Daily spatial temperature range: Spatiotemporal pattern and climate change response

Fayong Liu , Xinyu Zou , Yuanyuan Huang

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) : 100319

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) :100319 DOI: 10.1016/j.geosus.2025.100319
Research Article
review-article

Daily spatial temperature range: Spatiotemporal pattern and climate change response

Author information +
History +
PDF

Abstract

Due to its impact on cereal yields, vegetation growth, animal wellbeing, and human health, considerable attention has been paid to diurnal temperature range, focusing on the temporal dimension of surface air temperature. However, the characteristics of spatial temperature range and its response to climate change remain unclear, despite its importance to various natural and societal activities. Here, we proposed a daily spatial temperature range (DSTR, difference between spatial maximum and minimum temperature, STmax and STmin) indicator to measure the maximum spatial temperature range within a given region over a day. We analyzed the spatiotemporal pattern of DSTR and its trend under climate change at four scales (global, hemispheric, national, and provincial), with the following main results: (1) DSTR was scale dependent, provincial pattern of which were mainly related to sensible and latent heat fluxes. (2) The key regions affecting DSTR and temporal distribution at different scales were mapped out. (3) Under climate change, DSTR significantly decreased globally, hemispherically, and in several Chinese provinces due to the greater warming of STmin than STmax. The influence of latent heat flux and solar shortwave radiation was larger at global/hemispheric scales, while the albedo was a more critical driver at provincial scale. For the first time, we proposed the DSTR indicator and emphasized the importance of exploring spatial temperature heterogeneity. This spatial information is important to optimize relevant societal activities, and the response of DSTR to climate change has further led to the consideration of the relationship between DSTR and extreme events, biodiversity, etc.

Keywords

Diurnal temperature range / Daily spatial temperature range / Spatial temperature heterogeneity / Spatiotemporal distribution / Climate change

Cite this article

Download citation ▾
Fayong Liu, Xinyu Zou, Yuanyuan Huang. Daily spatial temperature range: Spatiotemporal pattern and climate change response. Geography and Sustainability, 2025, 6(5): 100319 DOI:10.1016/j.geosus.2025.100319

登录浏览全文

4963

注册一个新账户 忘记密码

Software availability statement

The computations and visualizations were performed using Python 3.10.0, available at https://www.python.org. The code is available at https://github.com/FayongLiu/Daily_spatial_temperature_range.git.

CRediT authorship contribution statement

Fayong Liu: Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Methodology, Investigation, Formal analysis, Data curation. Xinyu Zou: Writing – review & editing, Software, Methodology, Investigation, Formal analysis. Yuanyuan Huang: Writing – review & editing, Supervision, Resources, Project administration, Methodology, Funding acquisition, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We acknowledge the financial support from the National Key Research and Development Program of China (Grant No. 2023YFB3907402), the Strategic Priority Research Program of the Chinese Academy of Sciences (Category B, Geographic Intelligence, Grant No. XDB0740300), and the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation (Grant No. GZC20241691).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100319.

References

[1]

Behdani, B., Fan, Y., Bloemhof, J.M., 2019. Cool chain and temperature-controlled transport: an overview of concepts, challenges, and technologies. In: Accorsi, R., Manzini, R. (Eds.), Sustainable Food Supply Chains: Planning, Design, and Control through Interdisciplinary Methodologies. Academic Press, pp. 167–183. doi: 10.1016/ b978-0-12-813411-5.00012-0.

[2]

Boeke, R. C., Taylor, P. C., Sejas, S. A., 2021. On the nature of the Arctic’s positive lapse-rate feedback. Geophys. Res. Lett., 48 (1), Article e2020GL091109. doi: 10.1029/2020gl091109.

[3]

Briga, M., Verhulst, S., 2015. Large diurnal temperature range increases bird sensitivity to climate change. Sci. Rep., 5 (1), Article 16600. doi: 10.1038/srep16600.

[4]

Byrne, M. P., 2021. Amplified warming of extreme temperatures over tropical land. Nat. Geosci., 14 (11), pp. 837-841. doi: 10.1038/s41561-021-00828-8.

[5]

Casado, M., Hébert, R., 2023. Ice core records suggest that Antarctica is warming faster than the global average. Nat. Clim. Chang., 13 (10), pp. 1025-1026. doi: 10.1038/s41558-023-01795-1.

[6]

Chapman, L., Thornes, J. E., White, S. P., 2006. Thermal imaging of railways to identify track sections prone to buckling. J. Rail Rapid Transit., 220 (3), pp. 317-327. doi: 10.1243/09544097jrrt73.

