Macrosystems ecology: A new engine and frontier in contemporary ecosystem science

Guirui Yu , Zongxu Yu , Zhi Chen , Qiufeng Wang

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) : 100334

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) :100334 DOI: 10.1016/j.geosus.2025.100334
Perspective
review-article

Macrosystems ecology: A new engine and frontier in contemporary ecosystem science

Author information +
History +
PDF

Abstract

Ecosystems are complex systems shaped by both self-organization and anthropogenic regulation, emerging from the dynamic interplay among water, land, climate, biota, and human activities. As the foundational habitat for human well-being, they provide essential services including ecological goods, natural resources, cultural value, and livable environments. Amid accelerating global change, intensifying environmental pressures, and deepening disciplinary integration, ecosystem science is entering a period of transformative development. This study identifies macrosystems ecology, grounded in the principles of large-scale ecological processes, as a pivotal framework for driving the future of ecosystem science. We propose an integrated theoretical, epistemological, engineering and technological system to support this evolution, and retrospectively examine the origins and scientific mission of macrosystems ecology. Core questions, practical applications, research subjects, paradigms, and methodological systems are systematically outlined. In addition, we articulate the multidisciplinary principles, epistemological framework, and axiomatic system that underpin a coherent structure for macrosystems ecology. Together, these components offer strategic guidance for advancing both theoretical understanding and practical innovation in sustainable ecosystem management.

Keywords

Ecosystem science / Macro-ecosystems / Ecological principles / Ecological theory / Engineering and technological system

Cite this article

Download citation ▾
Guirui Yu, Zongxu Yu, Zhi Chen, Qiufeng Wang. Macrosystems ecology: A new engine and frontier in contemporary ecosystem science. Geography and Sustainability, 2025, 6(5): 100334 DOI:10.1016/j.geosus.2025.100334

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Guirui Yu: Writing – original draft, Supervision, Methodology, Funding acquisition, Conceptualization. Zongxu Yu: Writing – review & editing, Writing – original draft, Visualization, Investigation. Zhi Chen: Writing – review & editing, Validation, Funding acquisition. Qiufeng Wang: Supervision, Project administration.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants No. 32588202, 32222052 and 42261144688).

References

[1]

Ahearn, M., 2013. Successes, Limitations, and Frontiers in Ecosystem Science. Springer Science & Business Media

[2]

Aronova, E., Baker, K. S., Oreskes, N., 2010. Big science and big data in biology: from the international geophysical year through the international biological program to the Long Term Ecological Research (LTER) network, 1957–present. Hist. Stud. Nat. Sci., 40, pp. 183-224. doi: 10.1525/hsns.2010.40.2.183.

[3]

Bakker, K., 2012. Water security: research challenges and opportunities. Science, 337, pp. 914-915. doi: 10.1126/science.1226337.

[4]

Bleischwitz, R., Spataru, C., VanDeveer, S. D., Obersteiner, M., van der Voet, E., Johnson, C., Andrews-Speed, P., Boersma, T., Hoff, H., van Vuuren, D. P., 2018. Resource nexus perspectives towards the United Nations Sustainable Development Goals. Nat. Sustain., 1 (12), pp. 737-743. doi: 10.1038/s41893-018-0173-2.

[5]

Burger, J. R., Allen, C. D., Brown, J. H., Burnside, W. R., Davidson, A. D., Fristoe, T. S., Hamilton, M. J., Mercado-Silva, N., Nekola, J. C., Okie, J. G., Zuo, W., 2012. The macroecology of sustainability. PLoS Biol., 10 (6), Article e1001345. doi: 10.1371/journal.pbio.1001345.

[6]

Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R. K., Fuchs, R., Brovkin, V., Ciais, P., Fensholt, R., Tømmervik, H., Bala, G., Zhu, Z., Nemani, R. R., Myneni, R. B., 2019. China and India lead in greening of the world through land-use management. Nat. Sustain., 2, pp. 122-129. doi: 10.1038/s41893-019-0220-7.

