Sustainable growth of China’s forest biomass carbon storage since 2002: Facing threats and loss risks

Qiancheng Lv , Zeyu Yang , Yuheng Fu , Shaohua Wang , Manchun Li , Bingbo Gao , Jing Yang , Chaoqun Zhang , Jianqiang Hu , Ziyue Chen

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) : 100340

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) :100340 DOI: 10.1016/j.geosus.2025.100340
Research Article
review-article

Sustainable growth of China’s forest biomass carbon storage since 2002: Facing threats and loss risks

Author information +
History +
PDF

Abstract

Forest biomass carbon storage (BC) plays a critical role in mitigating climate change. However, the spatiotemporal patterns and stability of BC growth in China remain unclear. Using the latest BC maps (2002–2021) and multi-source remote sensing data, we analyzed the spatiotemporal dynamics of BC and applied resilience indicators to reliably assess its stability. Our results show that while China’s long-term BC has continued to increase, the risk of BC losses has also intensified, particularly in old forests (>70 years), where approximately half exhibit a declining trend. Moreover, BC dynamics do not consistently align with resilience changes. About 53.4 % of forests display weakening resilience, directly reducing BC accumulation rates by 23.1 % and amplifying interannual variability. Alarmingly, 10.4 % of forests (BC-, resilience-), predominantly high-BC-density forests (mean: 28.3 tC/ha), face an extremely high risk of carbon loss (carbon emissions: -118 Tg C). We further found that the accelerating effect of resilience weakening on BC losses significantly outweighs the promoting effect of resilience enhancement on BC accumulation (-17.79 ± 4.72 Mg/ha vs. 11.47 ± 3.42 Mg/ha). Our study highlights that China’s BC growth is characterized by unstable components and faces substantial loss risks. In future efforts to enhance forest carbon sinks, greater attention should be paid to changes in forest resilience to improve the stability of biomass carbon sinks and achieve sustainable, long-term carbon sequestration.

Keywords

Mitigating climate change / SDGs / Biomass carbon / Resilience / Substantial carbon sink

Cite this article

Download citation ▾
Qiancheng Lv, Zeyu Yang, Yuheng Fu, Shaohua Wang, Manchun Li, Bingbo Gao, Jing Yang, Chaoqun Zhang, Jianqiang Hu, Ziyue Chen. Sustainable growth of China’s forest biomass carbon storage since 2002: Facing threats and loss risks. Geography and Sustainability, 2025, 6(5): 100340 DOI:10.1016/j.geosus.2025.100340

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability

Data will be made available on request.

CRediT authorship contribution statement

Qiancheng Lv: Writing – review & editing, Writing – original draft, Project administration, Methodology, Formal analysis. Zeyu Yang: Writing – original draft, Visualization, Validation. Yuheng Fu: Writing – review & editing. Shaohua Wang: Validation. Manchun Li: Writing – review & editing. Bingbo Gao: Validation. Jing Yang: Visualization. Chaoqun Zhang: Visualization. Jianqiang Hu: Visualization. Ziyue Chen: Writing – original draft, Funding acquisition.

Declaration of competing interests

The authors declare no competing financial interests or personal relationships that could have influenced the work reported in this article.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 41901414) and the Fundamental Research Funds for the Central Universities (Grant No. 2243200008).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100340.

References

[1]

Ameray, A., Bergeron, Y., Valeria, O., Montoro Girona, M., Cavard, X., 2021. Forest carbon management: a review of silvicultural practices and management strategies across boreal, temperate and tropical forests. Curr. For. Rep., 7(4), 245-266.

[2]

Amiro, B. D., Barr, A. G., Barr, J. G., Black, T. A., Bracho, R., Brown, M., Chen, J., Clark, K. L., Davis, K. J., Desai, A. R., Dore, S., Engel, V., Fuentes, J. D., Goldstein, A. H., Goulden, M. L., Kolb, T. E., Lavigne, M. B., Law, B. E., Margolis, H. A., Martin, T., McCaughey, J. H., Misson, L., Montes-Helu, M., Noormets, A., Randerson, J. T., Starr, G., Xiao, J., 2010. Ecosystem carbon dioxide fluxes after disturbance in forests of north america. J. Geophys. Res., 115(4), G00K02.

