Precipitation mediates the effects of species diversity and belowground ecosystem multifunctionality on community stability across alpine grasslands, Qinghai-Xizang Plateau

Miao Liu , Le Sun , Yanli Zhang , Yuqing Liu , Yang Li , Ziyin Du , Fei Peng

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) : 100336

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) :100336 DOI: 10.1016/j.geosus.2025.100336
Research Article
review-article

Precipitation mediates the effects of species diversity and belowground ecosystem multifunctionality on community stability across alpine grasslands, Qinghai-Xizang Plateau

Author information +
History +
PDF

Abstract

Maintaining community stability has profound positive impacts on the ecological functions and sustainable utilization of grassland ecosystems. Numerous studies have explored how community stability responds to climate change and its relationship with plant species diversity. Nevertheless, the impact and underlying mechanisms of belowground ecosystem multifunctionality (BGEMF) on community stability along a precipitation gradient in alpine grasslands remain poorly understood. To address this knowledge gap, we conducted field surveys from 2015 to 2020, measuring plant species diversity, annual net primary productivity (ANPP), and soil physicochemical properties across 79 sites in alpine grassland ecosystems on the Qinghai-Xizang Plateau. Our findings highlight both plant species diversity (standardized total effect: 32 %) and BGEMF (standardized total effect: 75 %) had an indirect effect on stability viaregulating mean ANPP within alpine grasslands. Furthermore, mean annual precipitation substantially impacted both plant species diversity and BGEMF, subsequently affecting community stability. However, temperature had a strong negative regulatory effect on species diversity, the mean and variability of ANPP. Thus, we emphasized the pivotal role of plant species diversity and BGEMF in shaping community stability, and stated the imperative need for species conservation and BGEMF improvement to sustain alpine ecosystems in the face of ongoing climate change.

Keywords

Species diversity / Climate change / Belowground ecosystem multifunctionality / Community stability / Qinghai-Xizang Plateau

Cite this article

Download citation ▾
Miao Liu, Le Sun, Yanli Zhang, Yuqing Liu, Yang Li, Ziyin Du, Fei Peng. Precipitation mediates the effects of species diversity and belowground ecosystem multifunctionality on community stability across alpine grasslands, Qinghai-Xizang Plateau. Geography and Sustainability, 2025, 6(5): 100336 DOI:10.1016/j.geosus.2025.100336

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Miao Liu: Conceptualization, Writing – original draft, Validation, Resources, Project administration, Methodology, Investigation, Funding acquisition, Supervision, Writing – review & editing. Le Sun: Writing – review & editing. Yanli Zhang: Writing – review & editing. Yuqing Liu: Writing – review & editing. Yang Li: Investigation. Ziyin Du: Writing – review & editing. Fei Peng: Writing – review & editing.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study was supported financially by the National Natural Science Foundation of China (Grant No. 32271774).

References

[1]

Aussenac, R., Bergeron, Y., GhotsaMekontchou, C., Gravel, D., Pilch, K., Drobyshev, I., 2017. Intraspecific variability in growth response to environmental fluctuations modulates the stabilizing effect of species diversity on forest growth. J. Ecol., 105(4), 1010-1020.

[2]

Bai, Y., Han, X., Wu, J., Chen, Z., Li, L., 2004. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 431(7005), 181-184.

[3]

Bao, S., 2000. Soil Agrochemical Analysis. Chinese Agriculture Press, Beijing

[4]

Byrnes, J. E., Gamfeldt, L., Isbell, F., Lefcheck, J. S., Griffin, J. N., Hector, A., Cardinale, B. J., Hooper, D. U., Dee, L. E., Emmett Duffy, J., 2014. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol., 5(2), 111-124.

[5]

Chen, L., Jiang, L., Jing, X., Wang, J., Shi, Y., Chu, H., He, J., 2021. Above- and belowground biodiversity jointly drive ecosystem stability in natural alpine grasslands on the Tibetan Plateau. Glob. Ecol. Biogeogr., 30(7), 1418-1429.

[6]

Cottingham, K. L., Brown, B. L., Lennon, J. T., 2001. Biodiversity may regulate the temporal variability of ecological systems. Ecol. Lett., 4(1), 72-85.

