Quantifying water supply–demand relationship and spatial flow in Qinghai–Xizang Plateau: Case study of Lhasa River Basin

Jun Wang , Xiaochi Liu , Xiao Zhang , Yan Gao

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) : 100329

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) :100329 DOI: 10.1016/j.geosus.2025.100329
Research Article
review-article

Quantifying water supply–demand relationship and spatial flow in Qinghai–Xizang Plateau: Case study of Lhasa River Basin

Author information +
History +
PDF

Abstract

The Qinghai–Xizang Plateau is a primary water supply region in Asia. The Lhasa River Basin is the political, economic, and cultural core area and main cultivation area of Qinghai–Xizang Plateau and is considered ecologically fragile. With uneven spatial and temporal distribution of water resources, mismatched supply and demand may accentuate differences in distribution and affect the security of regional water resources. This study employed system dynamics (SD) to measure the supply and demand of water supply services and analyzed the correlation between supply and beneficiary areas by evaluating the supply and demand overlap. Moreover, the 2030 supply–demand relationship was predicted, the pattern of sustainable development of the basin is discussed, and optimization suggestions are proposed. The range of water supply service beneficiary areas in the Lhasa River Basin shows an increasing trend from 2005 to 2020. The spatial distribution of water supply in 2030 is predicted to be the same as that in 2020, while the total amount of water supply is expected to decrease. By 2030, the largest proportion of water demand will be industry, followed by agriculture, forestry, and animal husbandry. Overall, there is a mismatch between water supply and demand services in the Lhasa River Basin, and it is essential to develop a reasonable water resource management and allocation policy as well as an optimized ecological management strategy for the basin through integrated planning. Here, we provide suggestions for the sustainable development and ecological environmental protection of the Lhasa River Basin.

Keywords

Ecosystem services / Water supply service / Supply–demand relationship / Lhasa River Basin

Cite this article

Download citation ▾
Jun Wang, Xiaochi Liu, Xiao Zhang, Yan Gao. Quantifying water supply–demand relationship and spatial flow in Qinghai–Xizang Plateau: Case study of Lhasa River Basin. Geography and Sustainability, 2025, 6(5): 100329 DOI:10.1016/j.geosus.2025.100329

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Jun Wang: Conceptualization. Xiaochi Liu: Data curation. Xiao Zhang: Data curation. Yan Gao: Writing – original draft.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study was supported by the Second Tibetan Plateau Scientific Expedition and Research Program (Grant No. 2019QZKK0405).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100329.

References

[1]

Bagstad, K., Johnson, G., Voigt, B., Villa, F., 2013. Spatial dynamics of ecosystem service flows: a comprehensive approach to quantifying a ctual services. Ecosyst. Serv., 4, 117-125.

[2]

Cai, L., Li, Z., You, Y., Huang, C., 2021. Analysis of runoff changes in Lhasa River from 1956 to 2016 and the influencing factors. J. Water Resour. Water Eng., 32, 90-96.

[3]

Castro, A. J., Vaughn, C. C., Julian, J. P., García-Llorente, M., 2016. Social demand for ecosystem services and implications for watershed management. J. Am. Water. Resour. Assoc., 52, 209-221.

[4]

Castro, A. J., Verburg, P. H., Martín-López, B., Garcia-Llorente, M., Cabello, J., Vaughn, C. C., López, E., 2014. Ecosystem service trade-offs from supply to social demand: a landscape-scale spatial analysis. Landsc. Urban. Plan., 132, 102-110.

[5]

Chen, D., Li, J., Yang, X., Zhou, Z., Pan, Y., Li, M., 2020. Quantifying water provision service supply, demand and spatial flow for land use optimization: a case study in the YanHe watershed. Ecosyst. Serv., 43, 101117.

[6]

Chen, Z., Lin, J., Huang, J., 2023. Linking ecosystem service flow to water-related ecological security pattern: a methodological approach applied to a coastal province of China. J. Environ. Manage., 345, 118725.

[7]

Chen, L., Xu, L., Yu, Z., He, Z., 2025. Research progress of water ecosystem service flows. Acta Ecol. Sin., 45(2), 1000-1012.

[8]

Cong, W., Sun, X., Guo, H., Shan, R., 2020. Comparison of the SWAT and InVEST models to determine hydrological ecosystem service spatial patterns, priorities and trade-offs in a complex basin. Ecol. Indic., 112, 106089.

[9]

Cui, T., Li, Y., Yang, L., Nan, Y., Li, K., Tudaji, M., Hu, H., Long, D., Shahid, M., Mubeen, A., He, Z., Yong, B., Lu, H., Li, C., Ni, G., Hu, C., Tian, F., 2023. Non-monotonic changes in Asian Water Towers’ streamflow at increasing warming levels. Nat. Commun., 14, p. 1176. doi: 10.1038/s41467-023-36804-6.