[3]

Araza, A., De Bruin, S., Herold, M., Quegan, S., Labriere, N., Rodriguez-Veiga, P., Avitabile, V., Santoro, M., Mitchard, E. T., Ryan, C. M., 2022. A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps. Remote Sens. Environ., 272, 112917.

[4]

Babst, F., Poulter, B., Trouet, V., Tan, K., Neuwirth, B., Wilson, R., Carrer, M., Grabner, M., Tegel, W., Levanic, T., Panayotov, M., Urbinati, C., Bouriaud, O., Ciais, P., Frank, D., 2013. Site- and species-specific responses of forest growth to climate across the European continent. Glob. Ecol. Biogeogr., 22(6), 706-717.

[5]

Bat-Enerel, B., Weigel, R., Leuschner, C., 2022. Changes in the thermal and hydrometeorological forest growth climate during 1948–2017 in northern Germany. Front. For. Glob. Change 5, 830977.

[6]

Bonan, G. B., 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320(5882), 1444-1449.

[7]

Boulton, C. A., Lenton, T. M., Boers, N., 2022. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat. Clim. Chang., 12(3), 271-278.

[8]

Byrne, B., Liu, J., Lee, M., Yin, Y., Bowman, K. W., Miyazaki, K., Norton, A. J., Joiner, J., Pollard, D. F., Griffith, D. W., 2021. The carbon cycle of southeast Australia during 2019–2020: drought, fires, and subsequent recovery. AGU Adv., 2(4), e2021AV000469.

[9]

Camps-Valls, G., Campos-Taberner, M, Moreno-Martínez, Á., Walther, S., Duveiller, G., Cescatti, A., Mahecha, M. D., Muñoz-Marí, J., García-Haro, F. J., Guanter, L., 2021. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv., 7(9), eabc7447.

[10]

Chang, Z., Fan, L., Wigneron, J., Wang, Y., Ciais, P., Chave, J., Fensholt, R., Chen, J. M., Yuan, W., Ju, W., 2023. Estimating aboveground carbon dynamic of China using optical and microwave remote-sensing datasets from 2013 to 2019. J. Remote Sens., 3, 5.

[11]

Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R. K., Fuchs, R., Brovkin, V., Ciais, P., Fensholt, R., 2019. China and India lead in greening of the world through land-use management. Nat. Sustain., 2(2), 122-129.

[12]

Chen, Y., Feng, X., Fu, B., Ma, H., Zohner, C. M., Crowther, T. W., Huang, Y., Wu, X., Wei, F., 2023. Maps with 1 km resolution reveal increases in above- and belowground forest biomass carbon pools in China over the past 20 years. Earth Syst. Sci. Data 15(2), 897-910.

[13]

Cheng, K., Chen, Y., Xiang, T., Yang, H., Liu, W., Ren, Y., Guan, H., Hu, T., Ma, Q., Guo, Q., 2023. A 2020 forest age map for China with 30 m resolution. Earth Syst. Sci. Data 16(2), 803-819.

[14]

Cheng, K., Yang, H., Guan, H., Ren, Y., Chen, Y., Chen, M., Yang, Z., Lin, D., Liu, W., Xu, J., 2024. Unveiling China’s natural and planted forest spatial-temporal dynamics from 1990 to 2020. ISPRS J. Photogramm. Remote Sens., 209, 37-50.

[15]

Cheng, K., Yang, H., Tao, S., Su, Y., Guan, H., Ren, Y., Hu, T., Li, W., Xu, G., Chen, M., 2024. Carbon storage through China’s planted forest expansion. Nat. Commun., 15(1), 4106.

[16]

Curtis, P. S., Gough, C. M., 2018. Forest aging, disturbance and the carbon cycle. New Phytol., 219(4), 1188-1193.

[17]

Dakos, V., Scheffer, M., Van Nes, E. H., Brovkin, V., Petoukhov, V., Held, H., 2008. Slowing down as an early warning signal for abrupt climate change. Proc. Natl. Acad. Sci. U.S.A., 105(38), 14308-14312.

[18]

Desoto, L., Cailleret, M., Sterck, F., Jansen, S., Kramer, K., Robert, E. M., Aakala, T., Amoroso, M. M., Bigler, C., Camarero, J. J., 2020. Low growth resilience to drought is related to future mortality risk in trees. Nat. Commun., 11(1), 545.

