Practical paths to halt elevation loss in Vietnamese Mekong Delta

Edward Park , Dung Duc Tran , Philip S.J. Minderhoud , Ryan Clarke , Faith Ka Shun Chan

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) : 100335

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) :100335 DOI: 10.1016/j.geosus.2025.100335
Perspective
review-article

Practical paths to halt elevation loss in Vietnamese Mekong Delta

Author information +
History +
PDF

Abstract

Although the Vietnamese Mekong Delta (VMD) is recognised as one of the world’s most vulnerable deltas, scholars have yet to provide an integrated diagnosis linking locally driven pressures to actionable pathways for halting its rapid elevation loss. The VMD—39,000 km² that feeds 18 million people—is sinking because four pressures act in concert: upstream dams have already cut sediment delivery by 70 %–83 % (projected 96 % if all planned projects proceed), mean sea level is rising 1.5–2 cm/yr, river-bed sand mining now removes about 3 Mm³/yr and deepens channels by up to 15 cm/yr, and groundwater withdrawals of approximately 2.5 Mm³/day have accelerated land-surface subsidence from smaller than 3 cm/yr in 2006–2010 to peaks of 5–6 cm/yr today. Scenario modelling shows that halving pumping would stabilize aquifer heads and cut subsidence by about 50 % within a decade, while provincial sand-quota cuts of 30 %–50 % would slow bed incision and ease salinity intrusion, reducing the irrigation deficits that drive further pumping. While the large-scale causes of subsidence (dams, sea level rise, sand mining, groundwater extraction) are well recognized, actionable, local-level management solutions to immediately slow subsidence and salinity intrusion—independent of slow international negotiations—have been underexplored and under-implemented. Because dam and climate remedies rely on slow transboundary negotiations, we target the more practical local pressures—sand mining and groundwater extraction—by first tightening sand-mining licenses, enforcing tiered groundwater tariffs, and scaling up rain- and surface-water alternatives, buying time for longer-term basin and climate agreements. These locally actionable measures can significantly reduce subsidence and provide a scalable model for sustaining deltas around the world.

Keywords

Elevation loss / Sand mining / Groundwater overextraction / Mekong Delta / Sustainable management

Cite this article

Download citation ▾
Edward Park, Dung Duc Tran, Philip S.J. Minderhoud, Ryan Clarke, Faith Ka Shun Chan. Practical paths to halt elevation loss in Vietnamese Mekong Delta. Geography and Sustainability, 2025, 6(5): 100335 DOI:10.1016/j.geosus.2025.100335

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Edward Park: Writing – review & editing, Writing – original draft, Visualization, Investigation, Conceptualization. Dung Duc Tran: Conceptualization, Writing – review & editing, Writing – original draft, Visualization, Data curation. Philip S.J. Minderhoud: Writing – review & editing, Funding acquisition, Methodology. Ryan Clarke: Writing – review & editing. Faith Ka Shun Chan: Writing – review & editing.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was supported by various grants from the Ministry of Education, Singapore, under its Academic Research #Tier 1 [RG 142/22], #Tier 2 [MOE-T2EP50222-0007], #Tier 3 Climate Transformation Programme[MOET32022-0006], NIE AcRF - RI 10/22 EP, NIE AcRF - RI 9/24 EP and the Earth Observatory of Singapore (EOS) via its funding from the National Research Foundation Singapore and the Singapore Ministry of Education under the Research Centres of Excellence initiative. This work comprises EOS Contribution number 660. PSJM is supported by the Netherlands Science Foundation (NWO) Drowning Deltas project (NWO-Veni-TTW-2022 No 20231). Any opinions, findings, conclusions, or recommendations expressed in this research are those of the authors and do not reflect the views of the Ministry of Education, Singapore.

References

[1]

Akanwa, A. O., 2021. River sand mining and its ecological footprint at Odor River, Nigeria. A. Banerjee, R.S. Meena, M.K. Jhariya, D.K. Yadav (Eds.), Agroecological Footprints Management for Sustainable Food System, Springer, Singapore, pp. 473-514. doi: 10.1007/978-981-15-9496-0_16.

[2]

Ang, W. J., Park, E., Pokhrel, Y., Tran, D. D., Loc, H. H., 2024. Dams in the Mekong: a comprehensive database, spatiotemporal distribution, and hydropower potentials. Earth Syst. Sci. Data, 16 (3), pp. 1209-1228. doi: 10.5194/essd-16-1209-2024.

