’ roles on the international photovoltaic trade pattern: the complex networks analysis. Sustainability, 8 (4), p. 313. doi: 10.3390/su8040313.

[19]

Guo, Y., Li, Y., Liu, Y., Zhang, H., 2023. The impact of geopolitical relations on the evolution of cobalt trade network from the perspective of industrial chain. Resour. Policy, 85, Article 103778. doi: 10.1016/j.resourpol.2023.103778.

[20]

Gutiérrez-Moya, E., Lozano, S., Adenso-Díaz, B., 2023. 85, Article 103859. doi: 10.1016/j.resourpol.2023.103859.

[21]

Han, M., Xiong, J., Yang, Y., 2023. A pre-pandemic analysis of the global fertiliser trade network. Resour. Policy 85, 103859. doi: 10.1016/j.resourpol. 2023.103859.

[22]

Hao, X., An, H., Jiang, M., Sun, X., 2024. Supply shock propagation in the multi-layer network of global steel product chain: additive effect of trade and production. Resour. Policy, 89, Article 104655. doi: 10.1016/j.resourpol.2024.104655.

[23]

Helveston, J. P., He, G., Davidson, M. R., 2022. Quantifying the cost savings of global solar photovoltaic supply chains. Nature, 612 (2022), pp. 83-87. doi: 10.1038/s41586-022-05316-6.

[24]

Holme, P., Kim, B. J., Yoon, C. N., Han, S. K., 2002. Attack vulnerability of complex networks. Phys. Rev. E, 65 (5), Article 056109. doi: 10.1103/PhysRevE.65.056109.

[25]

Hosseini, S., 2020. An outlook on the global development of renewable and sustainable energy at the time of COVID-19. Energy Res. Soc. Sci., 68, Article 101633. doi: 10.1016/j.erss.2020.101633.

[26]

Hu, X., Wang, C., Lim, M., Bai, X., Yao, C., 2021. Evaluating waste and scrap trade risks in Belt and Road Initiative countries. Resour. Conserv. Recycl., 173, Article 105728. doi: 10.1016/j.resconrec.2021.105728.

[27]

Hu, X., Wang, C., Lim, M., Chen, W., 2020. Characteristics of the global copper raw materials and scrap trade systems and the policy impacts of China’s import ban. Ecol. Econ., 172, Article 106626. doi: 10.1016/j.ecolecon.2020.106626.

[28]

IEA 2021. Net Zero by 2050. International Energy Agency, Paris

[29]

IEA 2022. Solar PV Global Supply Chains. International Energy Agency, Paris

[30]

IEA 2023a. World Energy Outlook 2023. International Energy Agency, Paris

[31]

IEA 2023b. CO2 Emissions in 2022. International Energy Agency, Paris

[32]

IEA 2024. Renewables 2023. International Energy Agency, Paris

[33]

IRENA 2020. The Post-COVID Recovery: An Agenda for Resilience, Development and Equality. International Renewable Energy Agency, Abu Dhabi

[34]

IRENA 2021. Renewable Energy Statistics 2021. International Renewable Energy Agency, Abu Dhabi

[35]

Jackson, M., Lewis, J., Zhang, X., 2021. A green expansion: china’s role in the global deployment and transfer of solar photovoltaic technology. Energy Sustain. Dev. 60, 90–101. doi: 10.1016/j.esd.2020.12.006.

[36]

Ji, G., Zhong, H., Nzudie, H., Wang, P., Tian, P., 2024. The structure, dynamics, and vulnerability of the global food trade network. J. Clean. Prod., 434, Article 140439. doi: 10.1016/j.jclepro.2023.140439.

[37]

Kang, X., Wang, M., Wang, T., Luo, F., Lin, J., Li, X., 2022. Trade trends and competition intensity of international copper flow based on complex network: from the perspective of industry chain. Resour. Policy, 79, Article 103060. doi: 10.1016/j.resourpol.2022.103060.

