Global aging exacerbates heat exposure risk across diverse socioeconomic pathways

Xiao Chen , Song Leng , Zhaowu Yu , Ranhao Sun

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) : 100318

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) :100318 DOI: 10.1016/j.geosus.2025.100318
Research Article
review-article

Global aging exacerbates heat exposure risk across diverse socioeconomic pathways

Author information +
History +
PDF

Abstract

Elderly individuals disproportionately face heat exposure risk compared to other demographic groups, with projected amplification in the future. The vast disparities between Global North and South countries necessitate a comprehensive understanding of the underlying factors influencing future heat exposure vulnerabilities. Here, we use factor decomposition method to quantify the contribution of climate change, population, and aging to heat exposure risk under four shared socioeconomic pathways (SSP) (SSP126, SSP245, SSP370, SSP585) from 2000 to 2100 at 20-year intervals. Results demonstrate a projected global escalation in heat exposure risk by 16 and 76 times under SSP126 and SSP585, respectively, with the North generally suffering lower risk than the South. Climate change emerges as a pivotal driver of future heat exposure risk in the North while aging notably influences the South. Despite climate change is projected to reduce heat exposure risk by up to 10 % in the North under SSP1-2.6 by the end of the 21st century, aging remains a critical risk factor.

Keywords

Heat exposure risk / Global south / Global north / Elderly people

Cite this article

Download citation ▾
Xiao Chen, Song Leng, Zhaowu Yu, Ranhao Sun. Global aging exacerbates heat exposure risk across diverse socioeconomic pathways. Geography and Sustainability, 2025, 6(5): 100318 DOI:10.1016/j.geosus.2025.100318

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Xiao Chen: Writing – review & editing, Writing – original draft, Validation, Software, Methodology, Formal analysis, Data curation, Conceptualization. Song Leng: Writing – review & editing, Visualization, Validation. Zhaowu Yu: Writing – review & editing, Visualization, Methodology, Formal analysis. Ranhao Sun: Writing – review & editing, Visualization, Validation, Supervision, Methodology, Funding acquisition, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2022YFF1303101) and the open fund project of the State Key Laboratory of Regional and Urban Ecology (Grant No. SKLURE2023-2-4).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100318.

References

[1]

Alizadeh, M. R., Abatzoglou, J. T., Adamowski, J. F., Prestemon, J. P., Chittoori, B., Akbari Asanjan, A., Sadegh, M., 2022. Increasing heat-stress inequality in a warming climate. Earths Future 10(2), e2021EF002488.

[2]

Ban, J., Lu, K., Wang, Q., Li, T., 2022. Climate change will amplify the inequitable exposure to compound heatwave and ozone pollution. One Earth 5(6), 677-686.

[3]

Batibeniz, F., Hauser, M., Seneviratne, S., 2023. Countries most exposed to individual and concurrent extremes and near-permanent extreme conditions at different global warming levels. Earth Syst. Dynam., 14(2), 485-505.

[4]

Bekris, Y., Loikith, P. C., Neelin, J. D., 2023. Short warm distribution tails accelerate the increase of humid-heat extremes under global warming. Geophys. Res. Lett., 50(11), e2022GL102164.

[5]

Casanueva, A., Kotlarski, S., Fischer, A. M., Flouris, A. D., Kjellstrom, T., Lemke, B., Nybo, L., Schwierz, C., Liniger, M. A., 2020. Escalating environmental summer heat exposure—a future threat for the European workforce. Reg. Envir. Chang., 20(2), 40.

[6]

Chen, H., Zhao, L., Cheng, L., Zhang, Y., Wang, H., Gu, K., Bao, J., Yang, J., Liu, Z., Huang, J., Chen, Y., Gao, X., Xu, Y., Wang, C., Cai, W., Gong, P., Luo, Y., Liang, W., Huang, C., 2022. Projections of heatwave-attributable mortality under climate change and future population scenarios in China. Lancet Reg. Health-W. Pac., 28, 100582.

[7]

Chen, G., Li, X., Liu, X., 2022. Global land projection based on plant functional types with a 1-km resolution under socio-climatic scenarios. Sci. Data 9(1), 125.

[8]

Chen, K., de Schrijver, E., Sivaraj, S., Sera, F., Scovronick, N., Jiang, L., Roye, D., Lavigne, E., Kyselý, J., Urban, A., Schneider, A., Huber, V., Madureira, J., Mistry, M. N., Cvijanovic, I., Network, M. C. R., Gasparrini, A., Vicedo-Cabrera, A. M., 2024. Impact of population aging on future temperature-related mortality at different global warming levels. Nat. Commun., 15(1), 1796.

