Vegetation restoration reduces landscape ecological risk in the Loess Plateau

Hu Yu , Xinyue Hu , Ling Yao

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) : 100320

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) :100320 DOI: 10.1016/j.geosus.2025.100320
Research Article
review-article

Vegetation restoration reduces landscape ecological risk in the Loess Plateau

Author information +
History +
PDF

Abstract

Vegetation restoration (VR) is critical for enhancing the resilience of fragile ecosystems, yet its impact on landscape ecological risk (LER) remains uncertain. The VR project on the Loess Plateau in Shaanxi Province (LPSX) was taken as a case study to address ecological and environmental challenges, including soil erosion and land degradation. This study used multi-source data, including land cover, fractional vegetation cover, and nighttime light. It employed landscape pattern analysis, spatio-temporal correlation analysis, and causality analysis to assess the impacts. This study found a generally positive relationship between VR and the mitigation of LER in LPSX, though spatial and temporal variations exist from 2000 to 2020. Localized VR significantly influenced 17.66 % to 27.03 % of the study area. Positive effects were mainly observed in sandy and gully-hilly regions, showing an upward fluctuating trend that peaked at 21.91 % in 2010. After 2010, negative effects in the Fen-Wei Plain, Qinling Mountains, and Liupan Mountains outweighed the positive effects and continued to expand. Urbanization had a broader impact on LER distribution compared to VR. The findings indicate that future VR projects should focus on the spatial pattern of restoration and its associated eco-social effects to ensure sustainable development.

Keywords

Vegetation restoration / Landscape ecological risk / Spatial heterogeneity / Urbanization / The Loess Plateau

Cite this article

Download citation ▾
Hu Yu, Xinyue Hu, Ling Yao. Vegetation restoration reduces landscape ecological risk in the Loess Plateau. Geography and Sustainability, 2025, 6(5): 100320 DOI:10.1016/j.geosus.2025.100320

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Hu Yu: Writing – original draft, Methodology, Formal analysis, Data curation. Xinyue Hu: Visualization, Software, Formal analysis. Ling Yao: Writing – review & editing, Validation, Formal analysis, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We are grateful to the staff of the Desert Control Research Institute of Shannxi Province and the Xindian Gou Soil and Water Conservation Station who gave of their time and expertise. Additionally, we thank the teachers who accompanied us on the field trip to Shaanxi, who provided a lot of insights about the local area. We gratefully acknowledge funding from the National Social Science Foundation of China (Grant No. 23AZD062). Finally, we thank our anonymous reviewers a lot for their helpful input on the manuscript.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100320.

References

[1]

Adame, M. F., Hermoso, V., Perhans, K., Lovelock, C. E., Herrera-Silveira, J. A., 2015. Selecting cost-effective areas for restoration of ecosystem services. Conserv. Biol., 29(2), 493-502.

[2]

Ai, J., Yu, K., Zeng, Z., Yang, L., Liu, Y., Liu, J., 2022. Assessing the dynamic landscape ecological risk and its driving forces in an island city based on optimal spatial scales: Haitan Island, China. Ecol. Indic., 137, 108771.

[3]

An, S., Huang, Y., Zhu, Z., Jiao, F., 2020. Soil Environmental Effect of Vegetation Restoration in Loess Plateau. Science Press, Beijing

[4]

Aradottir, A.L., Hagen, D., 2013. Ecological restoration: approaches and impacts on vegetation, soils and society. In: Sparks, D.L. (Ed.), Advances in Agronomy. Academic Press, pp. 173–222.

[5]

Atkinson, J., Brudvig, L. A., Mallen-Cooper, M., Nakagawa, S., Moles, A. T., Bonser, S. P., 2022. Terrestrial ecosystem restoration increases biodiversity and reduces its variability, but not to reference levels: a global meta-analysis. Ecol. Lett., 25(7), 1725-1737.

[6]

Azim, R., Wang, Q., Mak-Mensah, E., Zhou, X., Zhang, D., Zhao, X., Qi, W., Zhu, J., Ma, W., Sadiq, M., Liu, B., 2024. Soil desiccation in the context of vegetation restoration: a scientometric analysis. Land. Degrad. Dev., 35(15), 4364-4378.

