Inequality of divided and shared socio-economic resources in 15-minute cities of China

Shijie Li , Xin Cao , Luling Liu , Anqi Li

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) : 100337

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) :100337 DOI: 10.1016/j.geosus.2025.100337
Research Article
review-article

Inequality of divided and shared socio-economic resources in 15-minute cities of China

Author information +
History +
PDF

Abstract

The inequality of socio-economic resources has threatened individual well-being and urban sustainability. However, the inequality in different resource allocation scenarios is still unclear, and the accessibility distance to resources has not been considered. We developed a large-scale, long-term, and multi-perspective quantitative evaluation framework of inequality in the dividing-resource and sharing-resource scenarios over the past 31 years (1992–2022) within 15-minute cities. This framework is informed by patterns of urban development and the spatial distribution of resources and population. The results from 334 Chinese cities demonstrate the differences in inequality between developed and developing cities. When individuals share resources within 15-minute accessibility distance, inequality is lower in developed cities relative to developing cities due to more spatially balanced resources, with a decreasing trend over the past 31 years. However, due to the uneven spatial distribution of the population in developed cities, inequality among individuals has increased when resources are divided within 15-minute accessibility distance. We suggest that the government avoid policy lagging and reduce inequality by rationalizing the spatial configuration of socio-economic resources. Developed cities could adopt policies to direct the overpopulation of city centers outward, and developing cities should care about resources for suburban citizens.

Keywords

Inequality / 15-minute city / Nighttime light / Spatial configuration

Cite this article

Download citation ▾
Shijie Li, Xin Cao, Luling Liu, Anqi Li. Inequality of divided and shared socio-economic resources in 15-minute cities of China. Geography and Sustainability, 2025, 6(5): 100337 DOI:10.1016/j.geosus.2025.100337

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Shijie Li: Writing – original draft, Visualization, Validation, Resources, Methodology, Investigation, Formal analysis, Data curation. Xin Cao: Writing – review & editing, Project administration, Investigation, Funding acquisition, Formal analysis, Conceptualization. Luling Liu: Writing – review & editing, Validation, Software, Investigation, Data curation. Anqi Li: Writing – review & editing, Validation, Investigation, Data curation.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

The PCNL dataset can be downloaded freely at https://doi.org/10.5281/zenodo.7612389. The GlobPOP dataset can be downloaded freely at https://doi.org/10.5281/zenodo.10088105.

Acknowledgement

This research was supported by the National Natural Science Foundation of China (Grant No. 42371334). We appreciate Mr. Yixuan Pi from Beijing Normal University for improving coding efficiency.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100337.

References

[1]

Bennett, M. M., Smith, L. C., 2017. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sens. Environ., 192, pp. 176-197. doi: 10.1016/j.rse.2017.01.005.

[2]

Bolt, G., van Kempen, R., van Ham, M., 2008. Minority ethnic groups in the dutch housing market: spatial segregation, relocation dynamics and housing policy. Urban Stud. 45, 1359–1384. doi: 10.1177/0042098008090678.

[3]

Brady, D., Blome, A., Kleider, H. 2016. How politics and institutions shape poverty and inequality. D. Brany, L.M. Burton (Eds.), The Oxford Handbook of The Social Science of Poverty, Oxford University Press, pp.117-140.

[4]

Cao, X., Hu, Y., Zhu, X., Shi, F., Zhuo, L., Chen, J., 2019. A simple self-adjusting model for correcting the blooming effects in DMSP-OLS nighttime light images. Remote Sens. Environ., 224, pp. 401-411. doi: 10.1016/j.rse.2019.02.019.

[5]

Chen, M., Hu, Y., Cao, X., Li, S., Liu, L., 2024. Assessing electricity supply reliability by detection of anomalies in daily nighttime light. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 18, pp. 2990-2999. doi: 10.1109/JSTARS.2024.3520168.

[6]

Chen, T-H. K., Prishchepov, A. V., Fensholt, R., Sabel, C. E., 2019. Detecting and monitoring long-term landslides in urbanized areas with nighttime light data and multi-seasonal Landsat imagery across Taiwan from 1998 to 2017. Remote Sens. Environ., 225, pp. 317-327. doi: 10.1016/j.rse.2019.03.013.

[7]

Chen, W., Zhou, Y., Wu, Q., Chen, G., Huang, X., Yu, B., 2020. Urban building type mapping using geospatial data: a case study of Beijing, China. Remote Sens., 12, p. 2805. doi: 10.3390/rs12172805.

[8]

China, Businessetwork, N.2022 New tier 1 cities list officially announced.China, Business, Network.

[9]

Du, J., 2021. Tongzhou to cure “big city diseases. ” China Daily, 2021-12-02.