[3]

Asian Development Bank 2021 Asian Development Bank. Asian economic integration report 2021: making digital platforms work for Aisa and the Pacific. Asian Development Bank.. doi: 10.22617/TCS210048-2.

[4]

Bhatawdekar, R. M., Singh, T. N., Tonnizam Mohamad, E., Armaghani, D. J., Binti Abang Hasbollah, D. Z. 2021. River sand mining vis a vis manufactured sand for sustainability. X.-N. Bui, C. Lee, C. Drebenstedt (Eds.), Proceedings of the International Conference on Innovations for Sustainable and Responsible Mining, Springer International Publishing, Cham, pp.143-169.

[5]

Binh, D. V., Kantoush, S. A., Sumi, T., Mai, N. P., Ngoc, T. A., Trung, L. V., An, T. D., 2021. Effects of riverbed incision on the hydrology of the Vietnamese Mekong Delta. Hydrol. Process., 35 (2), Article e14030. doi: 10.1002/hyp.14030.

[6]

Brunier, G., Anthony, E. J., Goichot, M., Provansal, M., Dussouillez, P., 2014. Recent morphological changes in the Mekong and Bassac river channels, Mekong delta: the marked impact of river-bed mining and implications for delta destabilisation. Geomorphology, 224, pp. 177-191. doi: 10.1016/j.geomorph.2014.07.009.

[7]

Bui, T. V., Dang, T. L., Le, T. M. V. 2015. Groundwater issues and hydrogeological survey of the Mekong River basin in Vietnam. Current Status and Issues of Groundwater in the Mekong River Basin, KIGAM, CCOP and UNESCO, pp.93-121.

[8]

Da, S., Le Billon, P., 2022. Sand mining: stopping the grind of unregulated supply chains. Extr. Ind. Soc., 10, Article 101070. doi: 10.1016/j.exis.2022.101070.

[9]

Daham, A., Sambrook Smith, G. H., Nicholas, A. P., Gasparotto, A., Clark, J., Yasmin, T., 2024. Sand mining across the Ganges–Brahmaputra–Meghna Catchment; assessment of activity and implications for sediment delivery. Environ. Res. Lett., 19, Article 84030. doi: 10.1088/1748-9326/ad6016.

[10]

de Wit, K., Lexmond, B. R., Stouthamer, E., Neussner, O., Dörr, N., Schenk, A., Minderhoud, P. S. J., 2021. Identifying causes of urban differential subsidence in the Vietnamese Mekong Delta by combining InSAR and field observations. Remote Sens., 13 (2), p. 189. doi: 10.3390/rs13020189.

[11]

Dörr, N., Schenk, A., Hinz, S., 2024. 17, pp. 12077-12091. doi: 10.1109/JSTARS.2024.3420130.

[12]

Dung, D. T., van Halsema, G., Hellegers, P. J. G. J., Phi Hoang, L., Quang Tran, T., Kummu, M., Ludwig, F., 2018. Assessing impacts of dike construction on the flood dynamics in the Mekong Delta. Hydrol. Earth Syst. Sci., 22, pp. 1875-1896. doi: 10.5194/hess-22-1875-2018.

[13]

Dunn, F. E., Minderhoud, P. S. J., 2022. Sedimentation strategies provide effective but limited mitigation of relative sea-level rise in the Mekong delta. Commun. Earth Environ., 3, 2. doi: 10.1038/s43247-021-00331-3.

[14]

Erban, L. E., Gorelick, S. M., Zebker, H. A., 2014. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environ. Res. Lett., 9, Article 84010. doi: 10.1088/1748-9326/9/8/084010.

[15]

Erban, L. E., Gorelick, S. M., Zebker, H. A., Fendorf, S., 2013. Release of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land subsidence. Proc. Natl. Acad. Sci. U.S.A., 110, pp. 13751-13756. doi: 10.1073/pnas.1300503110.

[16]

Eslami, S., Hoekstra, P., Kernkamp, H. W. J., Nguyen Trung, N., Do Duc, D., Nguyen Nghia, H., Tran Quang, T., Van Dam, A., Darby, S. E., Parsons, D. R., Vasilopoulos, G., Braat, L., Van Der Vegt, M. 2021b Dynamics of salt intrusion in the Mekong Delta: results of field observations and integrated coastal-inland modelling. Earth Surf. Dyn., 9 (2021), pp. 953-976. doi: 10.5194/esurf-9-953-2021.

