Urban green infrastructure for flood resilience: Runoff sink-source regime shifts and vegetation structure influences

Kejing Zhou , Fanhua Kong , Haiwei Yin , Georgia Destouni , Xueying Zhuang , Yulong Ban , Liding Chen

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) : 100333

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) :100333 DOI: 10.1016/j.geosus.2025.100333
Research Article
review-article

Urban green infrastructure for flood resilience: Runoff sink-source regime shifts and vegetation structure influences

Author information +
History +
PDF

Abstract

Over the period of rainfall, urban green infrastructures (UGI) function like a sponge by absorbing surface runoff as sinks; however, they will shift to sources once their runoff reduction capacities are exceeded. This dynamic of sink-source shifts, and its dependence on the vegetation structure, remain poorly understood, limiting the action of flood-resilient UGI strategies. This study employs MIKE SHE/11 model coupled with statistical analysis for such resolution. Across four scenarios ranging from light to heavy rainfall, we identified regime shifts in UGI system through the decreasing to increasing trends of sink fractions, typically occurring around 13–18 h after rainfall starts. Based on these regime shifts, we categorized the UGI system into vulnerable, reliable, and recoverable components, highlighting its heterogeneous performance. In addition, by examining the influence of vegetation structure on sink–source dynamics, we found that a higher probability of sinks under light rainfalls was associated with a greater leaf area index (LAI) and vegetation height standard deviation (VHSTD), while green volume (GV) and canopy height (CH) played a more prominent role under heavier rainfalls. Threshold effect analysis further revealed that, a high proportion of the recoverable parts met the thresholds of CH (82 %) and GV (85 %), whereas fewer reached the thresholds of LAI (15 %–19 %) and VHSTD (3 %–6 %). These findings underscore the importance of enhancing 3D vegetation configuration for UGI to adapt to flood impacts. Our study expects to provide actionable knowledge for understanding, quantification, and management of the runoff sink-source dynamics, informing UGI design and planning to achieve urban flood resilience.

Keywords

Urban green infrastructure / Flood resilience / Runoff sink-source / Flood risk management / Vegetation structure effects / Urban ecosystem services

Cite this article

Download citation ▾
Kejing Zhou, Fanhua Kong, Haiwei Yin, Georgia Destouni, Xueying Zhuang, Yulong Ban, Liding Chen. Urban green infrastructure for flood resilience: Runoff sink-source regime shifts and vegetation structure influences. Geography and Sustainability, 2025, 6(5): 100333 DOI:10.1016/j.geosus.2025.100333

登录浏览全文

4963

注册一个新账户 忘记密码

Data availability statement

The datasets were provided by local agency and were confidential. Access could be requested through an official data-sharing agreement.

CRediT authorship contribution statement

Kejing Zhou: Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization. Fanhua Kong: Writing – review & editing, Writing – original draft, Validation, Supervision, Resources, Project administration, Methodology, Funding acquisition, Conceptualization. Haiwei Yin: Writing – review & editing, Supervision, Resources, Methodology, Investigation, Data curation, Conceptualization. Georgia Destouni: Writing – review & editing, Software, Methodology, Funding acquisition, Conceptualization. Xueying Zhuang: Writing – original draft, Investigation, Formal analysis, Data curation. Yulong Ban: Validation, Resources, Investigation, Data curation. Liding Chen: Resources, Project administration, Funding acquisition.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study is supported by the National Key R&D Program of China (Grant No. 2022YFF1303102), the Global Engagement for Strategic Partnership project of Nanjing University, the China Scholarship Council (Grant No. 202406190182), and the Swedish Research Council (VR, Grant No. 2022–04672). The authors would like to thank the Kunshan Water Bureau for supporting this study through the project cooperation.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100333.

References

[1]

Aparicio Uribe, C. H., Bonilla Brenes, R., Hack, J., 2022. Potential of retrofitted urban green infrastructure to reduce runoff - a model implementation with site-apecific constraints at neighborhood scale. Urban For. Urban Green., 69, 127499.

[2]

Bagstad, K. J., Johnson, G. W., Voigt, B., Villa, F., 2013. Spatial dynamics of ecosystem service flows: a comprehensive approach to quantifying actual services. Ecosyst. Serv., 4, 117-125.

[3]

Baptista, M. D., Livesley, S. J., Parmehr, E. G., Neave, M., Amati, M., 2018. Variation in leaf area density drives the rainfall storage capacity of individual urban tree species. Hydrol. Process., 32(25), 3729-3740.