[10]

Guo, C., Zhou, W., Jing, C., Zhaxi, D., 2024. Mapping and measuring urban-rural inequalities in accessibility to social infrastructures. Geogr. Sustain., 5, pp. 41-51. doi: 10.1016/j.geosus.2023.11.004.

[11]

Jiang, Y., Shi, C., 2023. Estimating sustainability and regional inequalities using an enhanced sustainable development index in China. Sust. Cities Soc., 99, Article 104555. doi: 10.1016/j.scs.2023.104555.

[12]

Killewald, A., Pfeffer, F. T., Schachner, J. N., 2017. Wealth inequality and accumulation. Annu. Rev. Sociol., 43, pp. 379-404. doi: 10.1146/annurev-soc-060116-053331.

[13]

Kleven, H., Landais, C., Søgaard, J. E., 2019. Children and gender inequality: evidence from denmark. Am. Econ. J. Appl. Econ., 11, pp. 181-209. doi: 10.1257/app.20180010.

[14]

Kuznets, S., 1985. Economic growth and income inequality. M.A. Seligson (Ed.), The Gap Between Rich and Poor: Contending Perspectives on the Political Economy of Development, Routledge, New York

[15]

Leyk, S., Gaughan, A. E., Adamo, S. B., de Sherbinin, A., Balk, D., Freire, S., Rose, A., Stevens, F. R., Blankespoor, B., Frye, C., Comenetz, J., Sorichetta, A., MacManus, K., Pistolesi, L., Levy, M., Tatem, A. J., Pesaresi, M., 2019. The spatial allocation of population: a review of large-scale gridded population data products and their fitness for use. Earth Syst. Sci. Data, 11, pp. 1385-1409. doi: 10.5194/essd-11-1385-2019.

[16]

Li, Q., Long, R., Chen, H., 2018. 229, pp. 299-313. doi: 10.1016/j.apenergy.2018.07.118.

[17]

Li, S., Cao, X., 2024. Monitoring the modes and phases of global human activity development over 30 years: evidence from county-level nighttime light. Int. J. Appl. Earth Obs. Geoinf., 126, Article 103627. doi: 10.1016/j.jag.2023.103627.

[18]

Li, S., Cao, X., Zhao, C., Jie, N., Liu, L., Chen, X., Cui, X., 2023. Developing a pixel-scale corrected nighttime light dataset (PCNL, 1992–2021) combining DMSP-OLS and NPP-VIIRS. Remote Sens., 15, p. 3925. doi: 10.3390/rs15163925.

[19]

Gong, P., Zhou, Y., Wang, J., Bai, Y., Chen, B., Hu, T., Xiao, Y., Xu, B., Yang, J., Liu, X., Cai, W., Huang, H., Wu, T., Wang, X., Lin, P., Chen, J., He, C., Yu, L., Clinton, N., Zhu, Z., 2020. Mapping global urban boundaries from the global artificial impervious area (GAIA) data. Environ. Res. Lett., 15, Article 094044. doi: 10.1088/1748-9326/ab9be3.

[20]

Liu, L., Cao, X., Li, S., Jie, N., 2024. A 31-year (1990–2020) global gridded population dataset generated by cluster analysis and statistical learning. Sci. Data, 11, p. 124. doi: 10.1038/s41597-024-02913-0.

[21]

Liu, Y., Liu, J., Zhou, Y., 2017. 52, pp. 66-75. doi: 10.1016/j.jrurstud.2017.04.002.

[22]

McKnight, P. E., Najab, J., 2010. Mann-Whitney U test. I.B. Weiner (Ed.), The Corsini Encyclopedia of Psychology, Wiley, Hoboken.. doi: 10.1002/9780470479216.corpsy0524.

[23]

Mirza, M. U., Xu, C., Scheffer, M., 2021. Global inequality remotely sensed. Proc. Natl. Acad. Sci. U.S.A., 118, Article e1919913118. doi: 10.1073/pnas.1919913118.

[24]

Mun, J., Lee, J. S., Kim, S., 2024. Effects of urban sprawl on regional disparity and quality of life: a case of South Korea. Cities, 151, Article 105125. doi: 10.1016/j.cities.2024.105125.

[25]

Neckerman, K. M., Torche, F., 2007. Inequality: causes and consequences. Annu. Rev. Sociol., 33, pp. 335-357. doi: 10.1146/annurev.soc.33.040406.131755.

[26]

Nijman, J., Wei, Y. D., 2020. Urban inequalities in the 21st century economy. Appl. Geogr., 117, Article 102188. doi: 10.1016/j.apgeog.2020.102188.

[27]

Champion, T. 2001. Urbanization, suburbanization, counterurbanization and reurbanization. R. Paddison (Ed.), Handbook of Urban Studies, Sage Publications, London, pp.143-161.

