Ecological restoration priority on the Qinghai‒Xizang Plateau based on the nature’s contributions to people under SDGs-SSPs scenarios
Hua Liu , Shiliang Liu , Fangfang Wang , Yifei Zhao , Yuhong Dong , Lam-Son Phan Tran
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) : 100325
Ecological restoration priority on the Qinghai‒Xizang Plateau based on the nature’s contributions to people under SDGs-SSPs scenarios
Ecological restoration is considered an important way to mitigate ecosystem degradation and improve regional nature’s contributions to people (NCPs). Ecological planning is a prerequisite for ecological restoration and the prevention of future ecological risks. However, few studies have focused on integrating ecological plans within the framework of Sustainable Development Goals (SDGs) and shared socioeconomic pathways (SSPs). In this study, taking the Qinghai‒Xizang Plateau (QXP) as a case, we assessed ecological restoration priorities based on NCPs under various SDGs and SSP scenarios. Specifically, the land use demand was predicted using system dynamics (SD) and cellular automata (CA) models between 2030 and 2060 under SDG-SSP scenarios. In addition, habitat maintenance (NCP1), climate regulation (NCP4), and water quantity regulation (NCP6) were assessed based on the predicted land use. Finally, priority areas for ecological restoration were identified using a zonation model. The results indicated that the grassland, forest, and cultivated areas will increase in the SDGs and SSPs scenarios, respectively. The high-value NCP areas are mainly located in the southeast part of the QXP, accounting for 45.16 % of the study area. In addition, the ecological restoration area involves grassland, cultivated and bare land. In the single-objective scenario, NCP1, NCP4, and NCP6 can be improved by 30.29 %, 28.75 % and 25.63 %, respectively, through the restoration of 15.33 % of the priority areas identified in 2015. When shifting to a multi-objective cooperative optimum, NCP1, NCP4 and NCP6 can be improved 35.79 % by restoring 54.96 % of the priority areas. This study provides insight into how SDGs and SSPs can contribute to ecological restoration for mitigating ecosystem degradation under SDG-SSP scenarios.
System dynamics / Cellular automata / Sustainable development goals / Nature’s contribution to people / Shared socioeconomic pathways / Priority area
| [1] |
|
| [2] |
|
| [3] |
Chen, G., Li, X., Liu, X., 2022a. Global land projection based on plant functional types with a 1-km resolution under socio-climatic scenarios. Sci. Data 9 (1), 125. doi: 10.1038/s41597-022-01208-6. |
| [4] |
Chen, J., Gao, M., Cheng, S., Hou, W., Song, M., Liu, X., Liu, Y., 2022b. Global 1 km × 1 km gridded revised real gross domestic product and electricity consumption during 1992–2019 based on calibrated nighttime light data. Sci. Data 9 (1), 202. doi: 10.1038/s41597-022-01322-5. |
| [5] |
Chen, W., Wallhead, P., Hynes, S., Groeneveld, R., O’Connor, E., Gambi, C., Danovaro, R., Tinch, R., Papadopoulou, N., Smith, C., 2022c. Ecosystem service benefits and costs of deep-sea ecosystem restoration. J. Environ. Manage. 303, 114127. doi: 10.1016/j.jenvman.2021.114127. |
| [6] |
|
| [7] |
Dunlop, T., Glamore, W., Felder, S., 2023. Restoring estuarine ecosystems using naturebased solutions: towards an integrated eco-engineering design guideline. Sci. Total. Environ. 873, 162362. doi: 10.1016/j.scitotenv.2023.162362. |
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
