Global patterns and determinants of erosion-induced soil carbon translocation

Fangli Wei , Lanhui Wang , Lizhi Jia , Yuanyuan Huang

Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) : 100328

PDF
Geography and Sustainability ›› 2025, Vol. 6 ›› Issue (5) :100328 DOI: 10.1016/j.geosus.2025.100328
Research Article
review-article

Global patterns and determinants of erosion-induced soil carbon translocation

Author information +
History +
PDF

Abstract

Soil erosion is a critical process influencing the global carbon cycle. However, erosion-induced carbon changes remain inadequately understood, particularly for soil inorganic carbon (SIC). There is also limited knowledge about the factors influencing soil carbon dynamics during erosion processes. Here we quantify the global translocation of soil organic carbon (SOC) and SIC due to soil erosion using data-driven global soil carbon estimates combined with a soil erosion map derived from the Revised Universal Soil Loss Equation (RUSLE) model. Our analysis reveals that global SIC and SOC translocations from soil erosion are 107.1 Tg C yr−1 and 898.4 Tg C yr−1, respectively. These translocations exhibit distinct patterns across aridity gradients and different biomes and soil types, with SIC translocation increasing while SOC translocation decreasing with aridity. Croplands exhibit significantly higher soil carbon translocation compared to natural vegetation, with SIC translocation being 2.41 times higher and SOC translocation 0.65 times higher than in forests. Topographic features (slope length and steepness) predominantly determine soil carbon translocation during erosion, with steeper and longer slopes exacerbating erosion and subsequent SIC/SOC translocation. Land use change, particularly agricultural practices, is also a critical driver. Our findings provide valuable insights into the factors influencing SIC and SOC translocation, enhancing our understanding of the global patterns and determinants of erosion-induced soil carbon dynamics.

Keywords

Soil organic carbon / Soil inorganic carbon / Soil erosion / Soil carbon translocation / Soil carbon loss

Cite this article

Download citation ▾
Fangli Wei, Lanhui Wang, Lizhi Jia, Yuanyuan Huang. Global patterns and determinants of erosion-induced soil carbon translocation. Geography and Sustainability, 2025, 6(5): 100328 DOI:10.1016/j.geosus.2025.100328

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Fangli Wei: Writing – review & editing, Writing – original draft, Formal analysis, Conceptualization. Lanhui Wang: Writing – review & editing, Methodology. Lizhi Jia: Writing – review & editing. Yuanyuan Huang: Writing – review & editing, Supervision, Conceptualization.

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

The data and code used in this manuscript are openly accessible, with relevant links provided in Section 2 Materials and Methods.

Acknowledgments

This research is jointly funded by the National Natural Science Foundation of China Project (Grants No. 42494823 and 42301108) and the Young Elite Scientists Sponsorship Program by CAST (Grant No. 07M715BOAM). L.W. considers this work a contribution to his Carlsberg Foundation Internationalisation Fellowship project (Grant No. CF21–0157).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.geosus.2025.100328.

References

[1]

Abbas, F., Hammad, H. M., Ishaq, W., Farooque, A. A., Bakhat, H. F., Zia, Z., Fahad, S., Farhad, W., Cerdà, A., 2020. A review of soil carbon dynamics resulting from agricultural practices. J. Environ. Manage., 268, 110319.

[2]

Ahmad, W., Singh, B., Dalal, R. C., Dijkstra, F. A., 2015. Carbon dynamics from carbonate dissolution in Australian agricultural soils. Soil Res., 53(2), 144-153.

[3]

Amelung, W., Bossio, D., de Vries, W., Kögel-Knabner, I., Lehmann, J., Amundson, R., Bol, R., Collins, C., Lal, R., Leifeld, J., 2020. Towards a global-scale soil climate mitigation strategy. Nat. Commun., 11(1), 5427.

[4]

Ananda, J., Herath, G., 2003. Soil erosion in developing countries: a socio-economic appraisal. J. Environ. Manage., 68(4), 343-353.

[5]

Berhe, A. A., Harte, J., Harden, J. W., Torn, M. S., 2007. The significance of the erosion-induced terrestrial carbon sink. Bioscience 57(4), 337-346.

[6]

Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Van Oost, K., Montanarella, L., Panagos, P., 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun., 8(1), 1-13.

[7]

Borrelli, P., Robinson, D. A., Panagos, P., Lugato, E., Yang, J. E., Alewell, C., Wuepper, D., Montanarella, L., Ballabio, C., 2020. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. U.S.A., 117(36), 21994-22001.