[7]

de Bello, F., Lavorel, S., Hallett, L. M., Valencia, E., Garnier, E., Roscher, C., Conti, L., Galland, T., Goberna, M., Májeková, M., Montesinos-Navarro, A., Pausas, J. G., Verdú, M., E-Vojtkó, A., Götzenberger, L., Lepš, J., 2021. Functional trait effects on ecosystem stability: assembling the jigsaw puzzle. Trends Ecol. Evol., 36(9), 822-836.

[8]

de Mazancourt, C., Isbell, F., Larocque, A., Berendse, F., De Luca, E., Grace, J. B., Haegeman, B., Wayne Polley, H., Roscher, C., Schmid, B., Tilman, D., van Ruijven, J., Weigelt, A., Wilsey, B. J., Loreau, M., 2013. Predicting ecosystem stability from community composition and biodiversity. Ecol. Lett., 16(5), 617-625.

[9]

Del Río, M., Pretzsch, H., Ruíz-Peinado, R., Ampoorter, E., Annighöfer, P., Barbeito, I., Bielak, K., Brazaitis, G., Coll, L., Drössler, L., Fabrika, M., Forrester, D. I., Heym, M., Hurt, V., Kurylyak, V., Löf, M., Lombardi, F., Madrickiene, E., Matović, B., Mohren, F., Motta, R., den Ouden, J., Pach, M., Ponette, Q., Schütze, G., Skrzyszewski, J., Sramek, V., Sterba, H., Stojanović, D., Svoboda, M., Zlatanov, T. M., Bravo-Oviedo, A., 2017. Species interactions increase the temporal stability of community productivity in Pinus sylvestris–Fagus sylvatica mixtures across Europe. J. Ecol., 105(4), 1032-1043.

[10]

Donohue, I., Hillebrand, H., Montoya, J. M., Petchey, O. L., Pimm, S. L., Fowler, M. S., Healy, K., Jackson, A. L., Lurgi, M., McClean, D., O’Connor, N. E., O’Gorman, E. J., Yang, Q., 2016. Navigating the complexity of ecological stability. Ecol. Lett., 19(9), 1172-1185.

[11]

Durán, J., Delgado-Baquerizo, M., Dougill, A. J., Guuroh, R. T., Linstädter, A., Thomas, A. D., Maestre, F. T., 2018. Temperature and aridity regulate spatial variability of soil multifunctionality in drylands across the globe. Ecology 99(5), 1184-1193.

[12]

García-Palacios, P., Gross, N., Gaitán, J., Maestre, F. T., 2018. Climate mediates the biodiversity-ecosystem stability relationship globally. Proc. Natl. Acad. Sci. U.S.A., 115(33), 8400-8405.

[13]

Gilbert, B., MacDougall, A. S., Kadoya, T., Akasaka, M., Bennett, J. R., Lind, E. M., Flores-Moreno, H., Firn, J., Hautier, Y., Borer, E. T., Seabloom, E. W., Adler, P. B., Cleland, E. E., Grace, J. B., Harpole, W. S., Esch, E. H., Moore, J. L., Knops, J., McCulley, R., Mortensen, B., Bakker, J., Fay, P. A., 2020. Climate and local environment structure asynchrony and the stability of primary production in grasslands. Glob. Ecol. Biogeogr., 29(7), 1177-1188.

[14]

Grman, E., Lau, J. A., Schoolmaster Jr, D. R., Gross, K. L., 2010. Mechanisms contributing to stability in ecosystem function depend on the environmental context. Ecol. Lett., 13(11), 1400-1410.

[15]

Gross, K., Cardinale, B. J., Fox, J. W., Gonzalez, A., Loreau, M., Polley, H. W., Reich, P. B., van Ruijven, J., 2014. Species richness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments. Am. Nat., 183(1), 1-12.

[16]

Hallett, L., Hsu, J., Cleland, E., Collins, S., Dickson, T., Farrer, E., Gherardi, L., Gross, K., Hobbs, R., Turnbull, L., Suding, K., 2014. Biotic mechanisms of community stability shift along a precipitation gradient. Ecology 95, 1693-1700.