[4]

Berland, A., Shiflett, S. A., Shuster, W. D., Garmestani, A. S., Goddard, H. C., Herrmann, D. L., Hopton, M. E., 2017. The role of trees in urban stormwater management. Landsc. Urban Plan., 162, 167-177.

[5]

Breiman, L., 2001. Random forests. Mach. Learn., 45(1), 5-32.

[6]

Chen, L., Fu, B., Zhao, W., 2008. Source-sink landscape theory and its ecological significance. Front. Biol., 3, 131-136.

[7]

Chen, W., Wang, W., Mei, C., Chen, Y., Zhang, P., Cong, P., 2024. Multi-objective decision-making for green infrastructure planning: impacts of rainfall characteristics and infrastructure configuration. J. Hydrol., 628, 130572.

[8]

Chen, X., Davitt-Liu, I., Erickson, A. J., Feng, X., 2023. Integrating the spatial configurations of green and gray infrastructure in urban stormwater networks. Water Resour. Res., 59(12), e2023WR034796.

[9]

Cook, L. M., Larsen, T. A., 2021. Towards a performance-based approach for multifunctional green roofs: an interdisciplinary review. Build. Environ., 188, 107489.

[10]

Cruz-Garcia, F., Monárrez González, J. C., Tecle, A., Wehenkel, C., Perez-Verdin, G., 2020. Effects of stand variables on stemflow and surface runoff in pine-oak forests in northern Mexico. PLoS One 15(6), e0235320.

[11]

Danino, D., Svoray, T., Thompson, S., Cohen, A., Crompton, O., Volk, E., Argaman, E., Levi, A., Cohen, Y., Narkis, K., 2021. Quantifying shallow overland flow patterns under laboratory simulations using thermal and LiDAR imagery. Water Resour. Res., 57(3), e2020WR028857.

[12]

DHI 2023. Fully integrated hydrological modelling. https://www.mikepoweredbydhi.com/products/mike-she (accessed 13 March 2024).

[13]

Dodd, L. E., Pepe, M. S., 2003. Partial AUC estimation and regression. Biometrics 59(3), 614-623.

[14]

Dowtin, A. L., Cregg, B. C., Nowak, D. J., Levia, D. F., 2023. Towards optimized runoff reduction by urban tree cover: a review of key physical tree traits, site conditions, and management strategies. Landsc. Urban Plan., 239, 104849.

[15]

Ebrahimian, A., Wadzuk, B., Traver, R., 2019. Evapotranspiration in green stormwater infrastructure systems. Sci. Total Environ., 688, 797-810.

[16]

European Commission 2013. Green Infrastructure (GI) — Enhancing Europe’s Natural Capital. https://www.eea.europa.eu/policy-documents/green-infrastructure-gi-2014-enhancing (accessed 15 March 2024).

[17]

Fatichi, S., Vivoni, E. R., Ogden, F. L., Ivanov, V. Y., Mirus, B., Gochis, D., Downer, C. W., Camporese, M., Davison, J. H., Ebel, B., Jones, N., Kim, J., Mascaro, G., Niswonger, R., Restrepo, P., Rigon, R., Shen, C., Sulis, M., Tarboton, D., 2016. An overview of current applications, challenges, and future trends in distributed process-based models in hydrology. J. Hydrol., 537, 45-60.

[18]

Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., Holling, C. S., 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst., 35(1), 557-581.

[19]

Fong, Y., Huang, Y., Gilbert, P. B., Permar, S. R., 2017. chngpt: threshold regression model estimation and inference. BMC Bioinformatics 18, 1-7.

[20]

Gharakhanlou, N. M., Perez, L., 2023. Flood susceptible prediction through the use of geospatial variables and machine learning methods. J. Hydrol., 617, 129121.

[21]

Golden, H. E., Hoghooghi, N., 2018. Green infrastructure and its catchment-scale effects: an emerging science. WIREs Water 5(1), e1254.

[22]

Goldenberg, R., Kalantari, Z., Destouni, G., 2021. Comparative quantification of local climate regulation by green and blue urban areas in cities across Europe. Sci. Rep., 11(1), 23872.

[23]

Granata, F., Di Nunno, F., 2025. Pathways for hydrological resilience: strategies for adaptation in a changing climate. Earth Syst. Environ.. doi: 10.1007/s41748-024-00567-x.

[24]

Grey, V., Livesley, S. J., Fletcher, T. D., Szota, C., 2018. Establishing street trees in stormwater control measures can double tree growth when extended waterlogging is avoided. Landsc. Urban Plan., 178, 122-129.