[17]

Eslami, S., Hoekstra, P., Minderhoud, P.S.J., Trung, N.N., Hoch, J.M., Sutanudjaja, E.H., Dung, D.D., Tho, T.Q., Voepel, H.E., Woillez, M.-N., van der Vegt, M., 2021a. Projections of salt intrusion in a mega-delta under climatic and anthropogenic stressors. Commun. Earth Environ. 2, 142. doi: 10.1038/s43247- 021- 00208- 5.

[18]

Eslami, S., Hoekstra, P., Nguyen Trung, N., Ahmed Kantoush, S., Van Binh, D., Duc Dung, D., Tran Quang, T., van der Vegt, M., 2019. Tidal amplification and salt intrusion in the Mekong Delta driven by anthropogenic sediment starvation. Sci. Rep., 9, Article 18746. doi: 10.1038/s41598-019-55018-9.

[19]

FAME 2024. Freshwater availability in Mekong Delta project. https://www.deltares.nl/en/expertise/projects/freshwater-availability-mekong-delta-fame

[20]

Gejl, R. N., Bjerg, P. L., Henriksen, H. J., Bitsch, K., Troldborg, L., Schullehner, J., Rasmussen, J., Rygaard, M., 2020. Relating wellfield drawdown and water quality to aquifer sustainability – a method for assessing safe groundwater abstraction. Ecol. Indic., 110, Article 105782. doi: 10.1016/j.ecolind.2019.105782.

[21]

Government of Vietnam 2022. Decree No. 06/2022/ND-CP. Deputy Prime Minist

[22]

Government of Vietnam 2018. Decree No. 167/2018/ND-CP

[23]

Gruel, C-R., Park, E., Switzer, A. D., Kumar, S., Loc Ho, H., Kantoush, S., Van Binh, D., Feng, L., 2022. New systematically measured sand mining budget for the Mekong Delta reveals rising trends and significant volume underestimations. Int. J. Appl. Earth Obs. Geoinf., 108, Article 102736. doi: 10.1016/j.jag.2022.102736.

[24]

Gugliotta, M., Saito, Y., Ta, T. K. O., Nguyen, V. L., Uehara, K., Tamura, T., Nakashima, R., Lieu, K. P., 2020. Sediment distribution along the fluvial to marine transition zone of the Dong Nai River System, southern Vietnam. Mar. Geol., 429, Article 106314. doi: 10.1016/j.margeo.2020.106314.

[25]

Ha, Q. K., Kim, K., Phan, N. L., Phung, T. H., Lee, J., Nguyen, V. K., Phan, C. N., 2019. A hydrogeological and geochemical review of groundwater issues in southern Vietnam. Geosci. J., 23, pp. 1005-1023. doi: 10.1007/s12303-019-0021-z.

[26]

Ha, Q. K., Phung, T. H., Phan, N. L., Pham, V. T., Pham, V. H., Minderhoud, P. S. J., Le Vo, P., Oude Essink, G., 2024. Ecohydrology from Catchment to Coast, Elsevier, pp. 421-451. doi: 10.1016/B978-0-323-90814-6.00006-1.

[27]

Ha, T. P., Dieperink, C., Dang Tri, V. P., Otter, H. S., Hoekstra, P., 2018. Governance conditions for adaptive freshwater management in the Vietnamese Mekong Delta. J. Hydrol., 557, pp. 116-127. doi: 10.1016/j.jhydrol.2017.12.024.

[28]

Hackney, C. R., Darby, S. E., Parsons, D. R., Leyland, J., Best, J. L., Aalto, R., Nicholas, A. P., Houseago, R. C., 2020. River bank instability from unsustainable sand mining in the lower Mekong River. Nat. Sustain., 3, pp. 217-225. doi: 10.1038/s41893-019-0455-3.

[29]

Hamer, T., Dieperink, C., Tri, V. P. D., Otter, H. S., Hoekstra, P., 2019. The rationality of groundwater governance in the Vietnamese Mekong Delta’s coastal zone. Int. J. Water Resour. Dev., 36, pp. 127-148. doi: 10.1080/07900627.2019.1618247.