[17]

Hamerlynck, E. P., Scott, R. L., Stone, J. J., 2012. Soil moisture and ecosystem function responses of desert grassland varying in vegetative cover to a saturating precipitation pulse. Ecohydrology 5(3), 297-305.

[18]

Hautier, Y., Tilman, D., Isbell, F., Seabloom, E. W., Borer, E. T., Reich, P. B., 2015. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348(6232), 336-340.

[19]

Hector, A., Hautier, Y., Saner, P., Wacker, L., Bagchi, R., Joshi, J., Scherer-Lorenzen, M., Spehn, E. M., Bazeley-White, E., Weilenmann, M., Caldeira, M. C., Dimitrakopoulos, P. G., Finn, J. A., Huss-Danell, K., Jumpponen, A., Mulder, C. P. H., Palmborg, C., Pereira, J. S., Siamantziouras, A. S. D., Terry, A. C., Troumbis, A. Y., Schmid, B., Loreau, M., 2010. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 91(8), 2213-2220.

[20]

Hector, A., Hooper, R., 2002. Darwin and the first ecological experiment. Science 295(5555), 639-640.

[21]

Heisler-White, J. L., Blair, J. M., Kelly, E. F., Harmoney, K., Knapp, A. K., 2009. Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Glob. Change Biol., 15(12), 2894-2904.

[22]

Hooper, D. U., Adair, E. C., Cardinale, B. J., Byrnes, J. E., Hungate, B. A., Matulich, K. L., Gonzalez, A., Duffy, J. E., Gamfeldt, L., O’Connor, M. I., 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486(7401), 105-108.

[23]

Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., Naeem, S., 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr., 75(1), 3-35.

[24]

Hu, W., Ran, J., Dong, L., Du, Q., Ji, M., Yao, S., Sun, Y., Gong, C., Hou, Q., Gong, H., Chen, R., Lu, J., Xie, S., Wang, Z., Huang, H., Li, X., Xiong, J., Xia, R., Wei, M., Zhao, D., Zhang, Y., Li, J., Yang, H., Wang, X., Deng, Y., Sun, Y., Li, H., Zhang, L., Chu, Q., Li, X., Aqeel, M., Manan, A., Akram, M. A., Liu, X., Li, R., Li, F., Hou, C., Liu, J., He, J., An, L., Bardgett, R. D., Schmid, B., Deng, J., 2021. Aridity-driven shift in biodiversity–soil multifunctionality relationships. Nat. Commun., 12(1), 5350.

[25]

Huxman, T. E., Smith, M. D., Fay, P. A., Knapp, A. K., Shaw, M. R., Loik, M. E., Smith, S. D., Tissue, D. T., Zak, J. C., Weltzin, J. F., Pockman, W. T., Sala, O. E., Haddad, B. M., Harte, J., Koch, G. W., Schwinning, S., Small, E. E., Williams, D. G., 2004. Convergence across biomes to a common rain-use efficiency. Nature 429(6992), 651-654.

[26]

Isbell, F., Calcagno, V., Hector, A., Connolly, J., Harpole, W. S., Reich, P. B., Scherer-Lorenzen, M., Schmid, B., Tilman, D., van Ruijven, J., Weigelt, A., Wilsey, B. J., Zavaleta, E. S., Loreau, M., 2011. High plant diversity is needed to maintain ecosystem services. Nature 477(7363), 199-202.

[27]

Isbell, F. I., Polley, H. W., Wilsey, B. J., 2009. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett., 12(5), 443-451.

[28]

Isbell, F., Reich, P. B., Tilman, D., Hobbie, S. E., Polasky, S., Binder, S., 2013. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc. Natl. Acad. Sci. U.S.A., 110(29), 11911-11916.

[29]

Ives, A. R., Carpenter, S. R., 2007. Stability and diversity of ecosystems. Science 317(5834), 58-62.

[30]

Jing, X., Sanders, N. J., Shi, Y., Chu, H., Classen, A. T., Zhao, K., Chen, L., Shi, Y., Jiang, Y., He, J., 2015. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nat. Commun., 6(1), 8159.

[31]

Kigel, J., Konsens, I., Segev, U., Sternberg, M., 2021. Temporal stability of biomass in annual plant communities is driven by species diversity and asynchrony, but not dominance. J. Veg. Sci., 32(2), e13012.