[10]

de Groot, R. S., Alkemade, R., Braat, L., Hein, L., Willemen, L., 2010. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex., 7, 260-272.

[11]

Feurer, M., Zaehringer, J. G., Heinimann, A., Naing, S. M., Blaser, J., Celio, E., 2021. Quantifying local ecosystem service outcomes by modelling their supply, demand and flow in Myanmar’s forest frontier landscape. J. Land Use Sci., 16, 55-93.

[12]

Gao, J., Li, F., Gao, H., Zhou, C., Zhang, X., 2017. The impact of land-use change on water-related ecosystem services: a study of the Guishui River Basin, Beijing, China. J. Clean. Prod., 163, S148-S155.

[13]

Gassman, P. W., Sadeghi, A. M., Srinivasan, R., 2014. Applications of the SWAT model special section: overview and insights. J. Environ. Qual., 43, 1-8.

[14]

Guan, D., Deng, Z., Zhou, L., Fan, X., Yang, W., Peng, G., Zhu, X., Zhou, L., 2023. How can multiscenario flow paths of water supply services be simulated? A supply-flow-demand model of ecosystem services across a typical basin in China. Sci. Total Environ., 893, 164770.

[15]

Han, W., Su, X., Lu, H., Li, T., Jin, T., Zhang, M., Liu, G., 2023. Impacts of human activity intensity on ecosystem services for conservation in the Lhasa River Basin. Ecosyst. Health Sustain., 9, 0088.

[16]

Han, W., Zhang, C., Zeng, Y., Liu, G., 2018. Spatio-temporal changes and driving factors in the net primary productivity of the Lhasa River basin from 2000 to 2015. Acta Ecol. Sin., 38, 8787-8798.

[17]

Hanna, D., Tomscha, S., Ouellet Dallaire, C., Bennett, E., 2018. A review of riverine ecosystem service quantification: research gaps and recommendations. J. Appl. Ecol., 55, 1299-1311.

[18]

Hauck, J., Görg, C., Varjopuro, R., Ratamäki, O., Jax, K., 2013. Benefits and limitations of the ecosystem services concept in environmental policy and decision making: some stakeholder perspectives. Environ. Sci. Policy 25, 13-21.

[19]

He, Y., Chen, Y., Tang, H., Yao, Y., Yang, P., 2011. Exploring spatial change and gravity center movement for ecosystem services value using a spatially explicit ecosystem services value index and gravity model. Environ. Monit. Assess., 175, 563-571.

[20]

Jiang, B., Wong, C. P., Ouyang, Z., 2016. Beneficiary analysis and ecological production function to measure lake ecosystem services for decision-making in China. Acta Ecol. Sin., 36, 2422-2430.

[21]

Khomalli, Y., Elyaagoubi, S., Maanan, M., Razinkova-Baziukas, A., Rhinane, H., Maanan, M., 2020. Using analytic hierarchy process to map and quantify the ecosystem services in Oualidia Lagoon, Morocco. Wetlands 40, 2123-2137.

[22]

Lambin, E., Meyfroidt, P., 2011. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. U.S.A., 108, 3465-3472.

[23]

Leng, X., Feng, X., Fu, B., Shi, Q., Ye, H., Zhang, Y., 2024. Asian water towers’ are not a sustainable solution to the downstream water crisis. Sci. Total Environ., 856, 159237.

[24]

Li, J., Xie, B., Gao, C., Zhou, K., Liu, C., Zhao, W., Xiao, J., Xie, J., 2022. Impacts of natural and human factors on water-related ecosystem services in the Dongting Lake Basin. J. Clean. Prod., 370, 133400.

[25]

Li, H., Ma, S., Yin, Y., Wang, L., Jiang, J., 2024. Spatiotemporal changes of ecosystem service multifunctional areas and their influencing factors: a case study of the Qinghai-Tibet Plateau ecological shelter. J. Ecol. Rural Environ., 40 (8), pp. 1038-1046. doi: 10.19741/j.issn.1673-4831.2023.0426.

[26]

Li, W., Wang, S., Li, Q., Wu, T., Zhao, X., 2021. The impacts of climate and land use changes on water yield in the Beisan River Basin. J. East China Norm. Univ. (Nat. Sci.) (4), pp. 99-108. doi: 10.3969/j.issn.1000-5641.2021.04.012.