Jalkanen, J., Toivonen, T., Moilanen, A., 2019. Identification of ecological networks for land-use planning with spatial conservation prioritization. Landsc. Ecol. 35 (2), 353– 371. doi: 10.1007/s10980-019-00950-4. |
| [14] |
|
| [15] |
Li, D.-Q., Zhang, M.-X., Lü, X.-X., Hou, L.-L., 2023b. Does nature-based solution sustain grassland quality? Evidence from rotational grazing practice in China. J. Integr. Agric. 22 (8), 2567–2576. doi: 10.1016/j.jia.2023.07.001. |
| [16] |
Li, W., Shang, X., Yan, H., Xu, J., Liang, T., Zhou, H., 2023a. Impact of restoration measures on plant and soil characteristics in the degraded alpine grasslands of the Qinghai Tibetan Plateau: a meta-analysis. Agric. Ecosyst. Environ. 347, 108394. doi: 10.1016/j.agee.2023.108394. |
| [17] |
|
| [18] |
Liu, H., Liu, S., Wang, F., Liu, Y., Han, Z., Wang, Q., Yu, L., Dong, Y., Sun, J., 2023d. Multilevel driving factors affecting ecosystem services and biodiversity dynamics on the Qinghai-Tibet Plateau. J. Clean. Prod. 396, 136448. doi: 10.1016/j.jclepro.2023.136448. |
| [19] |
Liu, H., Liu, S., Wang, F., Liu, Y., Yu, L., Wang, Q., Sun, Y., Li, M., Sun, J., Han, Z., 2022c. Management practices should be strengthened in high potential vegetation productivity areas based on vegetation phenology assessment on the Qinghai-Tibet Plateau. Ecol. Indic. 140, 108991. doi: 10.1016/j.ecolind.2022.108991. |
| [20] |
Liu, H., Liu, S., Wang, F., Zhao, Y., Dong, Y., 2023b. How to synergize ecological restoration to co-benefit the beneficial contributions of nature to people on the Qinghai-Tibet Plateau? J. Environ. Manage. 348, 119267. doi: 10.1016/j.jenvman.2023.119267. |
| [21] |
|
| [22] |
|
| [23] |
Liu, X., Ding, J., Zhao, W., 2023c. Divergent responses of ecosystem services to afforestation and grassland restoration in the Tibetan Plateau. J. Environ. Manage. 344, 118471. doi: 10.1016/j.jenvman.2023.118471. |
| [24] |
Liu, Y., Fu, B., Wang, S., Rhodes, J.R., Li, Y., Zhao, W., Li, C., Zhou, S., Wang, C., 2023a. Global assessment of nature’s contributions to people. Sci. Bull. 68 (4), 424–435. doi: 10.1016/j.scib.2023.01.027. |
| [25] |
Liu, Y., Liu, S., Wang, F., Liu, H., Li, M., Sun, Y., Wang, Q., Yu, L., 2022b. Identification of key priority areas under different ecological restoration scenarios on the Qinghai-Tibet Plateau. J. Environ. Manage. 323, 116174. doi: 10.1016/j.jenvman.2022.116174. |
| [26] |
Liu, Y., Zhao, L., Liu, Y., Huang, Z., Shi, J., Wang, Y., Ma, Y., Esteban Lucas-Borja, M., López-Vicente, M., Wu, G.-L., 2022a. Restoration of a hillslope grassland with an ecological grass species ( Elymus tangutorum ) favors rainfall interception and water infiltration and reduces soil loss on the Qinghai-Tibetan Plateau. Catena 219, 106632. doi: 10.1016/j.catena.2022.106632. |
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
Yang, S., Zhang, L., Zhu, G., 2023. Effects of transport infrastructures and climate change on ecosystem services in the integrated transport corridor region of the Qinghai- Tibet Plateau. Sci. Total Environ. 885, 163961. doi: 10.1016/j.scitotenv.2023. 163961. |
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
Zhang, J., Wang, S., Pradhan, P., Zhao, W., Fu, B., 2022b. Untangling the interactions among the Sustainable Development Goals in China. Sci. Bull. 67 (9), 977–984. doi: 10.1016/j.scib.2022.01.006. |
| [47] |
Zhang, J., Wang, S., Zhao, W., Meadows, M.E., Fu, B., 2022a. Finding pathways to synergistic development of Sustainable Development Goals in China. Humanit. Soc. Sci. Commun. 9 (1), 21. doi: 10.1057/s41599-022-01036-4. |
| [48] |
|
/
| 〈 |
|
〉 |