[25]

Inkiläinen, E. N. M., McHale, M. R., Blank, G. B., James, A. L., Nikinmaa, E., 2013. The role of the residential urban forest in regulating throughfall: a case study in Raleigh, North Carolina, USA. Landsc. Urban Plan., 119, 91-103.

[26]

IPCC 2021. Climate Change 2021: the Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel On Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

[27]

IPCC 2022. Cities, Settlements and Key Infrastructure. Climate Change 2022: Impacts, Adaptation and Vulnerability, Cambridge University Press, Cambridge, UK and New York, NY, USA

[28]

Jackson, E. K., Roberts, W., Nelsen, B., Williams, G. P., Nelson, E. J., Ames, D. P., 2019. Introductory overview: error metrics for hydrologic modelling – a review of common practices and an open source library to facilitate use and adoption. Environ. Model. Softw., 119, 32-48.

[29]

Jha, A. K., Bloch, R., Lamond, J., 2012. Cities and Flooding: A Guide to Integrated Urban Flood Risk Management for the 21st Century. World Bank Group, Washington, D.C

[30]

Jiang, M-H, T-Lin, C, P-Shaner, J. L., Lyu, M-.K., Xu, C, J-Xie, S, C-Lin, F, Z-Yang, J, Y-Yang, S., 2019. Understory interception contributed to the convergence of surface runoff between a Chinese fir plantation and a secondary broadleaf forest. J. Hydrol., 574, 862-871.

[31]

José, N., 2019. Modeling rainfall interception components of forests: extending drip equations. Agric. For. Meteorol., 279, 107704.

[32]

Kong, F., Chen, J., Middel, A., Yin, H., Li, M., Sun, T., Zhang, N., Huang, J., Liu, H., Zhou, K., 2022. Impact of 3-D urban landscape patterns on the outdoor thermal environment: a modelling study with SOLWEIG. Comput. Environ. Urban Syst., 94, 101773.

[33]

Kuehler, E., Hathaway, J., Tirpak, A., 2017. Quantifying the benefits of urban forest systems as a component of the green infrastructure stormwater treatment network. Ecohydrology 10(3), e1813.

[34]

Li, M., Zhang, Y., Wallace, J., Campbell, E., 2020. Estimating annual runoff in response to forest change: a statistical method based on random forest. J. Hydrol., 589, 125168.

[35]

Livesley, S. J., Baudinette, B., Glover, D., 2014. Rainfall interception and stem flow by eucalypt street trees – the impacts of canopy density and bark type. Urban For. Urban Green., 13, 92-197.

[36]

Macdonald, N., Redfern, T., Miller, J., Kjeldsen, T. R., 2022. Understanding the impact of the built environment mosaic on rainfall-runoff behaviour. J. Hydrol., 604, 127147.

[37]

Mayor, A. G., Bautista, S., Small, E. E., Dixon, M., Bellot, J., 2008. Measurement of the connectivity of runoff source areas as determined by vegetation pattern and topography: a tool for assessing potential water and soil losses in drylands. Water Resour. Res., 44(10), W10423.

[38]

Medeiros, S. C., Hagen, S. C., Weishampel, J. F. 2012. Comparison of floodplain surface roughness parameters derived from land cover data and field measurements. J. Hydrol., 452–453, pp.139-149.

[39]

Mitchell, M. G. E., Wu, D., Johansen, K., Maron, M., McAlpine, C., Rhodes, J. R., 2016. Landscape structure influences urban vegetation vertical structure. J. Appl. Ecol., 53(5), 1477-1488.

[40]

Münzinger, M., Prechtel, N., Behnisch, M., 2022. Mapping the urban forest in detail: from LiDAR point clouds to 3D tree models.. Urban For. Urban Green., 74, 127637.

[41]

Newton, B., Spence, C., 2023. JAMES BUTTLE REVIEW: a resilience framework for physical hydrology. Hydrol. Process., 37(7), e14926.

[42]

Nooraei Beidokhti, A., Moore, T. L., 2021. The effects of precipitation, tree phenology, leaf area index, and bark characteristics on throughfall rates by urban trees: a meta-data analysis. Urban For. Urban Green., 60, 127052.

[43]

Nytch, C. J., Meléndez-Ackerman, E. J., Pérez, M-.E., Ortiz-Zayas, J. R., 2019. Rainfall interception by six urban trees in San Juan, Puerto Rico. Urban Ecosyst., 22, 103-115.