[27]

Van Liew, M. W., Veith, T. L., Bosch, D. D., Arnold, J. G., 2007. Suitability of SWAT for the conservation effects assessment project: comparison on USDA agricultural research service watersheds. J. Hydrol. Eng., 12(2), 173-189.

[28]

Lin, F., Chen, X., Yao, H., Lin, F., 2022. SWAT model-based quantification of the impact of land-use change on forest-regulated water flow. Catena 211, 105975.

[29]

Lin, J. J., Huang, J., Prell, C., Bryan, B. A., 2021. Changes in supply and demand mediate the effects of land-use change on freshwater ecosystem services flows. Sci. Total Environ., 763, 143012.

[30]

Liu, C., Liu, Y., Giannetti, B., Almeida, C., Wei, G., Sevegnani, F., Yan, X., 2024. Dynamics of ecosystem services and nonlinear responses to increased anthropogenic pressure. Ambio 53, 1649-1663.

[31]

Luo, D., Zhang, W., 2014. A comparison of Markov model-based methods for predicting the ecosystem service value of land use in Wuhan, central China. Ecosyst. Serv., 7, 57-65.

[32]

Lv, Y., Mu, X., 1986. Climatic characteristics of the Lhasa River Basin. Meteorol. Mon., 12, 24-25.

[33]

Miao, C., Immerzeel, W., Xu, B., Yang, K., Duan, Q., Li, X., 2024. Understanding the Asian water tower requires a redesigned precipitation observation strategy. Proc. Natl. Acad. Sci. U.S.A., 121, e2403557121.

[34]

Nash, J. E., Sutcliffe, J. V., 1970. River flow forecasting through conceptual models part I: a discussion of principles. J. Hydrol., 10, 282-290.

[35]

Ning, Y., 2020. Study On Water Resources Supply and Demand Balance and Simulation Predicting in Hexi Inland Zone. Shaanxi Normal University, Xi’an

[36]

Pan, H., Page, J., Cong, C., Barthel, S., Kalantari, Z., 2021. How ecosystem services drive urban growth: integrating nature-based solutions. Anthropocene, 35, Article 100297. doi: 10.1016/j.ancene.2021.100297.

[37]

Pei, S., Zhang, C., Liu, C., Liu, X., Xie, G., 2019. Forest ecological compensation standard based on spatial flowing of water services in the upper reaches of Miyun Reservoir, China. Ecosyst. Serv., 39, 100983.

[38]

Rong, Y., Yan, Y., Zhao, C., Zhu, J., Zheng, T., Wang, C., Lu, H., Zhang, W., 2020. Multi-scale characteristics of landsenses ecology and its application based on supply and demand of ecosystem services. Acta Ecol. Sin., 40, 8034-8043.

[39]

Schirpke, U., Candiago, S., Egarter Vigl, L., Jager, H., Labadini, A., Marsoner, T., Meisch, C., Tasser, E., 2019. Integrating supply, flow and demand to enhance the understanding of interactions among multiple ecosystem services. Sci. Total Environ., 651, 928-941.

[40]

Schirpke, U., Tasser, E., 2024. Potential impacts of climate change on ecosystem services in Austria. Ecosyst. Serv., 68, 101641.

[41]

Shen, J., Li, S., Liang, Z., Wang, Y., Sun, F., 2021. Research progress and prospect for the relationships between ecosystem services supplies and demands. J. Nat. Resour., 36, 1909-1922.

[42]

Shifaw, E., Sha, J., Li, X., Bao, Z., Ji, J., Ji, Z., Kassaye, A., Lai, S., Yang, Y., 2024. Ecosystem services dynamics and their influencing factors: synergies/tradeoffs interactions and implications, the case of upper Blue Nile basin, Ethiopia. Sci. Total Environ., 938, 173524.

[43]

Simini, F., Barlacchi, G., Luca, M., 2021. A deep gravity model for mobility flows generation. Nat. Commun., 12, 6576.

[44]

Su, R., Duan, C., Chen, B., 2024. The shift in the spatiotemporal relationship between supply and demand of ecosystem services and its drivers in China. J. Environ. Manage., 365, 121698.

[45]

Tedesco, A. M., López-Cubillos, S., Chazdon, R., Rhodes, J. R., Archibald, C. L., Pérez-Hämmerle, K-.V., Brancalion, P. H. S., Wilson, K. A., Oliveira, M., Correa, D. F., Ota, L., Morrison, T. H., Possingham, H. P., Mills, M., Santos, F. C., Dean, A. J., 2023. Beyond ecology: ecosystem restoration as a process for social-ecological transformation. Trends Ecol. Evol., 38, 643-653.