[7]

Chen, Y., Yang, K., Tang, W., Li, X., Lu, H., He, J., Qin, J., 2015. China meteorological forcing dataset (1979–2018). National Tibetan Plateau Data Center.. doi: 10.11888/AtmosphericPhysics.tpe.249369.file.

[8]

Cox, D. T. C., Maclean, I. M. D., Gardner, A. S., Gaston, K. J., 2020. Global variation in diurnal asymmetry in temperature, cloud cover, specific humidity and precipitation and its association with leaf area index. Glob. Change Biol., 26 (12), pp. 7099-7111. doi: 10.1111/gcb.15336.

[9]

Davy, R., Esau, I., Chernokulsky, A., Outten, S., Zilitinkevich, S., 2017. Diurnal asymmetry to the observed global warming. Int. J. Climatol., 37 (1), pp. 79-93. doi: 10.1002/joc.4688.

[10]

Deroubaix, A., Labuhn, I., Camredon, M., Gaubert, B., Monerie, P. A., Popp, M., Ramarohetra, J., Ruprich-Robert, Y., Silvers, L. G., Siour, G., 2021. Large uncertainties in trends of energy demand for heating and cooling under climate change. Nat. Commun., 12 (1), p. 5197. doi: 10.1038/s41467-021-25504-8.

[11]

Easterling, D. R., Horton, B., Jones, P. D., Peterson, T. C., Karl, T. R., Parker, D. E., Salinger, M. J., Razuvayev, V., Plummer, N., Jamason, P., Folland, C. K., 1997. Maximum and minimum temperature trends for the globe. Science, 277 (1997), pp. 364-367. doi: 10.1126/science.277.5324.364.

[12]

Fang, J-Y., Yoda, K., 1990. Climate and vegetation in China IV. Distribution of tree species along the thermal gradient. Ecol. Res., 5 (3), pp. 291-302. doi: 10.1007/BF02347005.

[13]

GMAO 2015 GMAO. MERRA-2 inst1_2d_asm_Nx: 2d, 1-Hourly, Instantaneous, Single-Level, Assimilation, Single-Level Diagnostics V5.12.4. Goddard Earth Sciences Data and Information Services Center (GES DISC). doi: 10.5067/3Z173KIE2TPD.

[14]

Gorodetskaya, I. V., Durán-Alarcón, C., González-Herrero, S., Clem, K. R., Zou, X., Rowe, P., Rodriguez Imazio, P., Campos, D., Leroy-Dos Santos, C., Dutrievoz, N., Wille, J. D., Chyhareva, A., Favier, V., Blanchet, J., Pohl, B., Cordero, R. R., Park, S-.J., Colwell, S., Lazzara, M. A., Carrasco, J., Gulisano, A. M., Krakovska, S., Ralph, F. M., Dethinne, T., Picard, G., 2023. Record-high Antarctic Peninsula temperatures and surface melt in February 2022: a compound event with an intense atmospheric river. Npj Clim. Atmos. Sci., 6 (1), p. 202. doi: 10.1038/s41612-023-00529-6.

[15]

Grigorieva, E., 2022. Spatial-temporal dynamics of diurnal temperature range: Russian far east as a case study. Atmosphere, 14 (1), p. 41. doi: 10.3390/atmos14010041.

[16]

He, B., Huang, L., Wang, Q., 2015. 5, Article 12004. doi: 10.1038/srep12004.

[17]

Jaagus, J., Briede, A., Rimkus, E., Remm, K., 2013. Variability and trends in daily minimum and maximum temperatures and in the diurnal temperature range in Lithuania, Latvia and Estonia in 1951–20doi: 10. Theor. Appl. Climatol., 118 (1–2), pp. 57-68, 10.1007/s00704-013-1041-7.

[18]

Ji, F., Wu, Z., Huang, J., Chassignet, E. P., 2014. Evolution of land surface air temperature trend. Nat. Clim. Chang., 4 (6), pp. 462-466. doi: 10.1038/nclimate2223.

[19]

Ji, L., Wang, Z., Chen, M., Fan, S., Wang, Y., Shen, Z., 2019. How much can AI techniques improve surface air temperature forecast? —A report from AI challenger 2018 global weather forecast contest. J. Meteorol. Res., 33 (5), pp. 989-992. doi: 10.1007/s13351-019-9601-0.

[20]

Jiang, Y., Miao, Y., Zhao, Y., Liu, J., Gao, Y., 2023. Extreme-wind events in China in the past 50 years and their impacts on sandstorm variations. Front. Earth Sci., 10, Article 1058275. doi: 10.3389/feart.2022.1058275.