[8]

Bossio, D., Cook-Patton, S., Ellis, P., Fargione, J., Sanderman, J., Smith, P., Wood, S., Zomer, R., Von Unger, M., Emmer, I., 2020. The role of soil carbon in natural climate solutions. Nat. Sustain., 3(5), 391-398.

[9]

Dalzell, B. J., Fissore, C., Nater, E. A., 2022. Topography and land use impact erosion and soil organic carbon burial over decadal timescales. Catena 218, 106578.

[10]

Elith, J., Leathwick, J. R., Hastie, T., 2008. A working guide to boosted regression trees. J. Anim. Ecol., 77(4), 802-813.

[11]

Ferdush, J., Paul, V., 2021. A review on the possible factors influencing soil inorganic carbon under elevated CO2. Catena 204, 105434.

[12]

Fissore, C., Dalzell, B. J., Berhe, A., Voegtle, M., Evans, M., Wu, A., 2017. Influence of topography on soil organic carbon dynamics in a Southern California grassland. Catena 149, 140-149.

[13]

Friedlingstein, P., O’sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S., Aragão, L. E. O. C., Arneth, A., Arora, V., Bates, N. R., Becker, M., Benoit-Cattin, A., Bittig, H. C., Bopp, L., Bultan, S., Chandra, N., Chevallier, F., Chini, L. P., Evans, W., Florentie, L., Forster, P. M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V., Houghton, R. A., Ilyina, T., Jain, A. K., Joetzjer, E., Kadono, K., Kato, E., Kitidis, V., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland, G., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S-.I., Niwa, Y., O’Brien, K., Ono, T., Palmer, P. I., Pierrot, D., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Smith, A. J. P., Sutton, A. J., Tanhua, T., Tans, P. P., Tian, H., Tilbrook, B., van der Werf, G., Vuichard, N., Walker, A. P., Wanninkhof, R., Watson, A. J., Willis, D., Wiltshire, A. J., Yuan, W., Yue, X., Zaehle, S., 2020. Global carbon budget 2020. Earth Syst. Sci. Data 12(4), 3269-3340.

[14]

Kim, J. H., Jobbágy, E. G., Richter, D. D., Trumbore, S. E., Jackson, R. B., 2020. Agricultural acceleration of soil carbonate weathering. Glob. Change Biol., 26(10), 5988-6002.

[15]

Lal, R., 2003. Soil erosion and the global carbon budget. Environ. Int., 29(4), 437-450.

[16]

Lal, R., 2004. Soil carbon sequestration to mitigate climate change. Geoderma 123(1–2), 1-22.

[17]

Lal, R., 2018. Digging deeper: a holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Glob. Change Biol., 24(8), 3285-3301.

[18]

Lal, R., 2019. Carbon cycling in global drylands. Curr. Clim. Chang. Rep., 5(3), 221-232.

[19]

Lal, R., 2020. Managing soils for negative feedback to climate change and positive impact on food and nutritional security. Soil Sci. Plant Nutr., 66(1), 1-9.

[20]

Lal, R., Negassa, W., Lorenz, K., 2015. Carbon sequestration in soil. Curr. Opin. Environ. Sustain., 15, 79-86.

[21]

Li, W., MacBean, N., Ciais, P., Defourny, P., Lamarche, C., Bontemps, S., Houghton, R. A., Peng, S., 2018. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992–2015). Earth Syst. Sci. Data 10(1), 219-234.

[22]

Mehra, P., Baker, J., Sojka, R. E., Bolan, N., Desbiolles, J., Kirkham, M. B., Ross, C., Gupta, R., 2018. A review of tillage practices and their potential to impact the soil carbon dynamics. Adv. Agron., 150, 185-230.

[23]

Mirza, M. M. Q., 2003. Climate change and extreme weather events: can developing countries adapt?. Clim. Policy 3(3), 233-248.

[24]

Myers, N., Kent, J., 2005. The New Atlas of Planet Management. University of California Press

[25]

Naorem, A., Jayaraman, S., Dalal, R. C., Patra, A., Rao, C. S., Lal, R., 2022. Soil inorganic carbon as a potential sink in carbon storage in dryland soils—a review. Agriculture 12(8), 1256.