[7]

de Groot, R. S., Alkemade, R., Braat, L., Hein, L., Willemen, L., 2010. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex., 7 (3), pp. 260-272. doi: 10.1016/j.ecocom.2009.10.006.

[8]

Di Castri, F., Hadley, M., Damlamian, J., 1981. MAB: the man and the biosphere program as an evolving system. Ambio 10, 52-57.

[9]

Dietze, M. C., Fox, A., Beck-Johnson, L. M., Betancourt, J. L., Hooten, M. B., Jarnevich, C. S., Keitt, T. H., Kenney, M. A., Laney, C. M., Larsen, L. G., Loescher, H. W., Lunch, C. K., Pijanowski, B. C., Randerson, J. T., Read, E. K., Tredennick, A. T., Vargas, R., Weathers, K. C., White, E. P., 2018. Iterative near-term ecological forecasting: needs, opportunities, and challenges. Proc. Natl. Acad. Sci. U.S.A., 115 (7), pp. 1424-1432. doi: 10.1073/pnas.1710231115.

[10]

Farley, S. S., Dawson, A., Goring, S. J., Williams, J. W., 2018. Situating ecology as a big-data science: current advances, challenges, and solutions. Bioscience, 68 (8), pp. 563-576. doi: 10.1093/biosci/biy068.

[11]

Fu, B., Meadows, M. E., Zhao, W., 2022. Geography in the Anthropocene: transforming our world for sustainable development. Geogr. Sustain., 3 (1), pp. 1-6. doi: 10.1016/j.geosus.2021.12.004.

[12]

Fu, B., Yu, D., 2016. Trade-off analyses and synthetic integrated method of multiple ecosystem services. Resour. Sci., 38, pp. 1-9. doi: 10.18402/resci.2016.01.01.

[13]

Geary, W. L., Bode, M., Doherty, T. S., Fulton, E. A., Nimmo, D. G., Tulloch, A. I. T., Tulloch, V. J. D., Ritchie, E. G., 2020. Doherty, E.A. Fulton, D.G. Nimmo, A.I.T. Tulloch, V.J.D. Tulloch, E.G. Ritchie. A guide to ecosystem models and their environmental applications. Nat. Ecol. Evol., 4 (11), pp. 1459-1471. doi: 10.1038/s41559-020-01298-8.

[14]

Hogue, A. S., Breon, K., 2022. The greatest threats to species. Conserv. Sci. Pract., 4 (5), Article e12670. doi: 10.1111/csp2.12670.

[15]

Jägermeyr, J., Müller, C., Ruane, A. C., Elliott, J., Balkovic, J., Castillo, O., Faye, B., Foster, I., Folberth, C., Franke, J. A., Fuchs, K., Guarin, J. R., Heinke, J., Hoogenboom, G., Iizumi, T., Jain, A. K., Kelly, D., Khabarov, N., Lange, S, T-Lin, S., Liu, W., Mialyk, O., Minoli, S., Moyer, E. J., Okada, M., Phillips, M., Porter, C., Rabin, S. S., Scheer, C., Schneider, J. M., Schyns, J. F., Skalsky, R., Smerald, A., Smerald, A., Stella, T., Stephens, H., Webber, H., Zabel, F., Rosenzweig, C., 2021. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food, 2 (11), pp. 873-885. doi: 10.1038/s43016-021-00400-y.

[16]

Kerr, J. T., Kharouba, H. M., Currie, D. J., 2007. The macroecological contribution to global change solutions. Science, 316 (2007), pp. 1581-1584. doi: 10.1126/science.1133267.

[17]

Kolasa, J., Pickett, S. T. A., 1989. Ecological systems and the concept of biological organization. Proc. Natl. Acad. Sci. U.S.A., 86 (22), pp. 8837-8841. doi: 10.1073/pnas.86.22.8837.

