Ecological restoration priority on the Qinghai‒Xizang Plateau based on the nature’s contributions to people under SDGs-SSPs scenarios

Hua Liu , Shiliang Liu , Fangfang Wang , Yifei Zhao , Yuhong Dong , Lam-Son Phan Tran

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) : 100325

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) :100325 DOI: 10.1016/j.geosus.2025.100325
Research Article
review-article

Ecological restoration priority on the Qinghai‒Xizang Plateau based on the nature’s contributions to people under SDGs-SSPs scenarios

Author information +
History +
PDF

Abstract

Ecological restoration is considered an important way to mitigate ecosystem degradation and improve regional nature’s contributions to people (NCPs). Ecological planning is a prerequisite for ecological restoration and the prevention of future ecological risks. However, few studies have focused on integrating ecological plans within the framework of Sustainable Development Goals (SDGs) and shared socioeconomic pathways (SSPs). In this study, taking the Qinghai‒Xizang Plateau (QXP) as a case, we assessed ecological restoration priorities based on NCPs under various SDGs and SSP scenarios. Specifically, the land use demand was predicted using system dynamics (SD) and cellular automata (CA) models between 2030 and 2060 under SDG-SSP scenarios. In addition, habitat maintenance (NCP1), climate regulation (NCP4), and water quantity regulation (NCP6) were assessed based on the predicted land use. Finally, priority areas for ecological restoration were identified using a zonation model. The results indicated that the grassland, forest, and cultivated areas will increase in the SDGs and SSPs scenarios, respectively. The high-value NCP areas are mainly located in the southeast part of the QXP, accounting for 45.16 % of the study area. In addition, the ecological restoration area involves grassland, cultivated and bare land. In the single-objective scenario, NCP1, NCP4, and NCP6 can be improved by 30.29 %, 28.75 % and 25.63 %, respectively, through the restoration of 15.33 % of the priority areas identified in 2015. When shifting to a multi-objective cooperative optimum, NCP1, NCP4 and NCP6 can be improved 35.79 % by restoring 54.96 % of the priority areas. This study provides insight into how SDGs and SSPs can contribute to ecological restoration for mitigating ecosystem degradation under SDG-SSP scenarios.

Keywords

System dynamics / Cellular automata / Sustainable development goals / Nature’s contribution to people / Shared socioeconomic pathways / Priority area

Cite this article

Download citation ▾
Hua Liu, Shiliang Liu, Fangfang Wang, Yifei Zhao, Yuhong Dong, Lam-Son Phan Tran. Ecological restoration priority on the Qinghai‒Xizang Plateau based on the nature’s contributions to people under SDGs-SSPs scenarios. Geography and Sustainability, 2025, 6(5): 100325 DOI:10.1016/j.geosus.2025.100325

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Hua Liu: Writing – original draft, Resources, Formal analysis, Data curation, Conceptualization. Shiliang Liu: Writing – review & editing, Project administration, Conceptualization. Fangfang Wang: Writing – review & editing, Investigation. Yifei Zhao: Writing – review & editing, Conceptualization. Yuhong Dong: Writing – review & editing. Lam-Son Phan Tran: Writing – review & editing.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the second Tibetan Plateau Scientific Expedition and Research (Grant No. 2019QZKK0405) and the National Key Research and Development Project (Grant No. 2022YFF1303204) of the National Natural Sciences Foundation of China (Grant No. 42271097).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100325.

References

[1]

Cao, M., Chen, M., Zhang, J., Pradhan, P., Guo, H., Fu, B., Li, Y., Bai, Y., Chang, L., Chen, Y., Sun, Z., Xu, Z., Zhu, R., Meadows, M. E., , G. 2023a. Spatio-temporal changes in the causal interactions among Sustainable Development Goals in China. Humanit. Soc. Sci. Commun., 10 (1), p. 450. doi: 10.1057/s41599-023-01952-z.

[2]

Cao, M., Tian, Y., Wu, K., Chen, M., Chen, Y., Hu, X., Sun, Z., Zuo, L., Lin, J., Luo, L., Zhu, R., Xu, Z., Bandrova, T., Konecny, M., Yuan, W., Guo, H., Lin, H., , G.2023b. Future land-use change and its impact on terrestrial ecosystem carbon pool evolution along the Silk Road under SDG scenarios. Sci. Bull., 68 (7), pp. 740-749. doi: 10.1016/j.scib.2023.03.012.