[19]

Dong, L., Lin, X., Bettinger, P., Liu, Z., 2024. The contributions of stand characteristics on carbon sequestration potential are triple that of climate variables for Larix spp. Plantations in northeast China. Sci. Total Environ., 911, 168726.

[20]

Erb, K., Kastner, T., Plutzar, C., Bais, A. L. S., Carvalhais, N., Fetzel, T., Gingrich, S., Haberl, H., Lauk, C., Niedertscheider, M., 2018. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553(7686), 73-76.

[21]

Fang, J., Chen, A., Peng, C., Zhao, S., Ci, L., 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292(5525), 2320-2322.

[22]

Favero, A., Daigneault, A., Sohngen, B., 2020. Forests: carbon sequestration, biomass energy, or both?. Sci. Adv., 6(13), eaay6792.

[23]

Feng, Y., Su, H., Tang, Z., Wang, S., Zhao, X., Zhang, H., Ji, C., Zhu, J., Xie, P., Fang, J., 2021. Reduced resilience of terrestrial ecosystems locally is not reflected on a global scale. Commun. Earth Environ., 2(1), 88.

[24]

Forzieri, G., Dakos, V., Mcdowell, N. G., Ramdane, A., Cescatti, A., 2022. Emerging signals of declining forest resilience under climate change. Nature 608(7923), 534-539.

[25]

Fu, Z., Ciais, P., Prentice, I. C., Gentine, P., Makowski, D., Bastos, A., Luo, X., Green, J. K., Stoy, P. C., Yang, H., 2022. Atmospheric dryness reduces photosynthesis along a large range of soil water deficits. Nat. Commun., 13(1), 989.

[26]

Götmark, F., 2013. Habitat management alternatives for conservation forests in the temperate zone: review, synthesis, and implications. For. Ecol. Manage., 306, 292-307.

[27]

Houghton, R. A., Hackler, J. L., 2003. Houghton, J.L. Hackler. Sources and sinks of carbon from land-use change in China. Glob. Biogeochem. Cycle., 17 (2)

[28]

Hui, T. F., Zhai, S. H., Zhang, Z. H., Liu, C., Gong, X. F., Ni, Z. T., 2024. A fast and high-precision satellite-ground synchronization technology in satellite beam hopping communication. Space Sci. Technol., 4, 0159.

[29]

Johnstone, J. F., Allen, C. D., Franklin, J. F., Frelich, L. E., Harvey, B. J., Higuera, P. E., Mack, M. C., Meentemeyer, R. K., Metz, M. R., Perry, G. L., 2016. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ., 14(7), 369-378.

[30]

Jump, A. S., Hunt, J. M., Penuelas, J., 2006. Rapid climate change-related growth decline at the southern range edge of fagus sylvatica. Glob. Change Biol., 12(11), 2163-2174.

[31]

Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorol. Z., 15(3), 259-263.

[32]

Kozlowski, T. T., 2002. Physiological ecology of natural regeneration of harvested and disturbed forest stands: implications for forest management. For. Ecol. Manage., 158(1–3), 195-221.

[33]

Law, B. E., Harmon, M. E., 2011. Forest sector carbon management, measurement and verification, and discussion of policy related to climate change. Carbon Manag., 2(1), 73-84.

[34]

Li, Y., Zhang, W., Schwalm, C. R., Gentine, P., Smith, W. K., Ciais, P., Kimball, J. S., Gazol, A., Kannenberg, S. A., Chen, A., Piao, S., Liu, H., Chen, D., Wu, X., 2023. Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems. Nat. Clim. Chang., 13(2), 182-188.

[35]

Littell, J. S., Peterson, D. L., Riley, K. L., Liu, Y., Luce, C. H., 2016. A review of the relationships between drought and forest fire in the united states. Glob. Change Biol., 22(7), 2353-2369.

[36]

Luyssaert, S., Schulze, E., Börner, A., Knohl, A., Hessenmöller, D., Law, B. E., Ciais, P., Grace, J., 2008. Old-growth forests as global carbon sinks. Nature 455(7210), 213-215.

[37]

Lv, Q., Chen, Z., Wu, C., Peñuelas, J., Fan, L., Su, Y., Yang, Z., Li, M., Gao, B., Hu, J., Zhang, C., Fu, Y., Wang, Q., 2025. Increasing severity of large-scale fires prolongs recovery time of forests globally since 2001. Nat. Ecol. Evol., 9(6), 980-992.