[18]

Leitão, P. J., Andrew, C. J., Engelhardt, E. K., Graham, C. H., Martinez-Almoyna, C., Mimet, A., Pinkert, S., Schröder, B., Voskamp, A., Hof, C., Fritz, S. A., 2020. Macroecology as a hub between research disciplines: opportunities, challenges and possible ways forward. J. Biogeogr., 47 (1), pp. 13-15. doi: 10.1111/jbi.13751.

[19]

Liu, Y., Fu, B., Wang, S., Zhao, W., 2018. Global ecological regionalization: from biogeography to ecosystem services. Curr. Opin. Environ. Sustain., 33, pp. 1-8. doi: 10.1016/j.cosust.2018.02.002.

[20]

, Y., Luo, Y., 2023. Macroscale ecology in the 21st century: toward multidisciplinary integration in advancement for scientific solutions of sustainable development. Trans. Earth Environ. Sustain., 1, pp. 237-247. doi: 10.1177/2754124x231151867.

[21]

McCauley, D. J., Desalles, P. A., Young, H. S., Dunbar, R. B., Dirzo, R., Mills, M. M., Micheli, F., 2012. From wing to wing: the persistence of long ecological interaction chains in less-disturbed ecosystems. Sci. Rep., 2, p. 409. doi: 10.1038/srep00409.

[22]

McGinnis, M. D., Ostrom, E., 2014. Social-ecological System Framework Initial Changes and Continuing Challenges. Resilience Alliance Inc

[23]

Niu, S., Wang, S., Wang, J., Xia, J., Yu, G., 2020. Integrative ecology in the era of big data—from observation to prediction. Sci. China Earth Sci., 63 (10), pp. 1429-1442. doi: 10.1007/s11430-020-9664-6.

[24]

O'Neill, B. C., Oppenheimer, M., Warren, R., Hallegatte, S., Kopp, R. E., Pörtner, H. O., Scholes, R., Birkmann, J., Foden, W., Licker, R., MacH, K. J., Marbaix, P., Mastrandrea, M. D., Price, J., Takahashi, K, J-Van Ypersele, P., Yohe, G., 2017. IPCC reasons for concern regarding climate change risks. Nat. Clim. Chang., 7 (1), pp. 28-37. doi: 10.1038/nclimate3179.

[25]

Perry, D. A., 1995. Self-organizing systems across scales. Trends Ecol. Evol., 10, pp. 241-244. doi: 10.1016/S0169-5347(00)89074-6.

[26]

Poisot, T., Stouffer, D. B., Gravel, D., 2015. Beyond species: why ecological interaction networks vary through space and time. Oikos, 124 (3), pp. 243-251. doi: 10.1111/oik.01719.

[27]

Pradhan, P., Costa, L., Rybski, D., Lucht, W., Kropp, J. P., 2017. A systematic study of Sustainable Development Goal (SDG) interactions. Earths Future, 5 (11), pp. 1169-1179. doi: 10.1002/2017EF000632.

[28]

Redfield, G. W., 1988. Holism and Reductionism in Community Ecology. Wiley, Nordic Society Oikos

[29]

Ruckelshaus, M. H., Jackson, S. T., Mooney, H. A., Jacobs, K. L., Kassam, K-.A. S., Arroyo, M. T. K., Báldi, A., Bartuska, A. M., Boyd, J., Joppa, L. N., Kovács-Hostyánszki, A., Parsons, J. P., Scholes, R. J., Shogren, J. F., Ouyang, Z., 2020. The IPBES global assessment: pathways to action. Trends Ecol. Evol., 35 (5), pp. 407-414. doi: 10.1016/j.tree.2020.01.009.

[30]

Seddon, N., 2022. Harnessing the potential of nature-based solutions for mitigating and adapting to climate change. Science, 376 (2022), pp. 1410-1416. doi: 10.1126/science.abn9668.