[7]

Buyantuyev, A., Wu, J., 2012. Urbanization diversifies land surface phenology in arid environments: interactions among vegetation, climatic variation, and land use pattern in the Phoenix metropolitan region, USA. Landsc. Urban Plan., 105(1–2), 149-159.

[8]

Chang, S., Dai, Z., Wang, X., Zhu, Z., Feng, Y., 2023. Landscape pattern identification and ecological risk assessment employing land use dynamics on the Loess Plateau. Agronomy 13(9), 2247.

[9]

Chen, Q., Yin, H., Li, Y., Dong, Q., Zhang, P., Zhu, L., 2022. Spatial and temporal differentiation of landscape ecological risk in Qinling-Daba Mountains. Bull. Soil Water Conserv., 42(3), 239-246.

[10]

Chen, T., Wang, Y., Peng, L., 2024. Exploring social-ecological system resilience in South China Karst: quantification, interaction and policy implication. Geogr. Sustain., 5(2), 289-301.

[11]

Chen, X., Lupi, F., He, G., Ouyang, Z., Liu, J., 2009. Factors affecting land reconversion plans following a payment for ecosystem service program. Biol. Conserv., 142(8), 1740-1747.

[12]

Cui, L., Zhao, Y., Liu, J., Han, L., Ao, Y., Yin, S., 2018. Landscape ecological risk assessment in Qinling Mountain. Geol. J., 53(S1), 342-351.

[13]

Dewan, A. M., Yamaguchi, Y., 2009. Land use and land cover change in Greater Dhaka, Bangladesh: using remote sensing to promote sustainable urbanization. Appl. Geogr., 29(3), 390-401.

[14]

Diallo, I. D., Tilioua, A., Darraz, C., Alali, A., Sidibe, D., 2024. Study and evaluation of the effects of vegetation cover destruction on soil degradation in Middle Guinea through the application of remote sensing and and geotechnics. Heliyon 10, e23556.

[15]

Du, L., Dong, C., Kang, X., Qian, X., Gu, L., 2023. Spatiotemporal evolution of land cover changes and landscape ecological risk assessment in the Yellow River basin, 2015–2020. J. Environ. Manage., 332, 117149.

[16]

Feng, X., Fu, B., Lu, N., Zeng, Y., Wu, B., 2013. How ecological restoration alters ecosystem services: an analysis of carbon sequestration in China’s Loess Plateau. Sci. Rep., 3(1), 2846.

[17]

Feng, X., Li, J., Cheng, W., Fu, B., Wang, Y., Lv, Y., Shao, M., 2017. Evaluation of AMSR-E retrieval by detecting soil moisture decrease following massive dryland re-vegetation in the Loess Plateau, China. Remote Sens. Environ., 196, 253-264.

[18]

Fu, B., Wang, S., Liu, Y., Liu, J., Liang, W., Miao, C., 2017. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annu Rev. Earth. Planet. Sci., 45(1), 223-243.

[19]

Fu, B., Wu, X., Wang, Z., Wu, X., Wang, S., 2022. Coupling human and natural systems for sustainability: experience from China’s Loess Plateau. Earth. Syst. Dyn., 13(2), 795-808.

[20]

Fu, B., Zhao, W., Zhang, Q., Liu, Y., 2014. Changes of Landscape Pattern and Soil Erosion in Loess Plateau. Science Press, Beijing

[21]

Fu, W., Lv, Y., Fu, B., 2019. Landscape ecological risk assessment under the influence of typical human activities in Loess Plateau, northern Shaanxi. J. Ecol. Rural Environ., 35(3), 290-299.

[22]

Gan, L., Halik, Ü., Shi, L., Welp, M., 2023. Ecological risk assessment and multi-scenario dynamic prediction of the arid oasis cities in northwest China from 1990 to 2030. Stoch. Environ. Res. Risk Assess., 37(8), 3099-3115.

[23]

Gao, B., Li, C., Wu, Y., Zheng, K., Wu, Y., 2021. Landscape ecological risk assessment and influencing factors in ecological conservation area in Sichuan-Yunnan provinces, China. J. Appl. Ecol., 32(5), 1603-1613.