[9]

Chen, M. X., Chen, L. K., Zhou, Y., Hu, M. G., Jiang, Y. P., Huang, D. P., Gong, Y. H., Xian, Y., 2023. Rising vulnerability of compound risk inequality to ageing and extreme heatwave exposure in global cities. NPJ Urban Sustain., 3(1), 38.

[10]

Chen, X., Li, N., Liu, J., Zhang, Z., Liu, Y., Huang, C., 2020. Changes in global and regional characteristics of heat stress waves in the 21st century. Earths Future 8(11), e2020EF001636.

[11]

Cheng, L., Gu, K., Zhao, L., Wang, H., Ji, J. S., Liu, Z., Huang, J., Chen, Y., Gao, X., Xu, Y., Wang, C., Luo, Y., Cai, W., Gong, P., Liang, W., Huang, C., 2023. Projecting future labor losses due to heat stress in China under climate change scenarios. Sci. Bull., 68(22), 2827-2837.

[12]

Coffel, E. D., Horton, R. M., de Sherbinin, A., 2018. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century. Environ. Res. Lett., 13(1), 014001.

[13]

Das, J., Manikanta, V., Umamahesh, N. V., 2022. Population exposure to compound extreme events in India under different emission and population scenarios. Sci. Total Environ., 806, 150424.

[14]

de Schrijver, E., Bundo, M., Ragettli, M. S., Sera, F., Gasparrini, A., Franco, O. H., Vicedo-Cabrera, A. M., 2022. Nationwide analysis of the heat- and cold-related mortality trends in Switzerland between 1969 and 2017: the role of population aging. Environ. Health Perspect., 130(3), 37001.

[15]

Falchetta, G., De Cian, E., Sue Wing, I., Carr, D., 2024. Global projections of heat exposure of older adults. Nat. Commun., 15(1), 3678.

[16]

Gao, J., Bukovsky, M. S., 2023. Urban land patterns can moderate population exposures to climate extremes over the 21st century. Nat. Commun., 14(1), 6536.

[17]

Gao, J., Pesaresi, M., 2021. Downscaling SSP-consistent global spatial urban land projections from 1/8-degree to 1-km resolution 2000–2100. Sci. Data 8(1), 281.

[18]

García-León, D., Casanueva, A., Standardi, G., Burgstall, A., Flouris, A. D., Nybo, L., 2021. Current and projected regional economic impacts of heatwaves in Europe. Nat. Commun., 12(1), 5807.

[19]

Harrington, L. J., Otto, F. E. L., 2023. Underestimated climate risks from population ageing. NPJ Clim. Atmos. Sci., 6(1), 70.

[20]

He, C., Zhang, Y., Schneider, A., Chen, R., Zhang, Y., Ma, W., Kinney, P. L., Kan, H., 2022. The inequality labor loss risk from future urban warming and adaptation strategies. Nat. Commun., 13(1), 3847.

[21]

Illangasingha, S., Koike, T., Rasmy, M., Tamakawa, K., Matsuki, H., Selvarajah, H., 2023. A holistic approach for using global climate model (GCM) outputs in decision making. J. Hydrol., 626, 130213.

[22]

Iyakaremye, V., Zeng, G., Yang, X., Zhang, G., Ullah, I., Gahigi, A., Vuguziga, F., Asfaw, T. G., Ayugi, B., 2021. Increased high-temperature extremes and associated population exposure in Africa by the mid-21st century. Sci. Total Environ., 790, 148162.

[23]

Jay, O., Capon, A., Berry, P., Broderick, C., de Dear, R., Havenith, G., Honda, Y., Kovats, R. S., Ma, W., Malik, A., Morris, N. B., Nybo, L., Seneviratne, S. I., Vanos, J., Ebi, K. L., 2021. Reducing the health effects of hot weather and heat extremes: from personal cooling strategies to green cities. Lancet 398(10301), 709-724.

[24]

Jones, B., O’Neill, B. C., 2016. Spatially explicit global population scenarios consistent with the shared socioeconomic pathways. Environ. Res. Lett., 11(8), 084003.

[25]

Jones, B., O’Neill, B. C., McDaniel, L., McGinnis, S., Mearns, L. O., Tebaldi, C., 2015. Future population exposure to US heat extremes. Nat. Clim. Chang., 5(7), 652-655.