[31]

Seitzinger, S. P., Gaffney, O., Brasseur, G., Broadgate, W., Ciais, P., Claussen, M., Erisman, J. W., Kiefer, T., Lancelot, C., Monks, P. S., Smyth, K., Syvitski, J., Uematsu, M., 2015. International Geosphere–Biosphere Programme and Earth system science: three decades of co-evolution. Anthropocene, 12, pp. 3-16. doi: 10.1016/j.ancene.2016.01.001.

[32]

Suweis, S., Simini, F., Banavar, J. R., Maritan, A., 2013. Emergence of structural and dynamical properties of ecological mutualistic networks. Nature, 500 (2013), pp. 449-452. doi: 10.1038/nature12438.

[33]

Tong, X., Brandt, M., Yue, Y., Horion, S., Wang, K., Keersmaecker, W. D., Tian, F., Schurgers, G., Xiao, X., Luo, Y., Chen, C., Myneni, R., Shi, Z., Chen, H., Fensholt, R., 2018. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain., 1 (1), pp. 44-50. doi: 10.1038/s41893-017-0004-x.

[34]

Tortell, P. D., 2020. Earth 2020: science, society, and sustainability in the Anthropocene. Proc. Natl. Acad. Sci. U.S.A., 117, pp. 8683-8691. doi: 10.1073/pnas.2001919117.

[35]

Trimmer, J. T., Miller, D. C., Guest, J. S., 2019. Resource recovery from sanitation to enhance ecosystem services. Nat. Sustain., 2 (8), pp. 681-690. doi: 10.1038/s41893-019-0313-3.

[36]

Wang, Y., Trudinger, C. M., Enting, I. G., 2009. A review of applications of model–data fusion to studies of terrestrial carbon fluxes at different scales. Agric. For. Meteorol., 149, pp. 1829-1842. doi: 10.1016/j.agrformet.2009.07.009.

[37]

Willcock, S., Cooper, G. S., Addy, J., Dearing, J. A., 2023. Earlier collapse of Anthropocene ecosystems driven by multiple faster and noisier drivers. Nat. Sustain., 6 (11), pp. 1331-1342. doi: 10.1038/s41893-023-01157-x.

[38]

Willis, A. J., 1997. The Ecosystem: An Evolving Concept Viewed Historically. Wiley, British Ecological Society

[39]

Yu, G., 2009. Scientific Frontier on Human Activities and Ecosystem Changes. Higher Education Press, Beijing

[40]

Yu, G., Chen, Z., Piao, S., Peng, C., Ciais, P., Wang, Q., Lia, X., Zhu, X., 2014. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc. Natl. Acad. Sci. U.S.A., 111 (13), pp. 4910-4915. doi: 10.1073/pnas.1317065111.

[41]

Yu, G., Chen, Z., Yang, M., Wang, Q., 2021. Discussion on the theoretical basis and technical system of large-scale terrestrial ecosystem science research. Chin. J. Appl. Ecol., 32 (2) (2021 g), pp. 377-391. doi: 10.13287/j.1001-9332.202102.042.

[42]

Yu, G., Chen, Z., Zhang, L., Peng, J., Piao, S., Zhang, Y., Niu, S., Wang, Q., Luo, Y. Q., Ciais, P., Baldocchi, D. D., 2017. Recognizing the scientific mission of flux tower observation networks—lay the solid scientific data foundation for solving ecological issues related to global change. J. Resour. Ecol., 8, pp. 115-120. doi: 10.5814/j.issn.1674-764x.2017.02.001.

[43]

Yu, G., Hao, T., Yang, M., 2023. 34, pp. 289-304. doi: 10.13287/j.1001-9332.202302.030.

[44]

Yu, G., He, N., Yu, G., Liang, B., Xu, Z., Li, S., Guo, X., Yue, T., Liu, M., 2015. Ecosystem positioning research and models. W.H. Li (Ed.), Contemporary Ecology Research in China, Springer, Berlin Heidelberg, pp. 419-436. doi: 10.1007/978-3-662-48376-3_14.