[3]

Chen, G., Li, X., Liu, X., 2022a. Global land projection based on plant functional types with a 1-km resolution under socio-climatic scenarios. Sci. Data 9 (1), 125. doi: 10.1038/s41597-022-01208-6.

[4]

Chen, J., Gao, M., Cheng, S., Hou, W., Song, M., Liu, X., Liu, Y., 2022b. Global 1 km × 1 km gridded revised real gross domestic product and electricity consumption during 1992–2019 based on calibrated nighttime light data. Sci. Data 9 (1), 202. doi: 10.1038/s41597-022-01322-5.

[5]

Chen, W., Wallhead, P., Hynes, S., Groeneveld, R., O’Connor, E., Gambi, C., Danovaro, R., Tinch, R., Papadopoulou, N., Smith, C., 2022c. Ecosystem service benefits and costs of deep-sea ecosystem restoration. J. Environ. Manage. 303, 114127. doi: 10.1016/j.jenvman.2021.114127.

[6]

Cohen-Shacham, E., Andrade, A., Dalton, J., Dudley, N., Jones, M., Kumar, C., Maginnis, S., Maynard, S., Nelson, C. R., Renaud, F. G., Welling, R., Walters, G., 2019. Core principles for successfully implementing and upscaling nature-based solutions. Environ. Sci. Policy, 98, pp. 20-29. doi: 10.1016/j.envsci.2019.04.014.

[7]

Dunlop, T., Glamore, W., Felder, S., 2023. Restoring estuarine ecosystems using naturebased solutions: towards an integrated eco-engineering design guideline. Sci. Total. Environ. 873, 162362. doi: 10.1016/j.scitotenv.2023.162362.

[8]

Eisenmenger, N., Pichler, M., Krenmayr, N., Noll, D., Plank, B., Schalmann, E, M-Wandl, T., Gingrich, S., 2020. The Sustainable Development Goals prioritize economic growth over sustainable resource use: a critical reflection on the SDGs from a socio-ecological perspective. Sustain. Sci., 15 (4), pp. 1101-1110. doi: 10.1007/s11625-020-00813-x.

[9]

Frank, S., Gusti, M., Havlík, P., Lauri, P., Di Fulvio, F., Forsell, N., Hasegawa, T., Krisztin, T., Palazzo, A., Valin, H., 2021. Land-based climate change mitigation potentials within the agenda for sustainable development. Environ. Res. Lett., 16 (2), Article 024006. doi: 10.1088/1748-9326/abc58a.

[10]

Hua, T., Zhao, W., Cherubini, F., Hu, X., Pereira, P., 2022. Strengthening protected areas for climate refugia on the Tibetan Plateau, China. Biol. Conserv., 275, Article 109781. doi: 10.1016/j.biocon.2022.109781.

[11]

Hua, T., Zhao, W., Cherubini, F., Hu, X., Pereira, P., 2023. Upgrading protected areas can improve or reverse the decline in conservation effectiveness: evidence from the Tibetan Plateau, China. Sci. Total. Environ., 873, Article 162345. doi: 10.1016/j.scitotenv.2023.162345.

[12]

Huang, L., Cao, W., Xu, X., Fan, J., Wang, J., 2018. Linking the benefits of ecosystem services to sustainable spatial planning of ecological conservation strategies. J. Environ. Manage., 222, pp. 385-395. doi: 10.1016/j.jenvman.2018.05.066.

[13]

Jalkanen, J., Toivonen, T., Moilanen, A., 2019. Identification of ecological networks for land-use planning with spatial conservation prioritization. Landsc. Ecol. 35 (2), 353– 371. doi: 10.1007/s10980-019-00950-4.

[14]

Lang, M., Wang, G., Yang, Y., Zhu, W., Zhang, Y., Ouyang, Z., Guo, X., 2022. The occurrence and effect of altitude on microplastics distribution in agricultural soils of Qinghai Province, northwest China. Sci. Total Environ., 810, Article 152174. doi: 10.1016/j.scitotenv.2021.152174.