[44]

Ordóñez, C., 2021. Governance lessons from Australian local governments for retaining and protecting urban forests as nature based solutions. Nat. Based Solut., 1, 100004.

[45]

Orta-Ortiz, M. S., Geneletti, D., 2022. What variables matter when designing nature-based solutions for stormwater management? A review of impacts on ecosystem services. Environ. Impact Assess. Rev., 95, 106802.

[46]

Ossola, A., Hahs, A. K., Livesley, S. J., 2015. Habitat complexity influences fine scale hydrological processes and the incidence of stormwater runoff in managed urban ecosystems. J. Environ. Manage., 159, 1-10.

[47]

Ossola, A., Hopton, M. E., 2018. Measuring urban tree loss dynamics across residential landscapes. Sci. Total Environ., 612, 940-949.

[48]

Oswald, C. J., Kelleher, C., Ledford, S. H., Hopkins, K. G., Sytsma, A., Tetzlaff, D., Toran, L., Voter, C., 2023. Integrating urban water fluxes and moving beyond impervious surface cover: a review. J. Hydrol., 618, 129188.

[49]

Poozan, A., Fletcher, T. D., Arora, M., William Western, A., James Burns, M., 2024. The influence of spatial arrangement and site conditions on the fate of infiltrated stormwater. J. Hydrol., 630, 130738.

[50]

Poozan, A., William Western, A., James Burns, M., Arora, M., 2022. Modelling the interaction between vegetation and infiltrated stormwater. J. Hydrol., 607, 127527.

[51]

Prashar, N., Lakra, H. S., Shaw, R., Kaur, H., 2023. Urban flood resilience: a comprehensive review of assessment methods, tools, and techniques to manage disaster. Prog. Disaster Sci., 20, 100299.

[52]

Ramyar, R., Ackerman, A., Johnston, D. M., 2021. Adapting cities for climate change through urban green infrastructure planning. Cities 117, 103316.

[53]

Rentachintala, L. R. N. P., Reddy, M. M., Mohapatra, P. K., 2022. Urban stormwater management for sustainable and resilient measures and practices: a review. Water Sci. Technol., 85(4), 1120-1140.

[54]

Rosenberger, L., Leandro, J., Pauleit, S., Erlwein, S., 2021. Sustainable stormwater management under the impact of climate change and urban densification. J. Hydrol., 596, 126137.

[55]

Rosier, I., Diels, J., Somers, B., Van Orshoven, J., 2024. Maximising runoff retention by vegetated landscape elements positioned through spatial optimisation. Landsc. Urban Plan., 243, 104968.

[56]

Rosner, B., Glynn, R. J., Lee, M-.L. T., 2006. The Wilcoxon signed rank test for paired comparisons of clustered data. Biometrics 62(1), 185-192.

[57]

Sadler, J., Goodall, J., Morsy, M., Spencer, K., 2018. Modeling urban coastal flood severity from crowd-sourced flood reports using Poisson regression and Random Forest. J. Hydrol., 559, 43-55.

[58]

Schoppa, L., Disse, M., Bachmair, S., 2020. Evaluating the performance of random forest for large-scale flood discharge simulation. J. Hydrol., 590, 125531.

[59]

Serra-Llobet, A., Jähnig, S. C., Geist, J., Kondolf, G. M., Damm, C., Scholz, M., Lund, J., Opperman, J. J., Yarnell, S. M., Pawley, A., 2022. Restoring rivers and floodplains for habitat and flood risk reduction: experiences in multi-benefit floodplain management from California and Germany. Front. Environ. Sci., 9, 778568.

[60]

Shrestha, N., 2020. Detecting multicollinearity in regression analysis. Am. J. Appl. Math. Stat., 8(2), 39-42.

[61]

Smets, V., Akkermans, W., Verbeiren, B., Hermy, M., Somers, B., 2019. Ex-situ estimation of interception storage capacity of small urban plant species. J. Hydrol., 572, 869-883.

[62]

Spahr, K. M., Bell, C. D., McCray, J. E., Hogue, T. S., 2020. Greening up stormwater infrastructure: measuring vegetation to establish context and promote cobenefits in a diverse set of US cities. Urban For. Urban Green., 48, 126548.

[63]

Sun, Q., Fang, J., Dang, X., Xu, K., Fang, Y., Li, X., Liu, M., 2022. Multi-scenario urban flood risk assessment by integrating future land use change models and hydrodynamic models. Nat. Hazards Earth Syst. Sci., 22(11), 3815-3829.