[26]

Nearing, M. A., Pruski, F. F., O’Neal, M. R., 2004. Expected climate change impacts on soil erosion rates: a review. J. Soil. Water Conserv., 59(1), 43-50.

[27]

Nie, X. J., Zhang, H. B., Su, Y. Y., 2019. Soil carbon and nitrogen fraction dynamics affected by tillage erosion. Sci. Rep., 9(1), 16601.

[28]

Pütz, S., Groeneveld, J., Henle, K., Knogge, C., Martensen, A. C., Metz, M., Metzger, J. P., Ribeiro, M. C., De Paula, M. D., Huth, A., 2014. Long-term carbon loss in fragmented Neotropical forests. Nat. Commun., 5(1), 5037.

[29]

Polyakov, V., Lal, R., 2004. Modeling soil organic matter dynamics as affected by soil water erosion. Environ. Int., 30(4), 547-556.

[30]

Qiu, L. P., Zhang, Q., Zhu, H. S., Reich, P. B., Banerjee, S., van der Heijden, M. G. A., Sadowsky, M. J., Ishii, S., Jia, X. X., Shao, M. G., Liu, B. Y., Jiao, H., Li, H. Q., Wei, X. R., 2021. Erosion reduces soil microbial diversity, network complexity and multifunctionality. ISME J., 15(8), 2474-2489.

[31]

Quine, T. A., Van Oost, K., 2020. Insights into the future of soil erosion. Proc. Natl. Acad. Sci. U.S.A., 117(38), 23205-23207.

[32]

Quinton, J. N., Govers, G., Van Oost, K., Bardgett, R. D., 2010. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci., 3(5), 311-314.

[33]

Reynolds, J. F., Stafford Smith, D. M., Lambin, E. F., Turner, B. L., Mortimore, M., Batterbury, S. P. J., Downing, T. E., Dowlatabadi, H., Fernández, R. J., Herrick, J. E., Huber-Sannwald, E., Jiang, H., Leemans, R., Lynam, T., Maestre, F. T., Ayarza, M., Walker, B., 2007. Global desertification: building a science for dryland development. Science 316(5826), 847-851.

[34]

Scharlemann, J. P., Tanner, E. V., Hiederer, R., Kapos, V., 2014. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag., 5(1), 81-91.

[35]

Schiettecatte, W., Gabriels, D., Cornelis, W. M., Hofman, G., 2008. Impact of deposition on the enrichment of organic carbon in eroded sediment. Catena 72(3), 340-347.

[36]

Trabucco, A., Zomer, R., 2019. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2. figshare

[37]

Wang, L., Huang, X., Fang, N. F., Niu, Y. H., Wang, T. W., Shi, Z. H., 2019. Selective transport of soil organic and inorganic carbon in eroded sediment in response to raindrop sizes and inflow rates in rainstorms. J. Hydrol., 575, 42-53.

[38]

Wuepper, D., Borrelli, P., Finger, R., 2020. Countries and the global rate of soil erosion. Nat. Sustain., 3(1), 51-55.

[39]

Yang, F., Huang, L. M., Yang, R. M., Yang, F., Li, D. C., Zhao, Y. G., Yang, J. L., Liu, F., Zhang, G. L., 2018. Vertical distribution and storage of soil organic and inorganic carbon in a typical inland river basin, Northwest China. J. Arid Land 10(2), 183-201.

[40]

Yue, Y., Ni, J., Ciais, P., Piao, S., Wang, T., Huang, M., Borthwick, A. G., Li, T., Wang, Y., Chappell, A., 2016. Lateral transport of soil carbon and land− atmosphere CO2 flux induced by water erosion in China. Proc. Natl. Acad. Sci. U.S.A., 113(24), 6617-6622.

[41]

Zamanian, K., Kuzyakov, Y., 2019. Contribution of soil inorganic carbon to atmospheric CO2: more important than previously thought. Glob. Change Biol., 25(1), E1-E3.

[42]

Zamanian, K., Zhou, J., Kuzyakov, Y., 2021. Soil carbonates: the unaccounted, irrecoverable carbon source. Geoderma 384, 114817.

[43]

Zhang, H. C., Liu, S. G., Yuan, W. P., Dong, W. J., Ye, A. Z., Xie, X. H., Chen, Y., Liu, D., Cai, W. W., Mao, Y. N., 2014. Inclusion of soil carbon lateral movement alters terrestrial carbon budget in China. Sci. Rep., 4, 7247.

PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

/