[21]

Jun, T., Rind, D., 2024. Increasing contribution of the atmospheric vertical motion to precipitation in a warming climate. Commun. Earth Environ., 5 (1), p. 541. doi: 10.1038/s43247-024-01676-1.

[22]

King, A. P., Eckersley, R. J., 2019. Chapter 6 - Inferential statistics III: nonparametric hypothesis testing. A.P. King, R.J. Eckersley (Eds.), Statistics for Biomedical Engineers and Scientists, Academic Press, pp. 119-145. doi: 10.1016/B978-0-08-102939-8.00015-3.

[23]

Lancaster, L. T., Humphreys, A. M., 2020. Humphreys. Global variation in the thermal tolerances of plants. Proc. Natl. Acad. Sci. U.S.A., 117 (24), pp. 13580-13587. doi: 10.1073/pnas.1918162117.

[24]

Li, G., Wu, C., Chen, Y., Huang, C., Zhao, Y., Wang, Y., Ma, M., Ding, Z., Yu, P., Tang, X., 2023. Increasing temperature regulates the advance of peak photosynthesis timing in the boreal ecosystem. Sci. Total Environ., 882, Article 163587. doi: 10.1016/j.scitotenv.2023.163587.

[25]

Li, H., Fu, C., Guo, W., 2017. 122 (16), pp. 8543-8566. doi: 10.1002/2016jd026166.

[26]

Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., Ackerly, D. D., 2009. The velocity of climate change. Nature, 462 (2009), pp. 1052-1055. doi: 10.1038/nature08649.

[27]

Lobell, D. B., 2007. Changes in diurnal temperature range and national cereal yields. Agric. For. Meteorol., 145 (3–4), pp. 229-238. doi: 10.1016/j.agrformet.2007.05.002.

[28]

Lu, Y., Yang, Y., Sun, B., Yuan, J., Yu, M., Stenseth, N. C., Bullock, J. M., Obersteiner, M., 2020. Spatial variation in biodiversity loss across China under multiple environmental stressors. Sci. Adv., 6 (47), p. eabd0952. doi: 10.1126/sciadv.abd0952.

[29]

Luo, H., Quaas, J., Han, Y., 2024. Diurnally asymmetric cloud cover trends amplify greenhouse warming. Sci. Adv. 10 (25), eado5179. doi: 10.1126/sciadv.ado5179.

[30]

Makowski, K., Jaeger, E. B., Chiacchio, M., Wild, M., Ewen, T., Ohmura, A., 2009. On the relationship between diurnal temperature range and surface solar radiation in Europe. J. Geophys. Res.-Atmos., 114, p. D00D07. doi: 10.1029/2008jd011104.

[31]

Mulholland, E., Feyen, L., 2021. Increased risk of extreme heat to European roads and railways with global warming. Clim. Risk Manage., 34, Article 100365. doi: 10.1016/j.crm.2021.100365.

[32]

Muñoz Sabater, J., 2019a. ERA5-Land hourly data from 1950 to present. https://doi.org/10.24381/cds.e2161bac.

[33]

Muñoz Sabater, J., 2019b. ERA5-Land monthly averaged data from 1950 to present. https://doi.org/10.24381/cds.68d2bb30.

[34]

Na, L., Na, R., Bao, Y., Zhang, J., Bao, Y., Shan, Y., 2022. Diurnal temperature range variability driven by cloud cover and precipitation in Mongolian Plateau under global warming. Int. J. Climatol., 42 (16), pp. 8184-8200. doi: 10.1002/joc.7702.

[35]

Peng, S., Piao, S., Ciais, P., Myneni, R. B., Chen, A., Chevallier, F., Dolman, A. J., Janssens, I. A., Penuelas, J., Zhang, G., Vicca, S., Wan, S., Wang, S., Zeng, H., 2013. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 501 (2013), pp. 88-92. doi: 10.1038/nature12434.

[36]

Prager, C. M., Classen, A. T., Sundqvist, M. K., Barrios-Garcia, M. N., Cameron, E. K., Chen, L., Chisholm, C., Crowther, T. W., Deslippe, J. R., Grigulis, K., He, J. S., Henning, J. A., Hovenden, M., Hoye, T. T. T., Jing, X., Lavorel, S., McLaren, J. R., Metcalfe, D. B., Newman, G. S., Nielsen, M. L., Rixen, C., Read, Q. D., Rewcastle, K. E., Rodriguez-Cabal, M., Wardle, D. A., Wipf, S., Sanders, N. J., 2022. Integrating natural gradients, experiments, and statistical modeling in a distributed network experiment: an example from the WaRM Network. Ecol. Evol., 12 (10), p. e9396. doi: 10.1002/ece3.9396.