[32]

Knapp, A. K., Smith, M. D., 2001. Variation among biomes in temporal dynamics of aboveground primary production. Science 291(5503), 481-484.

[33]

Lehman, C. L., Tilman, D., 2000. Biodiversity, stability, and productivity in competitive communities. Am. Nat., 156(5), 534-552.

[34]

Li, S., Sun, J., Zhou, T., Zhao, M., Cong, N., Zhang, L., 2021. Biologic and abiotic factors regulate dissolved organic nitrogen with low and high nutrient concentrations on Tibetan Plateau, respectively. Front. Environ. Sci., 9, 702713.

[35]

Liu, B., Sun, J., Liu, M., Zeng, T., Zhu, J., 2019. The aridity index governs the variation of vegetation characteristics in alpine grassland, Northern Tibet Plateau. PeerJ 7, e7272.

[36]

Liu, M., Zhang, Z., Sun, J., Wang, Y., Wang, J., Tsunekawa, A., Yibeltal, M., Xu, M., Chen, Y., 2020. One-year grazing exclusion remarkably restores degraded alpine meadow at Zoige, eastern Tibetan Plateau. Glob. Ecol. Conserv., 22, e00951.

[37]

Loreau, M., 2000. Biodiversity and ecosystem functioning: recent theoretical advances. Oikos 91(1), 3-17.

[38]

Loreau, M., 2010. Linking biodiversity and ecosystems: towards a unifying ecological theory. Philos. Trans. R. Soc. B: Biol. Sci., 365(1537), 49-60.

[39]

Loreau, M., de Mazancourt, C., 2013. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett., 16, 106-115.

[40]

Loreau, M., Hector, A., 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412(6842), 72-76.

[41]

Meyer, S. T., Ptacnik, R., Hillebrand, H., Bessler, H., Buchmann, N., Ebeling, A., Eisenhauer, N., Engels, C., Fischer, M., Halle, S., Klein, A., Oelmann, Y., Roscher, C., Rottstock, T., Scherber, C., Scheu, S., Schmid, B., Schulze, E., Temperton, V. M., Tscharntke, T., Voigt, W., Weigelt, A., Wilcke, W., Weisser, W. W., 2018. Biodiversity–multifunctionality relationships depend on identity and number of measured functions. Nat. Ecol. Evol., 2(1), 44-49.

[42]

Ma, Y., Tian, L., Qu, G., Li, R., Wang, W., Zhao, J., 2022. Precipitation alters the effects of temperature on the ecosystem multifunctionality in alpine meadows. Front. Plant Sci., 12, 824296.

[43]

Ma, Z., Liu, H., Mi, Z., Zhang, Z., Wang, Y., Xu, W., Jiang, L., He, J., 2017. Climate warming reduces the temporal stability of plant community biomass production. Nat. Commun., 8(1), 15378.

[44]

Maestre, F. T., Quero, J. L., Gotelli, N. J., Escudero, A., Ochoa, V., Delgado-Baquerizo, M., García-Gómez, M., Bowker, M. A., Soliveres, S., Escolar, C., García-Palacios, P., Berdugo, M., Valencia, E., Gozalo, B., Gallardo, A., Aguilera, L., Arredondo, T., Blones, J., Boeken, B., Bran, D., Conceição, A. A., Cabrera, O., Chaieb, M., Derak, M., Eldridge, D. J., Espinosa, C. I., Florentino, A., Gaitán, J., Gatica, M. G., Ghiloufi, W., Gómez-González, S., Gutiérrez, J. R., Hernández, R. M., Huang, X., Huber-Sannwald, E., Jankju, M., Miriti, M., Monerris, J., Mau, R. L., Morici, E., Naseri, K., Ospina, A., Polo, V., Prina, A., Pucheta, E., Ramírez-Collantes, D. A., Romão, R., Tighe, M., Torres-Díaz, C., Val, J., Veiga, J. P., Wang, D., Zaady, E., 2012. Plant species richness and ecosystem multifunctionality in global drylands. Science 335(6065), 214-218.