[15]

Li, D.-Q., Zhang, M.-X., Lü, X.-X., Hou, L.-L., 2023b. Does nature-based solution sustain grassland quality? Evidence from rotational grazing practice in China. J. Integr. Agric. 22 (8), 2567–2576. doi: 10.1016/j.jia.2023.07.001.

[16]

Li, W., Shang, X., Yan, H., Xu, J., Liang, T., Zhou, H., 2023a. Impact of restoration measures on plant and soil characteristics in the degraded alpine grasslands of the Qinghai Tibetan Plateau: a meta-analysis. Agric. Ecosyst. Environ. 347, 108394. doi: 10.1016/j.agee.2023.108394.

[17]

Liao, W., Liu, X., Xu, X., Chen, G., Liang, X., Zhang, H., Li, X., 2020. Projections of land use changes under the plant functional type classification in different SSP-RCP scenarios in China. Sci. Bull., 65 (22), pp. 1935-1947. doi: 10.1016/j.scib.2020.07.014.

[18]

Liu, H., Liu, S., Wang, F., Liu, Y., Han, Z., Wang, Q., Yu, L., Dong, Y., Sun, J., 2023d. Multilevel driving factors affecting ecosystem services and biodiversity dynamics on the Qinghai-Tibet Plateau. J. Clean. Prod. 396, 136448. doi: 10.1016/j.jclepro.2023.136448.

[19]

Liu, H., Liu, S., Wang, F., Liu, Y., Yu, L., Wang, Q., Sun, Y., Li, M., Sun, J., Han, Z., 2022c. Management practices should be strengthened in high potential vegetation productivity areas based on vegetation phenology assessment on the Qinghai-Tibet Plateau. Ecol. Indic. 140, 108991. doi: 10.1016/j.ecolind.2022.108991.

[20]

Liu, H., Liu, S., Wang, F., Zhao, Y., Dong, Y., 2023b. How to synergize ecological restoration to co-benefit the beneficial contributions of nature to people on the Qinghai-Tibet Plateau? J. Environ. Manage. 348, 119267. doi: 10.1016/j.jenvman.2023.119267.

[21]

Liu, H., Liu, Y., Wang, C., Zhao, W., Liu, S., 2021. Landscape pattern change simulations in Tibet based on the combination of the SSP-RCP scenarios. J. Environ. Manage., 292, Article 112783. doi: 10.1016/j.jenvman.2021.112783.

[22]

Liu, S., Dong, Y., Cheng, F., Coxixo, A., Hou, X., 2016. Practices and opportunities of ecosystem service studies for ecological restoration in China. Sustain. Sci., 11 (6), pp. 935-944. doi: 10.1007/s11625-016-0390-4.

[23]

Liu, X., Ding, J., Zhao, W., 2023c. Divergent responses of ecosystem services to afforestation and grassland restoration in the Tibetan Plateau. J. Environ. Manage. 344, 118471. doi: 10.1016/j.jenvman.2023.118471.

[24]

Liu, Y., Fu, B., Wang, S., Rhodes, J.R., Li, Y., Zhao, W., Li, C., Zhou, S., Wang, C., 2023a. Global assessment of nature’s contributions to people. Sci. Bull. 68 (4), 424–435. doi: 10.1016/j.scib.2023.01.027.

[25]

Liu, Y., Liu, S., Wang, F., Liu, H., Li, M., Sun, Y., Wang, Q., Yu, L., 2022b. Identification of key priority areas under different ecological restoration scenarios on the Qinghai-Tibet Plateau. J. Environ. Manage. 323, 116174. doi: 10.1016/j.jenvman.2022.116174.

[26]

Liu, Y., Zhao, L., Liu, Y., Huang, Z., Shi, J., Wang, Y., Ma, Y., Esteban Lucas-Borja, M., López-Vicente, M., Wu, G.-L., 2022a. Restoration of a hillslope grassland with an ecological grass species ( Elymus tangutorum ) favors rainfall interception and water infiltration and reduces soil loss on the Qinghai-Tibetan Plateau. Catena 219, 106632. doi: 10.1016/j.catena.2022.106632.

