The value of water in agriculture over the past 30 years on the north slope of the Tianshan Mountains

Peifang Leng , Zhipin Ai , Fadong Li

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) : 100327

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) :100327 DOI: 10.1016/j.geosus.2025.100327
Research Article
review-article

The value of water in agriculture over the past 30 years on the north slope of the Tianshan Mountains

Author information +
History +
PDF

Abstract

Water is an indispensable resource for agricultural production. However, its value in agriculture remains largely unknown. This oversight results in agriculture water value being seldom integrated into water pricing, thereby restricting the information available for water allocation decisions. In this study, we estimated irrigation water value over the last 30 years on the north slope of the Tianshan Mountains, where agriculture is largely dependent on irrigation water supply. Using a data-parsimonious biophysical framework with a function of crop growth and water-demanding dynamics, we estimate the additional net economic benefit of irrigated agriculture relative to rainfed conditions for three major crops at the county level. Our results reveal that mean irrigation water values were 0.27, 0.32, and 0.16 USD m–3 for cotton, maize, and wheat, respectively, which were 2.0 − 3.2 times higher than global estimates. The value of irrigation water significantly increased over time, primarily driven by rising crop prices and improved water use efficiency. Our findings indicate that farmers in arid regions with water limitations may favor crops with high irrigation water use efficiency. Wheat is suggested to be spatially reallocated in light of the economic benefit, given its relatively low output price and water use efficiency. Irrigation water value was more sensitive to precipitation than air temperature by lowering crop prices and narrowing the gap between rain-fed and irrigated yields. The inclusion of irrigation water value in planning could lead to more efficient use of water resources and support decisions regarding irrigation investments, water use rights, and, ultimately, food sustainability.

Keywords

Water value / Irrigation water / Water use efficiency / The north slope of Tianshan Mountains / Biophysical method

Cite this article

Download citation ▾
Peifang Leng, Zhipin Ai, Fadong Li. The value of water in agriculture over the past 30 years on the north slope of the Tianshan Mountains. Geography and Sustainability, 2025, 6(5): 100327 DOI:10.1016/j.geosus.2025.100327

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Peifang Leng: Writing – review & editing, Writing – original draft, Visualization, Methodology, Formal analysis, Conceptualization. Zhipin Ai: Writing – review & editing, Methodology, Conceptualization. Fadong Li: Writing – review & editing, Supervision, Project administration, Funding acquisition, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was funded by the Third Xinjiang Scientific Expedition Program (Grant No. 2021xjkk0800), National Natural Science Foundation of China (Grant No. 42401121), Corps International Science and Technology Cooperation Program (Grant No. 2024BA004), National Key Research and Development Program of China (Grants No. 2025YFE0104900, 2023YFD1701803), and International Cooperation Program of CRAES (Grant No. 2025YSKY-75). We thank Haixia Duo and Jiayuan Liu for helping to organize data from Xinjiang Statistical Yearbook and MODIS data for evaluating local water storage. We thank the reviewers and editor for insightful comments that improved the paper.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100327.

References

[1]

Allen, R. G., Pereira, L. S., Raes, D., Smith, M., 1998. Crop evapotranspiration-guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, FAO, Rome

[2]

Batjes, N., 2012. ISRIC Report 2012/01: ISRIC-WISE Derived Soil Properties on a 5 by 5 Arc-Minutes Global Grid (ver. 1.2). ISRIC, Wageningen

[3]

Bhattarai, N., Pollack, A., Lobell, D. B., Fishman, R., Singh, B., Dar, A., Jain, M., 2021. The impact of groundwater depletion on agricultural production in India. Environ. Res. Lett., 16 (8), Article 085003. doi: 10.1088/1748-9326/ac10de.

[4]

Büchner-Marais, C., Brill, G., Lewis, C., Visser, M., 2021. The Economics of Water: Values and Governance Perspectives, Towards the Blue-Green City: Building Urban Water Resilience. Water Research Commission, South Africa

[5]

Buttinelli, R., Cortignani, R., Caracciolo, F., 2024. 295, Article 108757. doi: 10.1016/j.agwat.2024.108757.

[6]

Chen, H., Wu, M., Duan, Z., Zha, Y., Wang, S., Yang, L., Zou, L., Zheng, M., Chen, P., Cao, W., Zhang, W., 2023. Forecasting the human and climate impacts on groundwater resources in the irrigated agricultural region of North China Plain. Hydrol. Process., 37 (3), Article e14853. doi: 10.1002/hyp.14853.

[7]

Chen, Y., Li, Z., Li, W., Deng, H., Shen, Y., 2016. Water and ecological security: dealing with hydroclimatic challenges at the heart of China’s Silk Road. Environ. Earth Sci., 75 (10), p. 881. doi: 10.1007/s12665-016-5385-z.