[45]

May, R. M. 2019. Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton

[46]

Oliver, T. H., Isaac, N. J. B., August, T. A., Woodcock, B. A., Roy, D. B., Bullock, J. M., 2015. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun., 6(1), 10122.

[47]

Pan, Y., Wu, J., Luo, L., Tu, Y., Yu, C., Zhang, X., Miao, Y., Zhao, Y., Yang, J., 2017. Climatic and geographic factors affect ecosystem multifunctionality through biodiversity in the Tibetan alpine grasslands. J. Mt. Sci., 14(8), 1604-1614.

[48]

Qin, X., Sun, J., Wang, X., 2018. Plant coverage is more sensitive than species diversity in indicating the dynamics of the above-ground biomass along a precipitation gradient on the Tibetan Plateau. Ecol. Indic., 84, 507-514.

[49]

Ratcliffe, S., Wirth, C., Jucker, T., van der Plas, F., Scherer-Lorenzen, M., Verheyen, K., Allan, E., Benavides, R., Bruelheide, H., Ohse, B., Paquette, A., Ampoorter, E., Bastias, C. C., Bauhus, J., Bonal, D., Bouriaud, O., Bussotti, F., Carnol, M., Castagneyrol, B., Chećko, E., Dawud, S. M., De Wandeler, H., Domisch, T., Finér, L., Fischer, M., Fotelli, M., Gessler, A., Granier, A., Grossiord, C., Guyot, V., Haase, J., Hättenschwiler, S., Jactel, H., Jaroszewicz, B., Joly, F., Kambach, S., Kolb, S., Koricheva, J., Liebersgesell, M., Milligan, H., Müller, S., Muys, B., Nguyen, D., Nock, C., Pollastrini, M., Purschke, O., Radoglou, K., Raulund-Rasmussen, K., Roger, F., Ruiz-Benito, P., Seidl, R., Selvi, F., Seiferling, I., Stenlid, J., Valladares, F., Vesterda, L., Baeten, L., 2017. Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecol. Lett., 20(11), 1414-1426.

[50]

Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D., Willis, K. J., 2016. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531(7593), 229-232.

[51]

Shannon, C. E., 1948. A mathematical theory of communication. Bell Syst. Tech. J., 27(3), 379-423.

[52]

Shi, Y., Wang, Y., Ma, Y., Ma, W., Liang, C., Flynn, D. F. B., Schmid, B., Fang, J., He, J., 2013. Field-based observations of regional-scale, temporal variation in net primary production in Tibetan alpine grasslands. Biogeosciences 11(7), 2003-2016.

[53]

Shi, Z., Xu, X., Souza, L., Wilcox, K., Jiang, L., Liang, J., Xia, J., García-Palacios, P., Luo, Y., 2016. Dual mechanisms regulate ecosystem stability under decade-long warming and hay harvest. Nat. Commun., 7(1), 11973.

[54]

Sun, J., Ma, B., Lu, X., 2018. Grazing enhances soil nutrient effects: trade-offs between aboveground and belowground biomass in alpine grasslands of the Tibetan Plateau. Land Degrad. Dev., 29(2), 337-348.

[55]

Sun, J., Wang, Y., Lee, T. M., Nie, X., Wang, T., Liang, E., Wang, Y., Zhang, L., Wang, J., Piao, S., Chen, F., Fu, B., 2024. Nature-based solutions can help restore degraded grasslands and increase carbon sequestration in the Tibetan Plateau. Commun. Earth Environ., 5(1), 154.

[56]

Sun, J., Zhou, T., Liu, M., Chen, Y., Liu, G., Xu, M., Shi, P., Peng, F., Tsunekawa, A., Liu, Y., Wang, X., Dong, S., Zhang, Y., Li, Y., 2020. Water and heat availability are drivers of the aboveground plant carbon accumulation rate in alpine grasslands on the Tibetan Plateau. Glob. Ecol. Biogeogr., 29(1), 50-64.

[57]

Thibaut, L. M., Connolly, S. R., 2013. Understanding diversity–stability relationships: towards a unified model of portfolio effects. Ecol. Lett., 16(2), 140-150.

[58]

Tilman, D., Downing, J. A., 1994. Biodiversity and stability in grasslands. Nature 367(6461), 363-365.