[27]

Managi, S., Islam, M., Saito, O., Stenseke, M., Dziba, L., Lavorel, S., Pascual, U., Hashimoto, S., 2022. Valuation of nature and nature’s contributions to people. Sustain. Sci., 17 (3), pp. 701-705. doi: 10.1007/s11625-022-01140-z.

[28]

Park, H., Im, J., Kim, M., 2019. 271, pp. 180-192. doi: 10.1016/j.agrformet.2019.02.040.

[29]

Peng, S., Ding, Y., Wen, Z., Chen, Y., Cao, Y., Ren, J., 2017. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol., 233, pp. 183-194. doi: 10.1016/j.agrformet.2016.11.129.

[30]

Pires, A. P. F., Padgurschi, M. C. G., de Castro, P. D., Scarano, F. R., Strassburg, B., Joly, C. A., Watson, R. T., de Groot, R., 2020. Ecosystem services or nature’s contributions? Reasons behind different interpretations in Latin America. Ecosyst. Serv., 42, Article 101070. doi: 10.1016/j.ecoser.2020.101070.

[31]

Song, W., Feng, Y., Wang, Z., 2022. 848, Article 157729. doi: 10.1016/j.scitotenv.2022.157729.

[32]

Srivathsa, A., Vasudev, D., Nair, T., Chakrabarti, S., Chanchani, P., DeFries, R., Deomurari, A., Dutta, S., Ghose, D., Goswami, V. R., Nayak, R., Neelakantan, A., Thatte, P., Vaidyanathan, S., Verma, M., Krishnaswamy, J., Sankaran, M., Ramakrishnan, U., 2023. Prioritizing India’s landscapes for biodiversity, ecosystem services and human well-being. Nat. Sustain., 6 (5), pp. 568-577. doi: 10.1038/s41893-023-01063-2.

[33]

Strassburg, B. B. N., Iribarrem, A., Beyer, H. L., Cordeiro, C. L., Crouzeilles, R., Jakovac, C. C., Braga Junqueira, A., Lacerda, E., Latawiec, A. E., Balmford, A., Brooks, T. M., Butchart, S. H. M., Chazdon, R. L., Erb, K-.H., Brancalion, P., Buchanan, G., Cooper, D., Díaz, S., Donald, P. F., Kapos, V., Leclère, D., Miles, L., Obersteiner, M., Plutzar, C., de, M., Scaramuzza, C. A., Scarano, F. R., Visconti, P., 2020. Global priority areas for ecosystem restoration. Nature, 586 (2020), pp. 724-729. doi: 10.1038/s41586-020-2784-9.

[34]

Sun, J., Liu, M., Fu, B., Kemp, D., Zhao, W., Liu, G., Han, G., Wilkes, A., Lu, X., Chen, Y., Cheng, G., Zhou, T., Hou, G., Zhan, T., Peng, F., Shang, H., Xu, M., Shi, P., He, Y., Li, M., Wang, J., Tsunekawa, A., Zhou, H., Liu, Y., Li, Y., Liu, S., 2020. Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau. Sci. Bull., 65, pp. 1405-1414. doi: 10.1016/j.scib.2020.04.035.

[35]

Tang, H., Peng, J., Jiang, H., Lin, Y., Dong, J., Liu, M., Meersmans, J., 2023. Spatial analysis enables priority selection in conservation practices for landscapes that need ecological security. J. Environ. Manage., 345, Article 118888. doi: 10.1016/j.jenvman.2023.118888.

[36]

Vecchio, M. C., Bolaños, V. A., Golluscio, R. A., Rodríguez, A. M., 2019. Rotational grazing and exclosure improves grassland condition of the halophytic steppe in Flooding Pampa (Argentina) compared with continuous grazing. Rangel. J., 41 (1), pp. 1-12. doi: 10.1071/rj18016.

[37]

Wang, C., Liu, Y., Yu, J., 2023. 34 (13), pp. 3881-3895. doi: 10.1002/ldr.4723.