[8]

Chiarelli, D. D., Passera, C., Rosa, L., Davis, K. F., D’Odorico, P., Rulli, M. C., 2020. The green and blue crop water requirement WATNEEDS model and its global gridded outputs. Sci. Data, 7 (1), p. 273. doi: 10.1038/s41597-020-00612-0.

[9]

D’Odorico, P., Chiarelli, D. D., Rosa, L., Bini, A., Zilberman, D., Rulli, M. C., 2020. The global value of water in agriculture. Proc. Natl. Acad. Sci. U.S.A., 117 (36), pp. 21985-21993. doi: 10.1073/pnas.2005835117.

[10]

de Brito, P. L. C., de Azevedo, J. P. S., 2022. Economic value of water for irrigation in São Francisco River Basin, Brazil. Appl. Water Sci., 12 (7), p. 155. doi: 10.1007/s13201-022-01678-4.

[11]

Deng, Z., Zhang, Q., Pu, J., Liu, D., Guo, H., Wang, Q., Zhao, H., Wang, H., 2008. Impact of climate warming on crop planting and production in Northwest China. Acta. Ecol. Sin., 28 (8), pp. 3760-3768. doi: 10.1016/S1872-2032(08)60076-1.

[12]

Doorenbos, J., Kassam, A., 1979. Yield response to water. FAO Irrigation and Drainage Paper No. 33.

[13]

Esmaeili, A., Vazirzadeh, S., 2009. Water pricing for agricultural production in the South of Iran. Water Resour. Manage., 23 (5), pp. 957-964. doi: 10.1007/s11269-008-9308-y.

[14]

Fan, X., 2016. Exploring comprehensive agricultural water price reform in Xinjiang. Water Resour. Dev. Res., 16(3), 54-55.

[15]

Fan, Z., Mu, G., Ma, Y., Ma, Y., 2002. Formation and development of the artificially irrigated oases in the northern piedmont of the Tianshan Mountains. Sci. Geogr. Sin., 22 (2), pp. 184-189. doi: 10.13249/j.cnki.sgs.2002.02.184.

[16]

Fang, C., Gao, Q., Zhang, X., Cheng, W., 2019. Spatiotemporal characteristics of the expansion of an urban agglomeration and its effect on the eco-environment: case study on the northern slope of the Tianshan Mountains. Sci. China Earth Sci., 62 (9), pp. 1461-1472. doi: 10.1007/s11430-018-9369-x.

[17]

FAOSTAT 2024. Statistical Database (Food and Agriculture Organization Statistics). FAO

[18]

Fenichel, E. P., Abbott, J. K., Bayham, J., Boone, W., Haacker, E. M. K., Pfeiffer, L., 2016. Measuring the value of groundwater and other forms of natural capital. Proc. Natl. Acad. Sci. U.S.A., 113 (9), pp. 2382-2387. doi: 10.1073/pnas.1513779113.

[19]

Garrick, D. E., Hall, J. W., Dobson, A., Damania, R., Grafton, R. Q., Hope, R., Hepburn, C., Bark, R., Boltz, F., De Stefano, L., O'Donnell, E., Matthews, N., Money, A., 2017. Valuing water for sustainable development. Science, 358 (2017), pp. 1003-1005. doi: 10.1126/science.aao4942.

[20]

Gil, J., 2020. Water value in agriculture. Nat. Food, 1 (9), p. 530. doi: 10.1038/s43016-020-00154-z.

[21]

Grismer, M., 2002. Regional cotton lint yield, ETc and water value in Arizona and California. Agric. Water Manage., 54 (3), pp. 227-242. doi: 10.1016/S0378-3774(01)00174-3.

[22]

Groemping, U., 2006. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw., 17 (1), pp. 1-27. doi: 10.18637/jss.v017.i01.

[23]

Hall, A. E., 2000. Crop Responses to Environment. CRC Press, Boca Raton

[24]

Han, S., Yang, Z., 2013. Cooling effect of agricultural irrigation over Xinjiang, Northwest China from 1959 to 2006. Environ. Res. Lett., 8 (2), Article 024039. doi: 10.1088/1748-9326/8/2/024039.

[25]

Huang, J., Ji, F., 2015. Effects of climate change on phenological trends and seed cotton yields in oasis of arid regions. Int. J. Biometeorol., 59 (7), pp. 877-888. doi: 10.1007/s00484-014-0904-7.

[26]

Kang, S., Hao, X., Du, T., Tong, L., Su, X., Lu, H., Li, X., Huo, Z., Li, S., Ding, R., 2017. Improving agricultural water productivity to ensure food security in China under changing environment: from research to practice. Agric. Water Manage., 179, pp. 5-17. doi: 10.1016/j.agwat.2016.05.007.