[28]

Papadopoulos, E., Sdoukopoulos, A., Politis, I., 2023. Measuring compliance with the 15- minute city concept: state-of-the-art, major components and further requirements. Sust. Cities Soc. 99, 104875. doi: 10.1016/j.scs.2023.104875.

[29]

Pellissery, S., 2008. Social hierarchies, economic inequalities and interpersonal relationships: an overview from India. Interpersona: Int. J. Pers. Relatsh., 2, pp. 243-259. doi: 10.5964/ijpr.v2i2.27.

[30]

Ravenstein, E. G., 1889. The laws of migration. J. R. Stat. Soc., 52(2), 241-305.

[31]

Ridgeway, C. L., 2014. Why status matters for inequality. Am. Sociol. Rev., 79, pp. 1-16. doi: 10.1177/0003122413515997.

[32]

Sen, P. K., 1968. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc., 63, pp. 1379-1389. doi: 10.1080/01621459.1968.10480934.

[33]

Song, Y. M., Chen, B., Ho, H. C., Kwan, M-.P., Liu, D., Wang, F., Wang, J., Cai, J., Li, X., Xu, Y., He, Q., Wang, H., Xu, Q., Song, Y. Z., 2021. Observed inequality in urban greenspace exposure in China. Environ. Int., 156, Article 106778. doi: 10.1016/j.envint.2021.106778.

[34]

Su, R., Huang, X., Chen, R., Guo, X., 2024. Spatial and social inequality of hierarchical healthcare accessibility in urban system: a case study in Shanghai, China. Sust. Cities Soc., 109, Article 105540. doi: 10.1016/j.scs.2024.105540.

[35]

Tang, Y., Song, Y., Wang, Y., Lai, S., Alegana, V. A., Liu, X., 2023. National variation in patterns of bone disease treatment-seeking behaviors: a study of more than 50,000 hospital admissions between 2008 and 2021. Int. J. Appl. Earth Obs. Geoinf., 117, Article 103219. doi: 10.1016/j.jag.2023.103219.

[36]

Theil, H. 1992. A rank-invariant method of linear and polynomial regression analysis. B. Raj, J. Koerts (Eds.), Henri Theil’s Contributions to Economics and Econometrics: Econometric Theory and Methodology, Springer, Dordrecht, pp.345-381.

[37]

Tobler, W., 2004. On the first law of geography: a reply. Ann. Assoc. Am. Geogr., 94, pp. 304-310. doi: 10.1111/j.1467-8306.2004.09402009.x.

[38]

Wang, Y., Liu, Z. F., He, C., Xia, P., Liu, Z. W., Liu, H., 2020. Quantifying urbanization levels on the Tibetan Plateau with high-resolution nighttime light data. Geogr. Sustain., 1, pp. 233-244. doi: 10.1016/j.geosus.2020.08.004.

[39]

Wei, Y. D., 2015. Spatiality of regional inequality. Appl. Geogr., 61, pp. 1-10. doi: 10.1016/j.apgeog.2015.03.013.

[40]

Wei, Y. D., Ewing, R., 2018. Urban expansion, sprawl and inequality. Landsc. Urban Plan., 177, pp. 259-265. doi: 10.1016/j.landurbplan.2018.05.021.

[41]

Weidmann, N. B., Theunissen, G., 2021. Estimating local inequality from nighttime lights. Remote Sens., 13, p. 4624. doi: 10.3390/rs13224624.

[42]

Wen, H., Xiao, Y., Zhang, L., 2017. School district, education quality, and housing price: evidence from a natural experiment in Hangzhou, China. Cities 66, 72–80. doi: 10.1016/j.cities.2017.03.008.

[43]

Wu, R., Yang, D., Dong, J., Zhang, L., Xia, F., 2018. Regional inequality in China based on NPP-VIIRS night-time light imagery. Remote Sens., 10, p. 240. doi: 10.3390/rs10020240.

[44]

Yi, P., Li, W., Zhang, D., 2021. 281, Article 125369. doi: 10.1016/j.jclepro.2020.125369.

[45]

Zhao, C., Cao, X., Chen, X., Cui, X., 2022. A consistent and corrected nighttime light dataset (CCNL 1992–2013) from DMSP-OLS data. Sci. Data, 9, p. 424. doi: 10.1038/s41597-022-01540-x.

[46]

Zhou, Y., Li, X., Chen, W., Meng, L., Wu, Q., Gong, P., Seto, K. C., 2022. Satellite mapping of urban built-up heights reveals extreme infrastructure gaps and inequalities in the Global South. Proc. Natl. Acad. Sci. U.S.A., 119, Article e2214813119. doi: 10.1073/pnas.2214813119.

[47]

Zhou, Y., Ma, T., Zhou, C., Xu, T., 2015. Nighttime light derived assessment of regional inequality of socioeconomic development in China. Remote Sens., 7, pp. 1242-1262. doi: 10.3390/rs70201242.

PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

/