[38]

Wang, F., Liu, S., Liu, H., Liu, Y., Yu, L., Wang, Q., Dong, Y, L-Tran, S. P., Sun, J., Zhao, W. 2022a. Scenarios and sustainability of the economy–nitrogen-resource–environment system using a system dynamic model on the Qinghai-Tibet Plateau. J. Environ. Manage., 318, 115623. doi: 10.1016/j.jenvman.2022.115623.

[39]

Wang, Y., Lv, W., Xue, K., Wang, S., Zhang, L., Hu, R., Zeng, H., Xu, X., Li, Y., Jiang, L., Hao, Y., Du, J., Sun, J., Dorji, T., Piao, S., Wang, C., Luo, C., Zhang, Z., Chang, X., Zhang, M., Hu, Y., Wu, T., Wang, J., Li, B., Liu, P., Zhou, Y., Wang, A., Dong, S., Zhang, X., Gao, Q., Zhou, H., Shen, M., Wilkes, A., Miehe, G., Zhao, X., Niu, H. 2022b. Grassland changes and adaptive management on the Qinghai–Tibetan Plateau. Nat. Rev. Earth. Environ., 3 (10), pp. 668-683. doi: 10.1038/s43017-022-00330-8.

[40]

Xu, Y., Dong, S., Gao, X., Yang, M., Li, S., Shen, H., Xiao, J., Han, Y., Zhang, J., Li, Y., Zhi, Y., Yang, Y., Liu, S., Dong, Q., Zhou, H., Stufkens, P., 2019. Trade-offs and cost-benefit of ecosystem services of revegetated degraded alpine meadows over time on the Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ., 279, pp. 130-138. doi: 10.1016/j.agee.2019.04.015.

[41]

Yang, S., Zhang, L., Zhu, G., 2023. Effects of transport infrastructures and climate change on ecosystem services in the integrated transport corridor region of the Qinghai- Tibet Plateau. Sci. Total Environ. 885, 163961. doi: 10.1016/j.scitotenv.2023. 163961.

[42]

Yao, L., Zhou, H., Yan, Y., Su, Y., 2022. Projection of suitability for the typical agro-ecological types in Central Asia under four SSP-RCP scenarios. Eur. J. Agron., 140, Article 126599. doi: 10.1016/j.eja.2022.126599.

[43]

Yao, Y., Liu, Y., Zhou, S., Song, J., Fu, B., 2023. Soil moisture determines the recovery time of ecosystems from drought. Glob. Change Biol., 29 (13), pp. 3562-3574. doi: 10.1111/gcb.16620.

[44]

Zeng, L., Liu, X., Li, W., Ou, J., Cai, Y., Chen, G., Li, M., Li, G., Zhang, H., Xu, X., 2022. Global simulation of fine resolution land use/cover change and estimation of aboveground biomass carbon under the shared socioeconomic pathways. J. Environ. Manage., 312, Article 114943. doi: 10.1016/j.jenvman.2022.114943.

[45]

Zhang, J., Cui, X., Wang, Y., Zhuang, M., Ji, B., 2020. Ecological consequence of nomad settlement policy in the pasture area of Qinghai-Tibetan Plateau: from plant and soil perspectives. J. Environ. Manage., 260, Article 110114. doi: 10.1016/j.jenvman.2020.110114.

[46]

Zhang, J., Wang, S., Pradhan, P., Zhao, W., Fu, B., 2022b. Untangling the interactions among the Sustainable Development Goals in China. Sci. Bull. 67 (9), 977–984. doi: 10.1016/j.scib.2022.01.006.

[47]

Zhang, J., Wang, S., Zhao, W., Meadows, M.E., Fu, B., 2022a. Finding pathways to synergistic development of Sustainable Development Goals in China. Humanit. Soc. Sci. Commun. 9 (1), 21. doi: 10.1057/s41599-022-01036-4.

[48]

Zhang, Y., Zhao, X., Gong, J., Luo, F., Pan, Y., 2024. Effectiveness and driving mechanism of ecological restoration efforts in China from 2009 to 2019. Sci. Total Environ., 910, Article 168676. doi: 10.1016/j.scitotenv.2023.168676.

PDF

182

Accesses

0

Citation

Detail

Sections
Recommended

/