[38]

Ma, H., Mo, L., Crowther, T. W., Maynard, D. S., van den Hoogen, J., Stocker, B. D., Terrer, C., Zohner, C. M., 2021. The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nat. Ecol. Evol., 5(8), 1110-1122.

[39]

Mialon, A., Rodríguez-Fernández, N. J., Santoro, M., Saatchi, S., Mermoz, S., Bousquet, E., Kerr, Y. H., 2020. Evaluation of the sensitivity of SMOS L-VOD to forest above-ground biomass at global scale. Remote Sens., 12(9), 1450.

[40]

Piao, S. L., Yue, H., Wang, X. H., Chen, F. H., 2021. Estimation of China’s terrestrial ecosystem carbon sink: methods, progress and prospects. Sci. China Earth Sci., 65, 641-651.

[41]

Pugh, T. A., Lindeskog, M., Smith, B., Poulter, B., Arneth, A., Haverd, V., Calle, L., 2019. Role of forest regrowth in global carbon sink dynamics. Proc. Natl. Acad. Sci. U.S.A., 116(10), 4382-4387.

[42]

Saatchi, S., Longo, M., Xu, L., Yang, Y., Abe, H., André, M., Aukema, J. E., Carvalhais, N., Cadillo-Quiroz, H., Cerbu, G. A., 2021. Detecting vulnerability of humid tropical forests to multiple stressors. One Earth 4(7), 988-1003.

[43]

Sanjuán, ., Andrade, C., Mora, P., Zaragoza, A., 2020. Carbon dioxide uptake by cement-based materials: a spanish case study. Appl. Sci., 10(1), 339.

[44]

Santoro, M., Cartus, O., Carvalhais, N., Rozendaal, D. M., Avitabile, V., Araza, A., De Bruin, S., Herold, M., Quegan, S., Rodríguez-Veiga, P., 2021. The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Earth Syst. Sci. Data 13(8), 3927-3950.

[45]

Schleussner, C., Rogelj, J., Schaeffer, M., Lissner, T., Licker, R., Fischer, E. M., Knutti, R., Levermann, A., Frieler, K., Hare, W., 2016. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Chang., 6(9), 827-835.

[46]

Seidl, R., Schelhaas, M., Rammer, W., Verkerk, P. J., 2014. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang., 4(9), 806-810.

[47]

Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., 2017. Forest disturbances under climate change. Nat. Clim. Chang., 7(6), 395-402.

[48]

Shan, R., Feng, G., Lin, Y., Ma, Z., 2025. Temporal stability of forest productivity declines over stand age at multiple spatial scales. Nat. Commun., 16(1), 2745.

[49]

Shang, R., Chen, J. M., Xu, M., Lin, X., Li, P., Yu, G., He, N., Xu, L., Gong, P., Liu, L., Liu, H., Jiao, W., 2023. China’s current forest age structure will lead to weakened carbon sinks in the near future. Innovation 4(6), 100515.

[50]

Smith, M. N., Taylor, T. C., van Haren, J., Rosolem, R., Restrepo-Coupe, N., Adams, J., Wu, J., de Oliveira, R. C., Da Silva, R., de Araujo, A. C., 2020. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. Nat. Plants 6(10), 1225-1230.

[51]

Smith, T., Boers, N., 2023. Global vegetation resilience linked to water availability and variability. Nat. Commun., 14(1), 498.

[52]

Smith, T., Traxl, D., Boers, N., 2022. Empirical evidence for recent global shifts in vegetation resilience. Nat. Clim. Chang., 12(5), 477-484.

[53]

Smith, T., Zotta, R., Boulton, C. A., Lenton, T. M., Dorigo, W., Boers, N., 2023. Reliability of resilience estimation based on multi-instrument time series. Earth Syst. Dyn., 14(1), 173-183.

[54]

Su, Y., Yang, X., Gentine, P., Maignan, F., Shang, J., Ciais, P., 2022. Observed strong atmospheric water constraints on forest photosynthesis using eddy covariance and satellite-based data across the northern hemisphere. Int. J. Appl. Earth Obs. Geoinf., 110, 102808.

[55]

Takahashi, M., Ishizuka, S., Ugawa, S., Sakai, Y., Sakai, H., Ono, K., Hashimoto, S., Matsuura, Y., Morisada, K., 2010. Carbon stock in litter, deadwood and soil in Japan’s forest sector and its comparison with carbon stock in agricultural soils. Soil Sci. Plant Nutr., 56(1), 19-30.