[30]

Herrera-García, G., Ezquerro, P., Tomás, R., Béjar-Pizarro, M., López-Vinielles, J., Rossi, M., Mateos, R. M., Carreón-Freyre, D., Lambert, J., Teatini, P., Cabral-Cano, E., Erkens, G., Galloway, D, W-Hung, C., Kakar, N., Sneed, M., Tosi, L., Wang, H., Ye, S., 2021. Mapping the global threat of land subsidence. Science, 371, pp. 34-36. doi: 10.1126/science.abb8549.

[31]

Hübler, M., Pothen, F., 2021. Can smart policies solve the sand mining problem?. PLoS One 16, e0248882.

[32]

Hung, W-C., Wang, C., Hwang, C, Y-Chen, A, H-Chiu, C, S-Lin, H., 2015. Multiple sensors applied to monitorland subsidence in Central Taiwan. Proc. Int. Assoc. Hydrol. Sci., 372, pp. 385-391. doi: 10.5194/piahs-372-385-2015.

[33]

IPCC 2022. Climate change 2022: impacts, adaptation and vulnerability. IPCC

[34]

Karlsrud, K., Tunbridge, L., Quoc Khanh, N., Quoc Dinh, N., 2020. Preliminary results of land subsidence monitoring in the Ca Mau Province. Proc. Int. Assoc. Hydrol. Sci., 382, pp. 111-115. doi: 10.5194/piahs-382-111-2020.

[35]

Koehnken, L., Rintoul, M. S., Goichot, M., Tickner, D, A-Loftus, C., Acreman, M. C., 2020. Impacts of riverine sand mining on freshwater ecosystems: a review of the scientific evidence and guidance for future research. River. Res. Appl., 36, pp. 362-370. doi: 10.1002/rra.3586.

[36]

Kondolf, G. M., Rubin, Z. K., Minear, J. T., 2014. Dams on the Mekong: cumulative sediment starvation. Water Resour. Res., 50, pp. 5158-5169. doi: 10.1002/2013WR014651.

[37]

Kondolf, G. M., Schmitt, R. J. P., Carling, P., Darby, S., Arias, M., Bizzi, S., Castelletti, A., Cochrane, T. A., Gibson, S., Kummu, M., Oeurng, C., Rubin, Z., Wild, T., 2018. Changing sediment budget of the Mekong: cumulative threats and management strategies for a large river basin. Sci. Total Environ., 625, pp. 114-134. doi: 10.1016/j.scitotenv.2017.11.361.

[38]

Kondolf, G. M., Schmitt, R. J. P., Carling, P. A., Goichot, M., Keskinen, M., Arias, M. E., Bizzi, S., Castelletti, A., Cochrane, T. A., Darby, S. E., Kummu, M., Minderhoud, P. S. J., Nguyen, D., Nguyen, H. T., Nguyen, N. T., Oeurng, C., Opperman, J., Rubin, Z., San, D. C., Schmeier, S., Wild, T., 2022. Save the Mekong Delta from drowning. Science, 376, pp. 583-585. doi: 10.1126/science.abm5176.

[39]

Kumar, A., Pratheba, S., Rajendran, R., Perumal, K., Lingeshwaran, N., Sambaraju, S., 2020. An experimental study on the mechanical properties of concrete replacing sand with quarry dust and waste foundry sand. Mater. Today Proc., 33, pp. 828-832. doi: 10.1016/j.matpr.2020.06.271.

[40]

Kumar, S., Park, E., Tran, D. D., Wang, J., Ho, L. H., Feng, L., Kantoush, S., Li, D., Switzer, A. D., 2023. A deep learning framework to map riverbed sand mining budgets in large tropical deltas. GISci. Remote Sens., 61 (1), Article 2285178. doi: 10.1080/15481603.2023.2285178.

[41]

Lau, R. Y. S., Park, E., Tran, D. D., Wang, J., 2023. Recent intensification of riverbed mining in the Mekong Delta revealed by extensive bathymetric surveying. J. Hydrol., 626, Article 130174. doi: 10.1016/j.jhydrol.2023.130174.