[26]

Jones, B., Tebaldi, C., O’Neill, B. C., Oleson, K., Gao, J., 2018. Avoiding population exposure to heat-related extremes: demographic change vs climate change. Clim. Change 146(3), 423-437.

[27]

Kc, S., Lutz, W., 2017. The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change-Human Policy Dimens., 42, 181-192.

[28]

Kim, Y. H., Ahn, J. B., Suh, M. S., Cha, D. H., Chang, E. C., Min, S. K., Byun, Y. H., Kim, J. U., 2023. Future changes in extreme heatwaves in terms of intensity and duration over the CORDEX-East Asia phase two domain using multi-GCM and multi-RCM chains. Environ. Res. Lett., 18(3), 034007.

[29]

Kjellstrom, T., Freyberg, C., Lemke, B., Otto, M., Briggs, D., 2017. Estimating population heat exposure and impacts on working people in conjunction with climate change. Int. J. Biometeorol., 62(3), 291-306.

[30]

Klein, T., Anderegg, W. R. L., 2021. A vast increase in heat exposure in the 21st century is driven by global warming and urban population growth. Sust. Cities Soc., 73, 103098.

[31]

Li, J. Y., Sun, R. H., Chen, L. D., 2022. Identifying sensitive population associated with summer extreme heat in Beijing. Sust. Cities Soc., 83, 103925.

[32]

Kowalski, A. 2020. Global south-global north differences. W.L. Filho, A.M. Azul, L. Brandli, A.L. Salvia, P.G. Özuyar, T. Wall (Eds.), No Poverty, Springer, Cham, pp.1-12.

[33]

Li, T., Horton, R. M., Kinney, P. L., 2013. Projections of seasonal patterns in temperature- related deaths for Manhattan, New York. Nat. Clim. Chang., 3(8), 717-721.

[34]

Lin, Y. K., Ho, T. J., Wang, Y. C., 2011. Mortality risk associated with temperature and prolonged temperature extremes in elderly populations in Taiwan. Environ. Res., 111(8), 1156-1163.

[35]

Luo, M., Ning, G., Xu, F., Wang, S., Liu, Z., Yang, Y., 2020. Observed heatwave changes in arid northwest China: physical mechanism and long-term trend. Atmos. Res., 242, 105009.

[36]

Malik, A., Bongers, C., McBain, B., Rey-Lescure, O, Dear, Rd., Capon, A., Lenzen, M., Jay, O., 2022. The potential for indoor fans to change air conditioning use while maintaining human thermal comfort during hot weather: an analysis of energy demand and associated greenhouse gas emissions. Lancet Planet. Health., 6(4), e301-e309.

[37]

Meinshausen, M., Lewis, J., McGlade, C., Gütschow, J., Nicholls, Z., Burdon, R., Cozzi, L., Hackmann, B., 2022. Realization of paris agreement pledges may limit warming just below 2 °C. Nature 604(7905), 304-309.

[38]

Muñoz Sabater, J., 2019. ERA5-Land Hourly Data from 1950 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).. doi: 10.24381/cds.68d2bb30.

[39]

O’Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., Mathur, R., van Vuuren, D. P., 2013. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim. Change 122(3), 387-400.

[40]

Park, C. E., Jeong, S., 2022. Population exposure projections to intensified summer heat. Earths Future 10(2), e2021EF002602.

[41]

Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., Kc, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Da Silva, L. A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., Tavoni, M., 2017. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153-168.

[42]

Rogelj, J., den Elzen, M., Höhne, N., Fransen, T., Fekete, H., Winkler, H., Schaeffer, R., Sha, F., Riahi, K., Meinshausen, M., 2016. Paris agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534(7609), 631-639.

[43]

Selvarajah, H., Koike, T., Rasmy, M., Tamakawa, K., Yamamoto, A., Kitsuregawa, M., Zhou, L., 2021. Development of an integrated approach for the assessment of climate change impacts on the hydro-meteorological characteristics of the Mahaweli River Basin, Sri Lanka. Water 13(9), 1218.

[44]

Stein, U., Alpert, P., 1993. Factor separation in numerical simulations. J. Atmos. Sci., 50, 2107-2115.

[45]

he World Bank 2021 The World Bank, 2021. World development indicators. https://data.worldbank.org/indicator. (accessed 12 April 2024)

[46]

Tuholske, C., Caylor, K., Funk, C., Verdin, A., Sweeney, S., Grace, K., Peterson, P., Evans, T., 2021. Global urban population exposure to extreme heat. Proc. Natl. Acad. Sci. U.S.A., 118(41), e2024792118.