[24]

Gao, H., Pang, G., Li, Z., Cheng, S., 2017. Evaluating the potential of vegetation restoration in the Loess Plateau. J. Geogr. Sci., 39(2), 243-254.

[25]

Gao, J., Shi, Y., Zhang, H., Chen, X., Zhang, W., Shen, W., Jiang, T., Zhang, Y., 2022. Regional 250-meter vegetation coverage dataset in China (2000–2022). https://doi.org/10.11888/Terre.tpdc.300330.

[26]

Han, X., Yu, J., Shi, L., Zhao, X., Wang, J., 2021. Spatiotemporal evolution of ecosystem service values in an area dominated by vegetation restoration: quantification and mechanisms. Ecol. Indic., 131, 108191.

[27]

He, Z., Shang, X., Zhang, T., Yun, J., 2022. Coupled regulatory mechanisms and synergy/trade-off strategies of human activity and climate change on ecosystem service value in the loess hilly fragile region of northern Shaanxi, China. Ecol. Indic., 143, 109325.

[28]

Herrick, J. E., Schuman, G. E., Rango, A., 2006. Monitoring ecological processes for restoration projects. J. Nat. Conserv., 14(3–4), 161-171.

[29]

Hu, C., Guo, L., 2012. Advances in the research of ecological effects of vegetation restoration. Ecol. Environ. Sci., 21(9), 1640-1646.

[30]

Hu, L., Shao, M., 2002. Study on water ecological environment of vegetation restoration in Loess Plateau. J. Appl. Ecol., 13(8), 1045-1048.

[31]

Jiang, H., Xu, X., Guan, M., Wang, L., Huang, Y., Jiang, Y., 2020. Determining the contributions of climate change and human activities to vegetation dynamics in agro-pastural transitional zone of northern China from 2000 to 2015. Sci. Total Environ., 718, 134871.

[32]

Jin, X., Jin, Y., Mao, X., 2019. Ecological risk assessment of cities on the Tibetan Plateau based on land use/land cover changes: case study of Delingha City. Ecol. Indic., 101, 185-191.

[33]

Jing, P., Zhang, D., Ai, Z., Guo, B., 2021. Natural landscape ecological risk assessment based on the three-dimensional framework of pattern-process ecological adaptability cycle: a case in Loess Plateau. Acta Ecol. Sin., 41(17), 7026-7036.

[34]

Karimian, H., Zou, W., Chen, Y., Xia, J., Wang, Z., 2022. Landscape ecological risk assessment and driving factor analysis in Dongjiang River watershed. Chemosphere 307, 135835.

[35]

Lamb, D., 2018. Undertaking large-scale forest restoration to generate ecosystem services. Restor. Ecol., 26(4), 657-666.

[36]

Lgwe, P. U., Ezeukwu, J. C., Edoka, N. E., Ejie, O. C., Lfi, G. I., 2017. A review of vegetation cover as a natural factor to soil erosion. Int. J. Rural Dev. Environ. Health Res., 1(4), 21-28.

[37]

Li, C., Zhang, J., Philbin, S. P., Yang, X., Dong, Z., Hong, J., Ballesteros-Pérez, P., 2022. Evaluating the impact of highway construction projects on landscape ecological risks in high altitude plateaus. Sci. Rep., 12(1), 5170.

[38]

Li, J., Ren, Z., 2008. GlS-based evaluation of ecological security of the Loess Plateau in northern Shaanxi Province. Resour. Sci., 30(5), 732-736.

[39]

Li, P., Chen, J., Zhao, G., Holden, J., Liu, B., Chan, F. K. S., Hu, J., Wu, P., Mu, X., 2022. Determining the drivers and rates of soil erosion on the Loess Plateau since 1901. Sci. Total Environ., 823, 153674.

[40]

Li, S., Yang, S., Liu, X., Liu, Y., Shi, M., 2015. NDVI-based analysis on the influence of climate change and human activities on vegetation restoration in the Shaanxi-Gansu-Ningxia region, central China. Remote Sens., 7(9), 11163-11182.