[59]

Tilman, D., Lehman, C. L., Bristow, C. E., 1998. Diversity-stability relationships: statistical inevitability or ecological consequence?. Am. Nat., 151(3), 277-282.

[60]

Tilman, D., 1999. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80(5), 1455-1474.

[61]

Tilman, D., Isbell, F., Cowles, J. M., 2014. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst., 45(1), 471-493.

[62]

Tilman, D., Reich, P. B., Knops, J. M. H., 2006. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441(7093), 629-632.

[63]

Vitousek, P. M., Porder, S., Houlton, B. Z., Chadwick, O. A., 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl., 20(1), 5-15.

[64]

Wagg, C., Bender, S. F., Widmer, F., van der Heijden, M. G. A., 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. U.S.A., 111(14), 5266-5270.

[65]

Wang, C., Wei, M., Wu, B., Wang, S., Jiang, K., 2019. Alpine grassland degradation reduced plant species diversity and stability of plant communities in the Northern Tibet Plateau. Acta Oecol., 98, 25-29.

[66]

Wang, Q., Wang, S., Liu, Y., 2008. Responses to N and P fertilization in a young Eucalyptus dunnii plantation: microbial properties, enzyme activities and dissolved organic matter. Appl. Soil Ecol., 3(40), 484-490.

[67]

Wang, Y., Liu, B., Zhao, J., Ye, C., Wei, L., Sun, J., Chu, C., Lee, T. M., 2022. Global patterns and abiotic drivers of ecosystem multifunctionality in dominant natural ecosystems. Environ. Int., 168, 107480.

[68]

Wang, Y., Liu, M., Chen, Y., Zeng, T., Lu, X., Yang, B., Wang, Y., Zhang, L., Nie, X., Xiao, F., Zhang, Z., Sun, J., 2021. Plants and microbes mediate the shift in ecosystem multifunctionality from low to high patterns across alpine grasslands on the Tibetan Plateau. Front. Plant Sci., 12, 760599.

[69]

Wang, Y., Sun, J., Lee, T. M., 2023. Altitude dependence of alpine grassland ecosystem multifunctionality across the Tibetan Plateau. J. Environ. Manage., 332, 117358.

[70]

White, H. J., Caplat, P., Emmerson, M. C., Yearsley, J. M., 2021. Predicting future stability of ecosystem functioning under climate change. Agric. Ecosyst. Environ., 320, 107600.

[71]

Xu, Y., Dong, S., Gao, X., Yang, M., Li, S., Shen, H., Xiao, J., Han, Y., Zhang, J., Li, Y., Zhi, Y., Yang, Y., Liu, S., Dong, Q., Zhou, H., 2021. Aboveground community composition and soil moisture play determining roles in restoring ecosystem multifunctionality of alpine steppe on Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ., 305, 107163.

[72]

Xu, Z., Ren, H., Li, M., van Ruijven, J., Han, X., Wan, S., Li, H., Yu, Q., Jiang, Y., Jiang, L., 2015. Environmental changes drive the temporal stability of semi-arid natural grasslands through altering species asynchrony. J. Ecol., 103(5), 1308-1316.

[73]

Yang, H., Wu, M., Liu, W., Zhang, Z., Zhang, N., Wan, S., 2011. Community structure and composition in response to climate change in a temperate steppe. Glob. Change Biol., 17(1), 452-465.

[74]

Yang, Z., Zhang, Q., Su, F., Zhang, C., Pu, Z., Xia, J., Wan, S., Jiang, L., 2017. Daytime warming lowers community temporal stability by reducing the abundance of dominant, stable species. Glob. Change Biol., 23(1), 154-163.

[75]

Zhang, Y., Loreau, M., He, N., Wang, J., Pan, Q., Bai, Y., Han, X., 2018. Climate variability decreases species richness and community stability in a temperate grassland. Oecologia 188, 183-192.

[76]

Zhou, T., Liu, M., Sun, J., Li, Y., Shi, P., Tsunekawa, A., Zhou, H., Yi, S., Xue, X., 2020. The patterns and mechanisms of precipitation use efficiency in alpine grasslands on the Tibetan Plateau. Agric. Ecosyst. Environ., 292, 106833.

PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

/