[42]

Liu, Z, P-Liu, W., Massoud, E., Farr, T. G., Lundgren, P., Famiglietti, J. S., 2019. Monitoring groundwater change in California’s Central Valley using Sentinel-1 and GRACE observations. Geosciences, 9 (10), p. 436. doi: 10.3390/geosciences9100436.

[43]

Loc, H. H., Low Lixian, M., Park, E., Dung, T. D., Shrestha, S, Y-Yoon, J. 2021. How the saline water intrusion has reshaped the agricultural landscape of the Vietnamese Mekong Delta, a review. Sci. Total Environ., 794, Article 148651. doi: 10.1016/j.scitotenv.2021.148651.

[44]

Loc, H. H., Park, E., Thu, T. N., Diep, N. T. H., Can, N. T. 2021a An enhanced analytical framework of participatory GIS for ecosystem services assessment applied to a Ramsar wetland site in the Vietnam Mekong Delta. Ecosyst. Serv., 48 (2021), Article 101245. doi: 10.1016/j.ecoser.2021.101245.

[45]

Loc, H. H., Van Binh, D., Park, E., Shrestha, S., Dung, T. D., Son, V. H., Truc, N. H. T., Mai, N. P., Seijger, C. 2021c Intensifying saline water intrusion and drought in the Mekong Delta: from physical evidence to policy outlooks. Sci. Total Environ., 757, Article 143919. doi: 10.1016/j.scitotenv.2020.143919.

[46]

Lundsgaarde, E., Keijzer, N., 2019. Development cooperation in a multilevel and multistakeholder setting: from planning towards enabling coordinated action?. Eur. J. Dev. Res., 31, pp. 215-234. doi: 10.1057/s41287-018-0143-6.

[47]

Luu, T., Voorintholt, D., Minkman, E., Nguyen, T. B., Gverdtsiteli, G., Linh, T. C., Nguyen, H. Q., 2022. Mismatches between policy planning and implementation on the actively living with flood approach in the Vietnamese Mekong Delta. Water Int., 47, pp. 297-320. doi: 10.1080/02508060.2022.2043015.

[48]

Mekong River Commission 2019. Annual Report 2019. Mekong River Commission

[49]

Minderhoud, P. S. J., 2019. The sinking mega-delta: present and future subsidence of the Vietnamese Mekong Delta. PH.D. thesis, Utretch University, Utrecht

[50]

Minderhoud, P. S. J., Coumou, L., Erban, L. E., Middelkoop, H., Stouthamer, E., Addink, E. A., 2018. The relation between land use and subsidence in the Vietnamese Mekong Delta. Sci. Total Environ., 634, pp. 715-726. doi: 10.1016/j.scitotenv.2018.03.372.

[51]

Minderhoud, P. S. J., Coumou, L., Erkens, G., Middelkoop, H., Stouthamer, E., 2019. Mekong delta much lower than previously assumed in sea-level rise impact assessments. Nat. Commun., 10, p. 3847. doi: 10.1038/s41467-019-11602-1.

[52]

Minderhoud, P. S. J., Erkens, G., Pham, V. H., Bui, V. T., Erban, L., Kooi, H., Stouthamer, E., 2017. Impacts of 25 years of groundwater extraction on subsidence in the Mekong Delta, Vietnam. Environ. Res. Lett., 12, 64006.

[53]

Minderhoud, P. S. J., Middelkoop, H., Erkens, G., Stouthamer, E., 2020. Groundwater extraction may drown mega-delta: projections of extraction-induced subsidence and elevation of the Mekong Delta for the 21st century. Environ. Res. Commun., 2, Article 11005. doi: 10.1088/2515-7620/ab5e21.

[54]

Minkman, E., Nguyen, H. Q., Luu, T., Dang, K. K., Nguyen, S. L., Du, H., Huizer, T., Rijke, J., 2022. From national vision to implementation: governance challenges in sustainable agriculture transitions in the Vietnamese Mekong Delta region. Reg. Environ. Chang., 22, p. 35. doi: 10.1007/s10113-022-01898-z.

[55]

Molle, F., Closas, A., 2020. Groundwater licensing and its challenges. Hydrogeol. J., 28, pp. 1961-1974. doi: 10.1007/s10040-020-02179-x.

[56]

Ministry of Natural Resources and Environment (MONRE), 2015. Cicular No. 27/2015/TTBTNMT. Vietnam Government. https://vanban.chinhphu.vn/default.aspx?pageid= 27160&docid=180408.