[41]

Li, T., Lv, Y., Fu, B., Hu, W., Comber, A. J., 2019. Bundling ecosystem services for detecting their interactions driven by large-scale vegetation restoration: enhanced services while depressed synergies. Ecol. Indic., 99, 332-342.

[42]

Li, X., Zhou, Y., Zhao, M., Zhao, X., 2020. A harmonized global nighttime light dataset 1992–2018. Sci. Data 7(1), 168.

[43]

Li, Y., Sun, J., Yang, X., Qi, Y., 2024. Spatio-temporal variation of fractional vegetation vover and its recovery potential in Shaanxi Province. Bull. Soil Water Conserv., 44(1), 346-356.

[44]

Liu, D., Chen, H., Geng, T., Zhang, H., Shi, Q., 2020. Spatiotemporal changes of regional ecological risks in Shaanxi Province based on geomorphologic regionalization. Prog. Geogr., 39(2), 243-254.

[45]

Liu, S., Liu, Q., Zhang, Z., Deng, L., Dong, S., 2014. Landscape ecological risk and driving force analysis in Red River basin. Acta Ecol. Sin., 34(13), 3728-3734.

[46]

Liu, X., Pei, F., Wen, Y., Li, X., Wang, S., Wu, C., Cai, Y., Wu, J., Chen, J., Feng, K., Liu, J., Hubacek, K., Davis, S. J., Yuan, W., Yu, L., Liu, Z., 2019. Global urban expansion offsets climate-driven increases in terrestrial net primary productivity. Nat. Commun., 10(1), 5558.

[47]

Mo, W., Wang, Y., Zhang, Y., Zhuang, D., 2017. Impacts of road network expansion on landscape ecological risk in a megacity, China: a case study of Beijing. Sci. Total Environ., 574, 1000-1011.

[48]

Pang, R., Teng, F., Wei, Y., 2014. A GWR-based study on dynamic mechanism of population urbanization in Jilin Province. Geogr. Sci., 34(10), 1210-1217.

[49]

Peng, J., Pan, Y., Liu, Y., Zhao, H., Wang, Y., 2018. Linking ecological degradation risk to identify ecological security patterns in a rapidly urbanizing landscape. Habitat Int., 71, 110-124.

[50]

Qi, W., Deng, Y., Fu, B., 2022. Rural attraction: the spatial pattern and driving factors of China’s rural in-migration. J. Rural Stud., 93, 461-470.

[51]

Qiao, Y., Jiang, Y., Zhang, C., 2021. Contribution of karst ecological restoration engineering to vegetation greening in southwest China during recent decade. Ecol. Indic., 121, 107081.

[52]

Qu, L., Huang, Y., Yang, L., Li, Y., 2020. Vegetation restoration in response to climatic and anthropogenic changes in the Loess Plateau, China. Chin. Geogr. Sci., 30, 89-100.

[53]

Qu, Z., Zhao, Y., Luo, M., Han, L., Yang, S., Zhang, L., 2022. The effect of the human footprint and climate change on landscape ecological risks: a case study of the Loess Plateau, China. Land 11(2), 217.

[54]

Sage, R. F., 2020. Global change biology: a primer. Glob. Change Biol., 26(1), 3-30.

[55]

Sapkota, R. P., Stahl, P. D., Rijal, K., 2018. Restoration governance: an integrated approach towards sustainably restoring degraded ecosystems. Environ. Dev., 27, 83-94.

[56]

Seto, K. C., Shepherd, J. M., 2009. Global urban land-use trends and climate impacts. Curr. Opin. Environ. Sustain., 1(1), 89-95.

[57]

Strassburg, B. B. N., Iribarrem, A., Beyer, H. L., Cordeiro, C. L., Crouzeilles, R., Jakovac, C. C., Braga Junqueira, A., Lacerda, E., Latawiec, A. E., Balmford, A., Brooks, T. M., Butchart, S. H. M., Chazdon, R. L., Erb, K-.H., Brancalion, P., Buchanan, G., Cooper, D., Díaz, S., Donald, P. F., Kapos, V., Leclère, D., Miles, L., Obersteiner, M., Plutzar, C., De, M., Scaramuzza, C. A., Scarano, F. R., Visconti, P., 2020. Global priority areas for ecosystem restoration. Nature 586(7831), 724-729.