[45]

Yu, G., Li, W., Shao, M., Zhang, Y., Wang, S., Niu, S., He, H., Dai, E., Li, F., Ma, Z., 2020. Ecosystem science research and ecosystem management. Acta Geogr. Sin., 75 (12), pp. 2620-2635. doi: 10.11821/dlxb202012006.

[46]

Yu, G., Piao, S., Zhang, Y., Liu, L., Peng, J., Niu, S., 2021a. Moving toward a new era of ecosystem science. Geogr. Sustain. 2 (3), 151–162. doi: 10.1016/j.geosus.2021.06.004.

[47]

Yu, G., Ren, W., Chen, Z., Zhang, L., Wang, Q., Wen, X., He, N., Zhang, L., Fang, H., Zhu, X., Gao, Y., Sun, X., 2016. Construction and progress of Chinese terrestrial ecosystem carbon, nitrogen and water fluxes coordinated observation. J. Geogr. Sci., 26, pp. 803-826. doi: 10.1007/s11442-016-1300-5.

[48]

Yu, G, X-Ren, L., Yang, M., Chen, Z. 2021c. Multi-disciplinary knowledge integration and its technical approaches in the integrated ecology of macroecosystem science. Chin. J. Appl. Ecol., 32 (9) (2021), pp. 3031-3044. doi: 10.13287/j.1001-9332.202109.040.

[49]

Yu, G, Q-Wang, F., Yang, M., Chen, Z. 2021d. Discussion on the scientific concept of ecology and its evolution and the contemporary ecologi-cal discipline system. Chin. J. Appl. Ecol., 32 (1) (2021), pp. 1-15. doi: 10.13287/j.1001-9332.202101.040.

[50]

Yu, G., Wang, Y., Yang, M., 2022. 33, pp. 865-877. doi: 10.13287/j.1001-9332.202204.026.

[51]

Yu, G., Yang, M., Fu, C, Q-Wang, F., Chen, Z. 2021b. Thinking on large-scale terrestrial ecosystem management and its theoretical fundament and practice. Chin. J. Appl. Ecol., 32 (3) (2021), pp. 771-787. doi: 10.13287/j.1001-9332.202103.040.

[52]

Yu, G., Yu, F., Yu, Z., Zhu, J., Hao, T. 2025a. Cognitive dimensions, scales, and multidisciplinary coordinate systems in macroecosystem science research. Chin. J. Appl. Ecol., 36 (2) (2025), pp. 327-340. doi: 10.13287/j.1001-9332.202502.033.

[53]

Yu, G., Yu, Z., Yu, F., Hao, T., Zhu, J. 2025b. Quantitative characterization system for macroecosystem attributes and states. Chin. J. Appl. Ecol., 36 (1) (2025), pp. 1-12. doi: 10.13287/j.1001-9332.202501031.

[54]

Yu, G., Zhang, L, H-He, L., Yang, M. 2021f. A process-based model and simulation system of dynamic change and spatial variation in large-scale terrestrial ecosystems. Chin. J. Appl. Ecol., 32 (8) (2021), pp. 2653-2665. doi: 10.13287/j.1001-9332.202108.040.

[55]

Yu, G, L-Zhang, M, Y-Zhang, J., Yang, M. 2021e. A coordinated three-dimensional network for observing large-scale terrestrial ecosystem status changes and the consequences on resources and environment. Chin. J. Appl. Ecol., 32 (6) (2021), pp. 1903-1918. doi: 10.13287/j.1001-9332.202106.040.

[56]

Zhu, J., Jia, Y., Yu, G., Wang, Q., He, N., Chen, Z., He, H., Zhu, X., Li, P., Zhang, F., Liu, X., Goulding, K., Fowler, D., Vitousek, P., 2025. Changing patterns of global nitrogen deposition driven by socio-economic development. Nat. Commun., 16 (1), p. 46. doi: 10.1038/s41467-024-55606-y.

PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

/