[57]

Mekong River Commission (MRC), 1995. Agreement on the cooperation for the sustainabledevelopment of the Mekong River Basin. MRC.

[58]

Ministry of Natural Resources and Environment (MONRE), 2020. Climate change and sealevel rise scenarios for Viet Nam, National Report. http://vnmha.gov.vn/upload/files/kich-ban-bien-doi-khi-hau-phien-ban-cap-nhat-nam-2020.pdf.

[59]

Muthusamy, K., Rasid, M. H., Jokhio, G. A., Mokhtar Albshir Budiea, A., Hussin, M. W., Mirza, J., 2020. Coal bottom ash as sand replacement in concrete: a review. Constr. Build. Mater., 236, Article 117507. doi: 10.1016/j.conbuildmat.2019.117507.

[60]

National Assembly of Vietnam 2018. Amendment of law on minerals No. 20/VBHN-VPQH

[61]

Ministry of, Natural, Resources and, Environment (MONR), E.The second biennial updated report of Vietnam to the United Nations Framework Convention on Climate Change.Ha, Noi.

[62]

National Assembly of Vietnam, 2012. Law of Water Resources No. 17/2012/QH13 . https://thuvienphapluat.vn/van-ban/Tai-nguyen-Moi-truong/Luat-tai-nguyen-nuoc-2012-142767.aspx (accessed 21June 2012).

[63]

Nguyen, H.Q., Tran, D.D., Luan, P.D.M.H., Ho, L.H., Loan, V.T.K., Anh Ngoc, P.T., Quang, N.D., Wyatt, A., Sea, W., 2020a. Socio-ecological resilience of mangroveshrimp models under various threats exacerbated from salinity intrusion in coastal area of the Vietnamese Mekong Delta. Int. J. Sustain. Dev. World Ecol. 27 (7), 638–651. doi: 10.1080/13504509.2020.1731859.

[64]

Nguyen, M. N., Nguyen, P. T. B., Van, T. P. D., Phan, V. H., Nguyen, B. T., Pham, V. T., Nguyen, T. H., 2021. An understanding of water governance systems in responding to extreme droughts in the Vietnamese Mekong Delta. Int. J. Water Resour. Dev., 37, pp. 256-277. doi: 10.1080/07900627.2020.1753500.

[65]

Nguyen, M.N., Nguyen, P.T.B., Van, T.P.D., Phan, V.H., Nguyen, B.T., Pham, V.T., Nguyen, T.H., 2021. An understanding of water governance systems in responding to extreme droughts in the Vietnamese Mekong Delta. Int. J. Water Resour. Dev. 37, 256–277. doi: 10.1080/07900627.2020.1753500.

[66]

OBrien, J. 2022. Tackling the Asian sand crisis–a case study in applying GAIN™ best practices in Viet Nam’s Mekong Delta. A.K. Verma, E.T. Mohamad, R.M. Bhatawdekar, A.K. Raina, M. Khandelwal, D. Armaghani, K. Sarkar (Eds.), Proceedings of Geotechnical Challenges in Mining, Tunneling and Underground Infrastructures, Springer Nature Singapore, Singapore, pp.537-549.

[67]

Park, E., 2024. Sand mining in the Mekong Delta: extent and compounded impacts. Sci. Total Environ., 924, Article 171620. doi: 10.1016/j.scitotenv.2024.171620.

[68]

Park, E., Ho, H. L., Tran, D. D., Yang, X., Alcantara, E., Merino, E., Son, V. H., 2020. Dramatic decrease of flood frequency in the Mekong Delta due to river-bed mining and dyke construction. Sci. Total Environ., 723, Article 138066. doi: 10.1016/j.scitotenv.2020.138066.

[69]

Park, E., Loc, H. H., Van Binh, D., Kantoush, S., 2022. The worst 2020 saline water intrusion disaster of the past century in the Mekong Delta: impacts, causes, and management implications. Ambio, 51, pp. 691-699. doi: 10.1007/s13280-021-01577-z.

[70]

Rajasekhar, M., Gadhiraju, S. R., Kadam, A., Bhagat, V., 2020. Identification of groundwater recharge-based potential rainwater harvesting sites for sustainable development of a semiarid region of southern India using geospatial, AHP, and SCS-CN approach. Arab. J. Geosci., 13, p. 24. doi: 10.1007/s12517-019-4996-6.