[56]

Tang, J., Luyssaert, S., Richardson, A. D., Kutsch, W., Janssens, I. A., 2014. Steeper declines in forest photosynthesis than respiration explain age-driven decreases in forest growth. Proc. Natl. Acad. Sci. U.S.A., 111(24), 8856-8860.

[57]

Tao, S., Wigneron, J., Chave, J., Tang, Z., Wang, Z., Zhu, J., Guo, Q., Liu, Y. Y., Ciais, P., 2023. Little evidence that amazonian rainforests are approaching a tipping point. Nat. Clim. Chang., 13(12), 1317-1320.

[58]

van Kooten, G. C., Sohngen, B., 2007. Economics of forest ecosystem carbon sinks: a review. Int. Rev. Environ. Resour. Econ., 1(3), 237-269.

[59]

Wang, S., Huang, Y., 2020. Determinants of soil organic carbon sequestration and its contribution to ecosystem carbon sinks of planted forests. Glob. Change Biol., 26(5), 3163-3173.

[60]

Wang, Z., Fu, B., Wu, X., Li, Y., Feng, Y., Wang, S., Wei, F., Zhang, L., 2023. Vegetation resilience does not increase consistently with greening in China’s Loess Plateau. Commun. Earth Environ., 4(1), 336.

[61]

Xu, H., Yue, C., Piao, S., 2023. Future forestation in china should aim to align the temporal service window of the forest carbon sink with the “carbon neutrality” strategy. Sci. China Earth Sci., 66(12), 2971-2976.

[62]

Xu, H., Yue, C., Zhang, Y., Liu, D., Piao, S., 2023. Forestation at the right time with the right species can generate persistent carbon benefits in China. Proc. Natl. Acad. Sci. U.S.A., 120(41), e1989979176.

[63]

Xu, L., He, N., Li, M., Cai, W., Yu, G., 2024. Spatiotemporal dynamics of carbon sinks in China’s terrestrial ecosystems from 2010 to 2060. Resour. Conserv. Recycl., 203, 107457.

[64]

Xue, B., Wang, G., Helman, D., Sun, G., Tao, S., Liu, T., Yan, D., Zhao, T., Zhang, H., Chen, L., 2022. Divergent hydrological responses to forest expansion in dry and wet basins of China: implications for future afforestation planning. Water Resour. Res., 58(5), e2021WR031856.

[65]

Yao, Y., Liu, Y., Fu, F., Song, J., Wang, Y., Han, Y., Wu, T., Fu, B., 2024. Declined terrestrial ecosystem resilience. Glob. Change Biol., 30(4), e17291.

[66]

Yao, Y., Liu, Y., Wang, Y., Fu, B., 2021. Greater increases in China’s dryland ecosystem vulnerability in drier conditions than in wetter conditions. J. Environ. Manage., 291, 112689.

[67]

Yu, Z., Ciais, P., Piao, S., Houghton, R. A., Lu, C., Tian, H., Agathokleous, E., Kattel, G. R., Sitch, S., Goll, D., 2022. Forest expansion dominates China’s land carbon sink since 1980. Nat. Commun., 13(1), 5374.

[68]

Yu, Z., Liu, S., Li, H., Liang, J., Liu, W., Piao, S., Tian, H., Zhou, G., Lu, C., You, W., 2024. Maximizing carbon sequestration potential in Chinese forests through optimal management. Nat. Commun., 15(1), 3154.

[69]

Zhang, X., Fleskens, L., Huang, Y., Huang, Y., 2024. Cost, market, and policy constraints on mitigating climate change through afforestation in China. Environ. Int., 187, 108652.

[70]

Zhao, M., Yang, J., Zhao, N., Liu, L., Ling, D. U., Xiao, X., Yue, T., Wilson, J. P., 2021. Spatially explicit changes in forest biomass carbon of China over the past 4 decades: coupling long-term inventory and remote sensing data. J. Clean. Prod., 316, 128274.

[71]

Zhu, K., Zhang, J., Niu, S., Chu, C., Luo, Y., 2018. Limits to growth of forest biomass carbon sink under climate change. Nat. Commun., 9(1), 2709.

PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

/