[58]

Su, H., He, A., 2010. Analysis of land use based on RS and geostatistics in Fuzhou city. J. Nat. Resour., 25(1), 91-99.

[59]

Sun, J., Li, G., Zhang, Y., Qin, W., Wang, M., 2022. Identification of priority areas for afforestation in the Loess Plateau region of China. Ecol. Indic., 140, 108998.

[60]

Sun, W., Song, X., Mu, X., Gao, P., Wang, F., Zhao, G.Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agric. For. Meteorol. 2015; 87-99,.

[61]

Tong, X., Brandt, M., Yue, Y., Horion, S., Wang, K., Keersmaecker, W. D., Tian, F., Schurgers, G., Xiao, X., Luo, Y., Chen, C., Myneni, R., Shi, Z., Chen, H., Fensholt, R., 2018. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain., 1(1), 44-50.

[62]

Wang, G., Peng, W., 2022. Quantifying the spatial differentiation mechanism of land use degree. Heliyon 8(11), e11389.

[63]

Wang, J., Zhou, W., Pickett, S. T. A., Yu, W., Li, W., 2019. A multiscale analysis of urbanization effects on ecosystem services supply in an urban megaregion. Sci. Total Environ., 662, 824-833.

[64]

Wang, K., Deng, L., Shangguan, Z., Chen, Y., Lin, X., 2021. Sustainability of eco-environment in semi-arid regions: lessons from the Chinese Loess Plateau. Environ. Sci. Policy 125, 126-134.

[65]

Wang, M., Hu, S., Zhang, X., Zhang, X., Wu, S., 2022. Spatio-temporal evolution of landscape ecological risk in oasis cities and towns of arid area: a case study of Zhangye Oasis township. Acta Ecol. Sin., 42(14), 5812-5824.

[66]

Wang, S., Fu, B., Chen, H., Liu, Y., 2018. Regional development boundary of China’s Loess Plateau: water limit and land shortage. Land Use Policy 74, 130-136.

[67]

Wang, Z., Fu, B., Wu, X., Wang, S., Li, Y., Feng, Y., Zhang, L., Hu, Y., Cheng, L., Li, B., 2024. Distinguishing trajectories and drivers of vegetated ecosystems in China’s Loess Plateau. Earths Future 12(2), e2023EF003769.

[68]

Wu, D., Zou, C., Cao, W., Xiao, T., Gong, G., 2019. Ecosystem services changes between 2000 and 2015 in the Loess Plateau, China: a response to ecological restoration. PLoS One, 14 (1)

[69]

Wu, Q., Jiang, X., Shi, X., Zhang, Y., Liu, Y., Cai, W., 2024. Spatiotemporal evolution characteristics of soil erosion and its driving mechanisms - a case study: Loess Plateau, China. Catena 242, 108075.

[70]

Wu, X., Wei, Y., Fu, B., Wang, S., Zhao, Y., Moran, E. F., 2020. Evolution and effects of the social-ecological system over a millennium in China’s Loess Plateau. Sci. Adv., 6(41), eabc0276.

[71]

Xiao, P., Xu, J., Zhao, C., 2022. Conflict identification and zoning optimization of “production-living-ecological” space. Int. J. Env. Res. Public. Health 19(13), 7990.

[72]

Xie, G., Xiao, Y., Zhen, L., Lu, C., 2005. Study on ecosystem services value of food production in China. Chin. J. Eco-Agric., 13(3), 10-13.

[73]

Xiu, L., Yao, X., Chen, M., Yan, C., 2021. Effect of ecological construction engineering on vegetation restoration: a case study of the Loess Plateau. Remote Sens., 13(8), 1407.

[74]

Xu, B., Ji, K., Qi, B., Tao, Y., Qi, X., Zhang, Y., Liu, Y., 2022. Landscape ecological risk assessment of Yulin region in Shaanxi Province of China. Environ. Earth Sci., 81(21), 510.

[75]

Xu, W., Wang, J., Zhang, M., Li, S., 2021. Construction of landscape ecological network based on landscape ecological risk assessment in a large-scale opencast coal mine area. J. Clean. Prod., 286, 125523.