[71]

Ramis Ferrer, B., Mohammed, W. M., Ahmad, M., Iarovyi, S., Zhang, J., Harrison, R., Martinez Lastra, J. L., 2021. Martinez Lastra. Comparing ontologies and databases: a critical review of lifecycle engineering models in manufacturing. Knowl. Inf. Syst., 63, pp. 1271-1304. doi: 10.1007/s10115-021-01558-4.

[72]

Raspini, F., Caleca, F., Del Soldato, M., Festa, D., Confuorto, P., Bianchini, S., 2022. Review of satellite radar interferometry for subsidence analysis. Earth-Sci. Rev., 235, Article 104239. doi: 10.1016/j.earscirev.2022.104239.

[73]

Rentschler, J., de Vries Robbé, S., Braese, J., Nguyen, D. H., van Ledden, M., Pozueta Mayo, B., 2020. Resilient Shores: Vietnam’s Coastal Development Between Opportunity and Disaster Risk. World Bank, Washington, D.C

[74]

Kinna, R., Rieu-Clarke, A., 2017. The Governance Regime of the Mekong River Basin: Can the Global Water Conventions Strengthen the 1995 Mekong Agreement?. Brill

[75]

Saqr, A. M., Ibrahim, M. G., Fujii, M., Nasr, M., 2021. Sustainable Development Goals (SDGs) associated with groundwater over-exploitation vulnerability: geographic information system-based multi-criteria decision analysis. Nat. Resour. Res., 30, pp. 4255-4276. doi: 10.1007/s11053-021-09945-y.

[76]

Sayed, E. T., Olabi, A. G., Elsaid, K., Al Radi, M., Alqadi, R., Ali Abdelkareem, M., 2023. Recent progress in renewable energy based-desalination in the Middle East and North Africa MENA region. J. Adv. Res., 48, pp. 125-156. doi: 10.1016/j.jare.2022.08.016.

[77]

Schmitt, R. J. P., Bizzi, S., Castelletti, A., Opperman, J. J., Kondolf, G. M., 2019. Planning dam portfolios for low sediment trapping shows limits for sustainable hydropower in the Mekong. Sci. Adv., 5, p. eaaw2175. doi: 10.1126/sciadv.aaw2175.

[78]

Schmitt, R. J. P., Minderhoud, P. S. J., 2023. Data, knowledge, and modeling challenges for science-informed management of river deltas. One Earth, 6, pp. 216-235. doi: 10.1016/j.oneear.2023.02.010.

[79]

Shirzaei, M., Freymueller, J., Törnqvist, T. E., Galloway, D. L., Dura, T., Minderhoud, P. S. J., 2021. Measuring, modelling and projecting coastal land subsidence. Nat. Rev. Earth. Environ., 2, pp. 40-58. doi: 10.1038/s43017-020-00115-x.

[80]

Shrestha, S., Bach, T. V., Pandey, V. P., 2016. Climate change impacts on groundwater resources in Mekong Delta under representative concentration pathways (RCPs) scenarios. Environ. Sci. Policy, 61, pp. 1-13. doi: 10.1016/j.envsci.2016.03.010.

[81]

Skevas, T., 2020. Evaluating alternative policies to reduce pesticide groundwater pollution in Dutch arable farming. J. Environ. Plan. Manag., 63, pp. 733-750. doi: 10.1080/09640568.2019.1606618.

[82]

Smajgl, A., Toan, T. Q., Tran, V. B., 2023. 119-146. doi: 10.1007/978-3-031-16648-8_6.

[83]

Ta Bui, L., Nguyen, P. H., 2023. Assessment of rice yield and economic losses caused by ground-level O3 exposure in the Mekong Delta region, Vietnam. Heliyon, 9, Article e17883. doi: 10.1016/j.heliyon.2023.e17883.

[84]

Tran, D. D., Dang, M. M., Du Duong, B., Sea, W., Vo, T. T., 2021. Livelihood vulnerability and adaptability of coastal communities to extreme drought and salinity intrusion in the Vietnamese Mekong Delta. Int. J. Disaster Risk Reduct., 57, Article 102183. doi: 10.1016/j.ijdrr.2021.102183.