[27]

Kumar, M. D., Malla, A. K., Tripathy, S. K., 2008. Tripathy. Economic value of water in agriculture: comparative analysis of a water-scarce and a water-rich region in India. Water Int., 33 (2), pp. 214-230. doi: 10.1080/02508060802108750.

[28]

Lefcheck, J. S., 2016. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol., 7 (5), pp. 573-579. doi: 10.1111/2041-210x.12512.

[29]

Li, N., Lin, H., Wang, T., Li, Y., Liu, Y., Chen, X., Hu, X., 2020. Impact of climate change on cotton growth and yields in Xinjiang, China. Field. Crops. Res., 247, Article 107590. doi: 10.1016/j.fcr.2019.107590.

[30]

Li, X., Troy, T. J., 2018. Changes in rainfed and irrigated crop yield response to climate in the western US. Environ. Res. Lett., 13 (6), Article 064031. doi: 10.1088/1748-9326/aac4b1.

[31]

Liu, X., Xu, Y., Sun, S., Zhao, X., Wu, P., Wang, Y., 2022. What is the potential to improve food security by restructuring crops in Northwest China?. J. Clean. Prod., 378, Article 134620. doi: 10.1016/j.jclepro.2022.134620.

[32]

Lu, X., Jia, X., Niu, J., 2018. 51 (1), pp. 26-36. doi: 10.3864/j.issn.0578-1752.2018.01.003.

[33]

McLeod, A. I., 2005. Kendall rank correlation and Mann-Kendall trend test.

[34]

Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., Foley, J. A., 2012. Closing yield gaps through nutrient and water management. Nature, 490 (2012), pp. 254-257. doi: 10.1038/nature11420.

[35]

Müller, C., Elliott, J., Chryssanthacopoulos, J., Arneth, A., Balkovic, J., Ciais, P., Deryng, D., Folberth, C., Glotter, M., Hoek, S., Iizumi, T., Izaurralde, R. C., Jones, C., Khabarov, N., Lawrence, P., Liu, W., Olin, S., Pugh, T. A. M., Ray, D. K., Reddy, A., Rosenzweig, C., Ruane, A. C., Sakurai, G., Schmid, E., Skalsky, R., Song, C. X., Wang, X., de Wit, A., Yang, H., 2017. Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geosci. Model Dev., 10 (4), pp. 1403-1422. doi: 10.5194/gmd-10-1403-2017.

[36]

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., 2021. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data, 13 (9), pp. 4349-4383. doi: 10.5194/essd-13-4349-2021.

[37]

Pebesma, E., 2018. Simple features for R: standardized support for spatial vector data. R J., 10 (1), pp. 439-446. doi: 10.32614/RJ-2018-009.

[38]

Pirlea, A. F., Serajuddin, U., Wadhwa, D., Welch, M., 2023. Atlas of Sustainable Development Goals 2023. World Bank, Washington, D.C

[39]

Portmann, F. T., Siebert, S., Döll, P., 2010. MIRCA2000—global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycle., 24 (1), p. GB1011. doi: 10.1029/2008GB003435.

[40]

Qureshi, M. E., Ahmad, M. D., Whitten, S. M., Reeson, A., Kirby, M., 2016. Impact of climate variability including drought on the residual value of irrigation water across the Murray–Darling Basin, Australia. Water Econ. Policy, 4 (1), Article 1550020. doi: 10.1142/S2382624X15500204.

[41]

Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C., Foley, J. A., 2012. Recent patterns of crop yield growth and stagnation. Nat. Commun., 3 (1), p. 1293. doi: 10.1038/ncomms2296.

[42]

Ren, Y., Wei, S., Cheng, K., Fu, Q., 2018. Valuation and pricing of agricultural irrigation water based on macro and micro scales. Water, 10 (8), p. 1044. doi: 10.3390/w10081044.

[43]

Rosa, L., Rulli, M. C., Davis, K. F., D’Odorico, P., 2018. The water-energy nexus of hydraulic fracturing: a global hydrologic analysis for shale oil and gas extraction. Earths Future, 6 (5), pp. 745-756. doi: 10.1002/2018EF000809.

[44]

Schlenker, W., Roberts, M. J., 2009. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. U.S.A., 106 (37), pp. 15594-15598. doi: 10.1073/pnas.0906865106.

[45]

Siebert, S., Döll, P., 2010. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol., 384 (3), pp. 198-217. doi: 10.1016/j.jhydrol.2009.07.031.