[46]

Wang, J., Fu, B., Zhang, X., Liu, Y., Zhao, W., 2024. Learning from “nature-based Solutions” to promote optimal management of integrated ecological conservation and restoration in Qinghai-Xizang Plateau. Bull. Chin. Acad. Sci., 39, 1123-1130.

[47]

Wang, J., Zhong, L., 2019. Application of ecosystem service theory for ecological protection and restoration of mountain-river-forest-field-lake-grassland. Acta Ecol. Sin., 39, 8702-8708.

[48]

Wang, J., Zhou, W., 2019. Ecosystem service flows: recent progress and future perspectives. Acta Ecol. Sin., 39, 4213-4222.

[49]

Wang, M., Sun, X., 2016. Potential impact of land use change on ecosystem services in China. Environ. Monit. Assess., 188, 248.

[50]

Wang, P., Qin, S., Hu, H., 2023. Spatial-temporal evolution characteristics of land use change and habitat quality in the Lhasa River Basin over the past three decades. Arid Zone Res., 40, 492-503.

[51]

Wang, Y., Li, J., Zhou, Z., Wang, Y., 2022. Simulation of water provision services flow in Wuding River Basin based on the SWAT model. J. Shaanxi Norm. Univ. (Nat. Sci. Ed.) 50, 81-91.

[52]

Wu, J., Huang, Y., Jiang, W., 2022. Spatial matching and value transfer assessment of ecosystem services supply and demand in urban agglomerations: a case study of the Guangdong-Hong Kong-Macao Greater Bay area in China. J. Clean. Prod., 375, 134081.

[53]

Wu, J., Luo, K., Ma, H., Wang, Z., 2020. Ecological security and restoration pattern of Pearl River Delta, based on ecosystem service and gravity model. Acta Ecol. Sin., 40, 8417-8429.

[54]

Wu, Y., Zhang, X., Li, C., Hao, F., Yin, G., 2020. Improvement of ecosystem service function in watershed by ecological restoration measures: a case study in Chaohe River Basin. Acta Ecol. Sin., 40, 5168-5178.

[55]

Xiao, Y., Xie, G., Lu, C., Xu, J., 2016. Involvement of ecosystem service flows in human wellbeing based on the relationship between supply and demand. Acta Ecol. Sin., 36, 3096-3102.

[56]

Xu, H., Yang, C., Li, Q., 2024. Spatial-temporal evolution of ecosystem service value in Sanjiangyuan National Park. Chin. J. Ecol., 43(6), 1881.

[57]

Yao, T., Bolch, T., Chen, D., Gao, J., Immerzeel, W., Piao, S., Su, F., Thompson, L., Wada, Y., Wang, L., Wang, T., Wu, G., Xu, B., Yang, W., Zhang, G., Zhao, P., 2022. The imbalance of the Asian water tower. Nat. Rev. Earth Environ., 3 (10), pp. 618-632. doi: 10.1038/s43017-022-00299-4.

[58]

Zhang, B., Xie, G., Xiao, Y., Lun, F., 2010. Classification of ecosystem services based on human demand. China Popul. Resour. Environ., 20, 64-67.

[59]

Zhang, J., Liu, J., Jin, J., Ma, T., Wang, G., Liu, H., Min, X., Wang, H., Lin, J., Bao, Z., Liu, C., 2019. Evolution and trend of water resources in Qinghai-Tibet Plateau. Bull. Chin. Acad. Sci., 34, 1264-1273.

[60]

Zhang, K., Fang, B., Zhang, Z., Liu, T., Liu, K., 2024. Exploring future ecosystem service changes and key contributing factors from a “past-future-action” perspective: a case study of the Yellow River Basin. Sci. Total Environ., 926, 171630.

[61]

Zhang, X., Wang, J., Gao, Y., Wang, L., 2021. Variations and controlling factors of vegetation dynamics on the Qingzang Plateau of China over the recent 20 years. Geogr. Sustain., 2, 74-85.

[62]

Zhou, G., Eisenhauer, N., Terrer, C., Eldridge, D. J., Duan, H., Guirado, E., Berdugo, M., Zhou, L., Liu, S., Zhou, X., Delgado-Baquerizo, M., 2024. Resistance of ecosystem services to global change weakened by increasing number of environmental stressors. Nat. Geosci., 17(9), 882-888.

[63]

Zingraff-Hamed, A., Huesker, F., Albert, C., Brillinger, M., Huang, J., Lupp, G., Scheuer, S., Schlatel, M., Schroter, B., 2021. Governance models for nature-based solutions: seventeen cases from Germany. Ambio 50, 1610-1627.

PDF

190

Accesses

0

Citation

Detail

Sections
Recommended

/