[85]

Tran, D. D., Park, E., Wang, J., Loc, H. H., Lee, J., Zhan, S., Kantoush, S. A., 2025. Environmental pressures on livelihood transformation in the Vietnamese Mekong Delta: implications and adaptive pathways. J. Environ. Manage., 377, Article 124597. doi: 10.1016/j.jenvman.2025.124597.

[86]

Tran, D. D., Thien, N. D., Yuen, K. W., Lau, R. Y. S., Wang, J., Park, E., 2023. Uncovering the lack of awareness of sand mining impacts on riverbank erosion among Mekong Delta residents: insights from a comprehensive survey. Sci. Rep., 13, Article 15937. doi: 10.1038/s41598-023-43114-w.

[87]

Tran, D. D., van Halsema, G., Hellegers, P. J. G. J., Hoang, L. P., Ludwig, F., 2019. Long-term sustainability of the Vietnamese Mekong Delta in question: an economic assessment of water management alternatives. Agric. Water Manage., 223, Article 105703. doi: 10.1016/j.agwat.2019.105703.

[88]

Tran, T. A., Pittock, J., Tran, D. D., 2020. Adaptive flood governance in the Vietnamese Mekong Delta: a policy innovation of the North Vam Nao scheme, an Giang Province. Environ. Sci. Policy, 108, pp. 45-55. doi: 10.1016/j.envsci.2020.03.004.

[89]

Tri, V. P. D., Trung, P. K., Trong, T. M., Parsons, D. R., Darby, S. E., 2022. Assessing social vulnerability to riverbank erosion across the Vietnamese Mekong Delta. Int. J. River Basin Manag., 21 (3), pp. 501-512. doi: 10.1080/15715124.2021.2021926.

[90]

Triet, N. V. K., Dung, N. V., Hoang, L. P., Le Duy, N., Tran, D. D., Anh, T. T., Kummu, M., Merz, B., Apel, H., 2020. Future projections of flood dynamics in the Vietnamese Mekong Delta. Sci. Total Environ., 742, Article 140596. doi: 10.1016/j.scitotenv.2020.140596.

[91]

P4G, 2024. Renewable powered drinking water supply for Mekong Delta Vietnam. P4G.

[92]

Tuyen, L.D., 2023. Mekong Delta pays a high price from sand mining. https://www.mekongeye.com/2023/05/01/mekong-delta-sand-mining/

[93]

Verduijn, E. S., 2020. Exploration of the effects of aquifer storage and recovery solutions on the water quality and quantity in a sandy ridge system in Ben Tre, Vietnamese Mekong Delta. M.S. thesis, Utrecht University, Utrecht

[94]

Vinh, D. H., Tran, D. D., Cham, D. D., Hang, P. T., Man, D. B., Mon, D., Hai Tung, L., Kiem, L. V., Nguyen, T. D., Tuyen, D. T., 2024. Integrated exploitation of rainwater and groundwater: a strategy for water self-sufficiency in Ca Mau Province of the Mekong Delta. Hydrology, 11 (4), p. 55. doi: 10.3390/hydrology11040055.

[95]

Vo, H., Huynh, L., Tamás, P., Minderhoud, P, M-Woillez, N., Espagne, E., Umans, L. 2022. Adaptation strategies in the Delta: are they consistent with current and future changes. The Mekong Delta Emergency, Climate and Environmental Adaptation Strategies to 2050, Agence Française de Développement, pp.14-49.

[96]

Yuen, K.W., Das, D., Tran, D.D., Park, E., 2024a. Southeast Asia’s dynamic sand trade and the need for better data. Extr. Ind. Soc. 18, 101452. doi: 10.1016/j.exis.2024.101452.

[97]

Yuen, K.W., Park, E., Tran, D.D., Loc, H.H., Feng, L., Wang, J., Gruel, C.-R., Switzer, A.D., 2024b. Extent of illegal sand mining in the Mekong Delta. Commun. Earth Environ. 5, 31. doi: 10.1038/s43247- 023- 01161- 1.

[98]

Zoccarato, C., Minderhoud, P. S. J., Teatini, P., 2018. The role of sedimentation and natural compaction in a prograding delta: insights from the mega Mekong Delta, Vietnam. Sci. Rep., 8, Article 11437. doi: 10.1038/s41598-018-29734-7.

PDF

276

Accesses

0

Citation

Detail

Sections
Recommended

/