[46]

Statistics Bureau of The Xinjiang Uygur Autonomous Region 2022 Statistics Bureau of The Xinjiang Uygur Autonomous Region. Xinjiang Statistical Yearbook. China Statistics Press, Beijing

[47]

Steduto, P., Hsiao, T. C., Raes, D., Fereres, E., 2009. AquaCrop—the FAO crop model to simulate yield response to water: I. concepts and underlying principles. Agron. J., 101(3), 426-437.

[48]

Sun, Y., Liu, B., Yang, G., Du, Y., Huang, H., Wang, T., Wang, J., 2023. Analysis of spatiotemporal evolution patterns and driving forces of reservoirs on the northern slope of the Tianshan Mountains in Xinjiang. Sustainability, 15 (11), p. 8824. doi: 10.3390/su15118824.

[49]

Tang, Q., Liu, X., Zhou, Y., Wang, P., Li, Z., Hao, Z., Liu, S., Zhao, G., Zhu, B., He, X., Li, F., Yang, G., He, L., Deng, H., Wang, Z., Ao, X., Wang, Z., Gaffney, P. P. J., Luo, L., 2022. Climate change and water security in the northern slope of the Tianshan Mountains. Geogr. Sustain., 3 (3), pp. 246-257. doi: 10.1016/j.geosus.2022.08.004.

[50]

Tuong, T. P., 2000. Productive water use in rice production. J. Crop Prod., 2 (2), pp. 241-264. doi: 10.1300/J144v02n02_10.

[51]

Upadhyaya, A., Jeet, P., Singh, A. K., Sundaram, P. K., 2023. Sundaram. Estimation of the economic value of irrigation water in canal and tube well command areas. H2Open J., 6 (2), pp. 131-139. doi: 10.2166/h2oj.2023.011.

[52]

Wang, X., Li, X., 2021. China’s agricultural land use change and its underlying drivers: a literature review. J. Geogr. Sci., 31 (8), pp. 1222-1242. doi: 10.1007/s11442-021-1894-0.

[53]

Wang, Z., Chen, J., Xing, F., Han, Y., Chen, F., Zhang, L., Li, Y., Li, C., 2017. Response of cotton phenology to climate change on the North China Plain from 1981 to 2012. Sci. Rep., 7 (1), p. 6628. doi: 10.1038/s41598-017-07056-4.

[54]

Ward, F. A., Michelsen, A., 2002. The economic value of water in agriculture: concepts and policy applications. Water Policy, 4 (5), pp. 423-446. doi: 10.1016/S1366-7017(02)00039-9.

[55]

Webber, M., Barnett, J., Finlayson, B., Wang, M., 2008. Pricing China’s irrigation water. Glob. Environ. Change, 18 (4), pp. 617-625. doi: 10.1016/j.gloenvcha.2008.07.014.

[56]

World Bank, 2022. Water in Agriculture. World Bank Group.

[57]

Xu, Q., Dong, X., Huang, W., Li, Z., Huang, T., Song, Z., Yang, Y., Chen, J., 2024. Evaluating the effect of deficit irrigation on yield and water use efficiency of drip irrigation cotton under film in Xinjiang based on meta-analysis. Plants, 13 (5), p. 640. doi: 10.3390/plants13050640.

[58]

Yan, B., Li, X., Hou, J., Bi, P., Sun, F., 2020. Study on the dynamic characteristics of shallow groundwater level under the influence of climate change and human activities in Cangzhou, China. Water Supply, 21 (2), pp. 797-814. doi: 10.2166/ws.2020.308.

[59]

Zeng, R., Cai, X., 2014. Analyzing streamflow changes: irrigation-enhanced interaction between aquifer and streamflow in the Republican River basin. Hydrol. Earth Syst. Sci., 18 (2), pp. 493-502. doi: 10.5194/hess-18-493-2014.

[60]

Zhong, R., Dong, X., Ma, Y., 2009. Sustainable water saving: new concept of modern agricultural water saving, starting from development of Xinjiang’s agricultural irrigation over the last 50 years. Irrig. Drain. 58 (4), 383–392. doi: 10.1002/ird.414.

[61]

Zhuo, L., Li, M., Zhang, G., Mekonnen, M. M., Hoekstra, A. Y., Wada, Y., Wu, P., 2022. Volume versus value of crop-related water footprints and virtual water flows: a case study for the Yellow River Basin. J. Hydrol., 608, Article 127674. doi: 10.1016/j.jhydrol.2022.127674.

[62]

Zwart, S. J., Bastiaanssen, W. G. M., 2004. Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agric. Water Manage., 69 (2), pp. 115-133. doi: 10.1016/j.agwat.2004.04.007.

PDF

210

Accesses

0

Citation

Detail

Sections
Recommended

/