[37]

Shen, X., Liu, B., Lu, X., 2017. Effects of land use/land cover on diurnal temperature range in the temperate grassland region of China. Sci. Total Environ. 575, 1211–1218. doi: 10.1016/j.scitotenv.2016.09.187.

[38]

Spiridonov, V., 2021. Ćurić (Eds.), Fundamentals of Meteorology, Springer International Publishing, Cham, pp. 73-86. doi: 10.1007/978-3-030-52655-9_7.

[39]

Stjern, C. W., Samset, B. H., Boucher, O., Iversen, T, J-Lamarque, F., Myhre, G., Shindell, D., Takemura, T., 2020. How aerosols and greenhouse gases influence the diurnal temperature range. Atmos. Chem. Phys., 20 (21), pp. 13467-13480. doi: 10.5194/acp-20-13467-2020.

[40]

Stuecker, M. F., Bitz, C. M., Armour, K. C., Proistosescu, C., Kang, S. M., Xie, S-.P., Kim, D., McGregor, S., Zhang, W., Zhao, S., Cai, W., Dong, Y, F-Jin, F., 2018. Polar amplification dominated by local forcing and feedbacks. Nat. Clim. Chang., 8 (12), pp. 1076-1081. doi: 10.1038/s41558-018-0339-y.

[41]

Vose, R. S., Easterling, D. R., Gleason, B., 2005. Maximum and minimum temperature trends for the globe: an update through 2004. Geophys. Res. Lett., 32 (23), Article L23822. doi: 10.1029/2005gl024379.

[42]

Walker, E., Birch, J. B., 1988. Influence measures in ridge regression. Technometrics, 30 (2), pp. 221-227. doi: 10.2307/1270168.

[43]

Wang, J., Massonnet, F., Goosse, H., Luo, H., Barthélemy, A., Yang, Q., 2024b. Synergistic atmosphere-ocean-ice influences have driven the 2023 all-time Antarctic sea-ice record low. Commun. Earth Environ. 5 (1), 415. doi: 10.1038/s43247- 024- 01523- 3.

[44]

Wang, S., Zhang, D., Yang, Q., Wen, X., Li, X., Yan, T., Zhang, R., Wang, W., Akhtar, K.H., Huang, C., Hou, C., 2024a. Effects of different cold chain logistics modes on the quality and bacterial community succession of fresh pork. Meat Sci. 213, 109502. doi: 10. 1016/j.meatsci.2024.109502.

[45]

Wei, B., Xie, Y., Jia, X., Wang, X., He, H., Xue, X., 2018. Land use/land cover change and it's impacts on diurnal temperature range over the agricultural pastoral ecotone of Northern China. Land Degrad. Dev., 29 (9), pp. 3009-3020. doi: 10.1002/ldr.3052.

[46]

Wei, T., Yan, Q., Ding, M., 2019. 14 (8), Article 084040. doi: 10.1088/1748-9326/ab33c1.

[47]

Wild, M., 2012. Enlightening global dimming and brightening. Bull. Amer. Meteorol. Soc., 93 (1), pp. 27-37. doi: 10.1175/bams-D-11-00074.1.

[48]

Wu, J., Shi, Y., 2021. Changes in surface wind speed and its different grades over China during 1961–2020 based on a high-resolution dataset. Int. J. Climatol., 42 (7), pp. 3954-3967. doi: 10.1002/joc.7453.

[49]

Zhong, Z., He, B., Chen, H. W., Chen, D., Zhou, T., Dong, W., Xiao, C., Xie, S. P., Song, X., Guo, L., Ding, R., Zhang, L., Huang, L., Yuan, W., Hao, X., Ji, D., Zhao, X., 2023. Reversed asymmetric warming of sub-diurnal temperature over land during recent decades. Nat. Commun., 14 (1), p. 7189. doi: 10.1038/s41467-023-43007-6.

[50]

Zhou, L-T., Huang, R., 2013. Regional differences in surface sensible and latent heat fluxes in China. Theor. Appl. Climatol., 116 (3–4), pp. 625-637. doi: 10.1007/s00704-013-0975-0.

[51]

Zhou, X., Zhao, A., Meng, X., Chen, R., Kuang, X., Duan, X., Kan, H., 2014. Acute effects of diurnal temperature range on mortality in 8 Chinese cities. Sci. Total Environ., 493, pp. 92-97. doi: 10.1016/j.scitotenv.2014.05.116.

PDF

206

Accesses

0

Citation

Detail

Sections
Recommended

/