[76]

Xu, X., 2022. Resilience data set of vegetation cover in countries along the Belt and Road (2000–2020). https://doi.org/10.11888/HumanNat.tpdc.272282 [dataset].

[77]

Xu, Y., Sidle, R. C., 2001. Land use change and its regulation of Yangou watershed in loess hilly-gully region. Acta Geogr. Sin., 56(6), 657-666.

[78]

Yaermaimaiti, A., Li, X., Ge, X., Liu, C., 2024. Analysis of landscape pattern and ecological risk change characteristics in Bosten Lake basin based on optimal scale. Ecol. Indic., 163, 112120.

[79]

Yang, J., Huang, X., 2021. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth. Syst. Sci. Data 13(8), 3907-3925.

[80]

Yin, C., Pereira, P., Zhao, W., Barcelo, D., 2023. Natural climate solutions. The way forward. Geogr. Sustain., 4(2), 179-182.

[81]

Yin, J., Fu, P., Cheshmehzangi, A., Li, Z., Dong, J., 2022. Investigating the changes in urban green-space patterns with urban land-use changes: a case study in Hangzhou, China. Remote Sens., 14(21), 5410.

[82]

Yu, Z., Deng, X., Fu, P., Grebby, S., Mangi, E., 2024. Assessment of land degradation risks in the Loess Plateau. Land Degrad. Dev., 35(7), 2409-2424.

[83]

Zhang, C., Li, Y., 2016. Verification of watershed vegetation restoration policies, arid China. Sci. Rep., 6(1), 30740.

[84]

Zhang, G., Bai, J., Xiao, R., Zhao, Q., Jia, J., Cui, B., Liu, X., 2017. Heavy metal fractions and ecological risk assessment in sediments from urban, rural and reclamation-affected rivers of the Pearl River estuary, China. Chemosphere 184, 278-288.

[85]

Zhang, H., Wang, Z., Yang, B., Chai, J., Wei, C., 2021. Spatial–temporal characteristics of illegal land use and its driving factors in China from 2004 to 2017. Int. J. Environ. Res. Public. Health 18(3), 1336.

[86]

Zhang, H., Xue, L., Wei, G., Dong, Z., Meng, X., 2020. Assessing vegetation dynamics and landscape ecological risk on the mainstream of Tarim River, China. Water 12(8), 2156.

[87]

Zhang, K., Lv, Y., Fu, B., Yin, L., Yu, D., 2020. The effects of vegetation coverage changes on ecosystem service and their threshold in the Loess Plateau. Acta Geogr. Sin., 75(5), 949-960.

[88]

Zhang, L., Yang, L., Zohner, C. M., Crowther, T. W., Li, M., Shen, F., Guo, M., Qin, J., Yao, L., Zhou, C., 2022. Direct and indirect impacts of urbanization on vegetation growth across the world’s cities. Sci. Adv., 8(27), eabo0095.

[89]

Zhang, W., Chang, W. J., Zhu, Z. C., Hui, Z., 2020. Landscape ecological risk assessment of Chinese coastal cities based on land use change. Appl. Geogr., 117, 102174.

[90]

Zhang, X., Wang, J., Gao, Y., Wang, L., 2021. Variations and controlling factors of vegetation dynamics on the Qingzang Plateau of China over the recent 20 years. Geogr. Sustain., 2(1), 74-85.

[91]

Zhang, Y., Ren, Z., 2012. Using data from Bijie factors affecting population distribution in mountainous areas: geographically weighted regression. Popul. Res., 36(4), 53-63.

[92]

Zhao, Z., Dai, E., 2024. Vegetation cover dynamics and its constraint effect on ecosystem services on the Qinghai-Tibet Plateau under ecological restoration projects. J. Environ. Manage., 356, 120535.

[93]

Zou, L., Liu, Y., Wang, J., Yang, Y., 2021. An analysis of land use conflict potentials based on ecological-production-living function in the southeast coastal area of China. Ecol. Indic., 122, 107297.

PDF

184

Accesses

0

Citation

Detail

Sections
Recommended

/