[38]

Kruitwagen, L., Story, K. T., Friedrich, J., Byers, L., Skillman, S., Hepburn, C., 2021. A global inventory of photovoltaic solar energy generating units. Nature, 598, pp. 604-610. doi: 10.1038/s41586-021-03957-7.

[39]

Li, J., Wang, C., Guo, J., Xin, Y., Zhang, N., Liu, X., Feng, K., 2024. Promoting sustainable development goals by optimizing city-level solar photovoltaic deployment in China. Environ. Sci. Technol., 58, pp. 5196-5209. doi: 10.1021/acs.est.3c09263.

[40]

Li, W., Han, M., 2024. Trade pattern evolution and risk propagation modeling of wind power industrial chains worldwide. Resour. Sci., 46, pp. 1822-1835. doi: 10.18402/resci.2024.09.12.

[41]

Liang, H., You, F., 2023. Reshoring silicon photovoltaics manufacturing contributes to decarbonization and climate change mitigation. Nat. Commun., 14, p. 1274. doi: 10.1038/s41467-023-36827-z.

[42]

Liu, F., Fan, C., Li, J., Tan, Q., 2023. Unraveling the driving factors of the plastic waste trade network formation and dynamics. J. Environ. Manage., 348, Article 119422. doi: 10.1016/j.jenvman.2023.119422.

[43]

Luderer, G., Madeddu, S., Merfort, L., Ueckerdt, F., Pehl, M., Pietzcker, R., Rottoli, M., Schreyer, F., Bauer, N., Baumstark, L., Bertram, C., Dirnaichner, A., Humpenöder, F., Levesque, A., Popp, A., Rodrigues, R., Strefler, J., Kriegler, E., 2022. Impact of declining renewable energy costs on electrification in low-emission scenarios. Nat. Energy, 7, pp. 32-42. doi: 10.1038/s41560-021-00937-z.

[44]

Mulvaney, D., Bazilian, M., 2023. Price volatility, human rights, and decarbonization challenges in global solar supply chains. Energy Res. Soc. Sci., 102, Article 103167. doi: 10.1016/j.erss.2023.103167.

[45]

Russo, M., Alboni, F., Sanginés, J., Domenico, M., Mangioni, G., Righi, S., Simonazzi, A., 2023. Regionalisation and cross-region integration. Twin dynamics in the automotive international trade networks. Struct. Change Econ. Dyn., 67, pp. 98-114. doi: 10.1016/j.strueco.2023.07.006.

[46]

Shen, G., Shen, B., Wu, R., 2025. Internetization, supplier search, and diversification of global supply chains. Eur. Econ. Rev. 172, 104951. doi: 10.1016/j.euroecorev.2025. 104951.

[47]

Song, Z., Zhu, Q., Han, M., 2021. 217, Article 119359. doi: 10.1016/j.energy.2020.119359.

[48]

Sonter, L., Dade, M., Watson, J., Valenta, R., 2020. Renewable energy production will exacerbate mining threats to biodiversity. Nat. Commun., 11, p. 4174. doi: 10.1038/s41467-020-17928-5.

[49]

Sovacool, B., Rio, D., Griffiths, S., 2020. Contextualizing the Covid-19 pandemic for a carbon-constrained world: insights for sustainability transitions, energy justice, and research methodology. Energy Res. Soc. Sci. 68, 101701. doi: 10.1016/j.erss.2020. 101701.

[50]

Sun, Y., Zhu, S., Wang, D., Duan, J., Lu, H., Yin, H., Tan, C., Zhang, L., Zhao, M., Cai, W., Wang, Y., Hu, Y., Tao, S., Guan, D., 2024. Global supply chains amplify economic costs of future extreme heat risk. Nature 627(8005), 797-804.

[51]

Tang, L., Wang, P., Ma, Z., Chen, W., 2022. Evolution of the global trade networks of critical rare earth products and its implications. Sci. Technol. Rev., 40, pp. 40-49. doi: 10.3981/j.issn.1000-7857.2022.08.004.

[52]

Tong, X., Wang, T., Li, M., 2017. Global-local linkages in photovoltaic industry in Wuxi, China. Sci. Geogr. Sin. 37, 1823–1830. doi: 10.13249/j.cnki.sgs.2017.12.005x, (in Chinese).