[47]

Ullah, I., Saleem, F., Iyakaremye, V., Yin, J., Ma, X., Syed, S., Hina, S., Asfaw, T. G., Omer, A., 2022. Projected Changes in socioeconomic exposure to heatwaves in South Asia under changing climate. Earths Future 10(2), e2021EF002240.

[48]

Ullah, S., You, Q., Chen, D., Sachindra, D. A., AghaKouchak, A., Kang, S., Li, M., Zhai, P., Ullah, W., 2022. Future population exposure to daytime and nighttime heat waves in South Asia. Earths Future 10(5), e2021EF002511.

[49]

United Nations 2022 United Nations, 2022. UNCTAD handbook of statistics 2022. https://unctad.org/meeting/launch-handbook-statistics-2022. (accessed 10 April 2024)

[50]

United Nations Environment Programme 2023 United Nations Environment Programme, 2023. Emissions gap report 2023: broken record – temperatures hit new highs, yet world fails to cut emissions. https://www.unep.org/resources/emissions-gap-report-2023. (accessed 2 April 2024)

[51]

World Health Organization 2022 World Health Organization, 2022. Ageing and health. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health. (accessed 25 March 2024)

[52]

Wang, J., Feng, J., Yan, Z., Chen, Y., 2020. Future risks of unprecedented compound heat waves over three vast urban agglomerations in China. Earths Future 8(12), e2020EF001716.

[53]

Wang, L., Rohli, R. V., Lin, Q., Jin, S., Yan, X., 2022. Impact of extreme heatwaves on population exposure in China due to additional warming. Sustainability 14(18), 11458.

[54]

Wang, T., Sun, F., 2022. Global gridded GDP data set consistent with the shared socioeconomic pathways. Sci. Data 9(1), 221.

[55]

Wang, Y., Zhao, N., Yin, X., Wu, C., Chen, M., Jiao, Y., Yue, T., 2023. Global future population exposure to heatwaves. Environ. Int., 178, 108049.

[56]

Wang, Y., Zhao, N., Wu, C., Quan, J., Chen, M., 2023. Future population exposure to heatwaves in 83 global megacities. Sci. Total Environ., 888, 164142.

[57]

Weber, T., Bowyer, P., Rechid, D., Pfeifer, S., Raffaele, F., Remedio, A. R., Teichmann, C., Jacob, D., 2020. Analysis of compound climate extremes and exposed population in Africa under two different emission scenarios. Earths Future 8(9), e2019EF001473.

[58]

J, CWhitty, M., Watt, F. M., 2020. Map clusters of diseases to tackle multimorbidity. Nature 579(7800), 494-496.

[59]

Wong, C., 2023. Earth just had its hottest year on record — climate change is to blame. https://www.nature.com/articles/d41586-023-03523-3. (accessed 15 February 2024).

[60]

Wu, H., Su, X., Singh, V. P., 2023. Increasing risks of future compound climate extremes with warming over global land masses. Earths Future 11(9), e2022EF003466.

[61]

Wu, S., Luo, M., Zhao, R., Li, J., Sun, P., Liu, Z., Wang, X., Wang, P., Zhang, H., 2023. Local mechanisms for global daytime, nighttime, and compound heatwaves. NPJ Clim. Atmos. Sci., 6(1), 36.

[62]

Xing, Q., Sun, Z., Tao, Y., Shang, J., Miao, S., Xiao, C., Zheng, C., 2022. Projections of future temperature-related cardiovascular mortality under climate change, urbanization and population aging in Beijing, China. Environ. Int., 163, 107231.

[63]

Yang, Y., Zhao, N., 2024. Future projections of compound temperature and precipitation extremes and corresponding population exposure over global land. Glob. Planet. Change 236, 104427.

[64]

Yin, J., Gentine, P., Slater, L., Gu, L., Pokhrel, Y., Hanasaki, N., Guo, S., Xiong, L., Schlenker, W., 2023. Future socio-ecosystem productivity threatened by compound drought–heatwave events. Nat. Sustain., 6(3), 259-272.

[65]

Yin, J. B., Slater, L. J., Liu, P., Liu, D. D., Cheng, J. Q., 2024. Socio-economic inequality exacerbated by climate change. Innov. Geosci., 2(3), 100078.

[66]

Zhang, G., Ma, J., Meng, C., Wang, J., Xu, Z., Gou, P., 2023. Increasing heatwave with associated population and GDP exposure in North China. Int. J. Climatol., 43(10), 4716-4732.

PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

/