[64]

Thom, J. K., Szota, C., Coutts, A. M., Fletcher, T. D., Livesley, S. J., 2020. Transpiration by established trees could increase the efficiency of stormwater control measures. Water Res., 173, 115597.

[65]

Torquato, P. R., Szota, C., Hahs, A. K., Arndt, S. K., Livesley, S. J., 2025. Insufficient space: prioritizing large tree species and planting designs still fail to meet urban forest canopy targets. Landsc. Urban Plan., 256, 105287.

[66]

Venkataramanan, V., Packman, A. I., Peters, D. R., Lopez, D., McCuskey, D. J., McDonald, R. I., Miller, W. M., Young, S. L., 2019. A systematic review of the human health and social well-being outcomes of green infrastructure for stormwater and flood management. J. Environ. Manage., 246, 868-880.

[67]

Walker, B., Holling, C. S., Carpenter, S. R., Kinzig, A., 2004. Resilience, adaptability and transformability in social–ecological systems. Ecol. Soc., 9(2), 5.

[68]

Wan, H., McLaughlin, D., Shao, Y., van Eerden, B., Ranganathan, S., Deng, X., 2021. Remotely-sensed evapotranspiration for informed urban forest management. Landsc. Urban Plan., 210, 104069.

[69]

Webber, J., Fletcher, T., Cunningham, L., Fu, G., Butler, D., Burns, M., 2020. Is green infrastructure a viable strategy for managing urban surface water flooding?. Urban Water J., 17(7), 598-608.

[70]

Wu, J., Meng, Q., Gao, L., Zhang, L., Zhao, M., Su, C., 2024. A deep learning framework for 3D vegetation extraction in complex urban environments. Int. J. Appl. Earth Obs. Geoinf., 129, 103798.

[71]

Xie, C., Cai, S., Yu, B., Yan, L., Liang, A., Che, S., 2020. The effects of tree root density on water infiltration in urban soil based on a Ground Penetrating Radar in Shanghai, China. Urban For. Urban Green., 50, 126648.

[72]

Yan, Y., Liu, Z., Chen, L., Chen, X., Lin, K., Zeng, Z., Lan, X., Huang, L., Wang, Y., Yao, L., Cheng, L., Ma, Z., 2025. Earth greening and climate change reshaping the patterns of terrestrial water sinks and sources. Proc. Natl. Acad. Sci. U.S.A., 122(11), e2410881122.

[73]

Zhang, J., Yin, Y., Xia, T., Zhao, R., Cheng, Y., 2025. Prioritizing 30 % community tree volume ratio: effects of community, street, and park greenspace exposure metrics on predicting older adults’ mental health. Build. Environ., 270, 112499.

[74]

Zhang, K., Chui, T. F. M., 2019. A review on implementing infiltration-based green infrastructure in shallow groundwater environments: challenges, approaches, and progress. J. Hydrol., 579, 124089.

[75]

Zhang, Y., Li, W., Sun, G., King, J. S., 2019. Coastal wetland resilience to climate variability: a hydrologic perspective. J. Hydrol., 568, 275-284.

[76]

Zheng, C., Jia, L., 2020. Global canopy rainfall interception loss derived from satellite earth observations. Ecohydrology 13(2), e2186.

[77]

Zheng, X., Kong, F., Yin, H., Middel, A., Yang, S., Liu, H., Huang, J., 2023. Green roof cooling and carbon mitigation benefits in a subtropical city. Urban For. Urban Green., 86, 128018.

[78]

Zhuang, X., Kong, F., Zhou, K., Yin, H., Ban, Y., 2025. Evaluating urban green infrastructure for runoff reduction: a flow-based approach. Urban For. Urban Green., 107, 128799.

[79]

Zięba-Kulawik, K., Hawryło, P., Wężyk, P., Matczak, P., Przewoźna, P., Inglot, A., Mączka, K., 2021. Improving methods to calculate the loss of ecosystem services provided by urban trees using LiDAR and aerial orthophotos. Urban For. Urban Green., 63, 127195.

[80]

Zölch, T., Henze, L., Keilholz, P., Pauleit, S., 2017. Regulating urban surface runoff through nature-based solutions – an assessment at the micro-scale. Environ. Res., 157, 135-144.

[81]

Zuniga-Teran, A. A., Gerlak, A. K., Mayer, B., Evans, T. P., Lansey, K. E., 2020. Urban resilience and green infrastructure systems: towards a multidimensional evaluation. Curr. Opin. Environ. Sustain., 44, 42-47.

PDF

196

Accesses

0

Citation

Detail

Sections
Recommended

/