[53]

Ullah, A., Nobanee, H., Ullah, S., Iftikhar, H., 2024. Renewable energy transition and regional integration: energizing the pathway to sustainable development. Energy Policy, 193, Article 114270. doi: 10.1016/j.enpol.2024.114270.

[54]

UN Comtrade Database. https://comtradeplus.un.org/ (accessed 20 January 2023).

[55]

Wang, D., Guan, D., Zhu, S., Kinnon, M., Geng, G., Zhang, Q., Zheng, H., Lei, T., Shao, S., Gong, P., Davis, S., 2021. Economic footprint of California wildfires in 2018. Nat. Sustain., 4, 252-260.

[56]

Wang, H., Yang, X., Hou, H., Liu, T., Zhang, Y., Xu, H., 2023. Temporal dynamics, driving factor and mutual relationship analysis for the holistic virtual water trade network in China (2002–2017). Environ. Impact Assess. Rev., 101, Article 107127. doi: 10.1016/j.eiar.2023.107127.

[57]

Wang, M., Mao, X., Xing, Y., Lu, J., Song, P., Liu, Z., Guo, Z., Tu, K., Zusman, E., 2021a. Breaking down barriers on PV trade will facilitate global carbon mitigation. Nat. Commun. 12, 6820. doi: 10.1038/s41467- 021- 26547- 7.

[58]

Wang, Q., Zhang, F., 2021. Free trade and renewable energy: a cross-income levels empirical investigation using two trade openness measures. Renew. Energy, 168, pp. 1027-1039. doi: 10.1016/j.renene.2020.12.065.

[59]

Wang, X., Li, H., Yao, H., Chen, Z., Guan, Q., 2019. Network feature and influence factors of global nature graphite trade competition. Resour. Policy, 60, pp. 153-161. doi: 10.1016/j.resourpol.2018.12.012.

[60]

Wei, N., Xie, W., Zhou, W., 2025. Resilience of international oil trade networks under extreme event shock-recovery simulations. Energy 314, 134174. doi: 10.1016/j.energy. 2024.134174.

[61]

Xiao, J., Xiong, C., Deng, W., Yu, G., 2022. Evolution features and robustness of global photovoltaic trade network. Sustainability, 14, Article 14220. doi: 10.3390/su142114220.

[62]

Yang, Y., 2022. Energy globalization of China: trade, investment, and embedded energy flows. J. Geogr. Sci., 32, pp. 377-400. doi: 10.1007/s11442-022-1952-2.

[63]

Yuan, X., Song, W., Zhang, C., Yuan, Y., 2022. Understanding the evolution of photovoltaic value chain from a global perspective: based on the patent analysis. J. Clean. Prod., 377, Article 134466. doi: 10.1016/j.jclepro.2022.134466.

[64]

Zhang, M., Zhang, S., Lee, C., Zhou, D., 2021. Effects of trade openness on renewable energy consumption in OECD countries: new insights from panel smooth transition regression modelling. Energy Econ., 104, Article 105649. doi: 10.1016/j.eneco.2021.105649.

[65]

Zhou, W., Feng, R., Han, M., Chen, M., 2022. Evolution characters and regulation impacts within the global scrap rubber trade network. Resour. Conserv. Recycl., 181, Article 106201. doi: 10.1016/j.resconrec.2022.106201.

[66]

Zhu, X., He, C., Zhu, S., 2019. How does protectionism change the pattern of the destinations of Chinese photovoltaic export? Geogr. Res. 38, 2565–2577. doi: 10.11821/dlyj020180551, (in Chinese).

[67]

Zou, J., Liu, W., 2016. Trade network of China and countries along “Belt and Road initiative” areas from 2001 to 2013. Sci. Geogr. Sin., 36, pp. 1629-1636. doi: 10.13249/j.cnki.sgs.2016.11.004.

PDF

280

Accesses

0

Citation

Detail

Sections
Recommended

/