May 2022, Volume 16 Issue 5
    

Cover illustration

  • (Rongzhen Chen, Xinfei Dong, Qingchun Ge, pp. 755–763)
    As draw solute is the core element of forward osmosis (FO), here Li-Bet-Tf2N synthesized from a customized ionic liquid betainium bis(triflfluoromethylsulfonyl)imide ([Hbet][Tf2N]) and Li2CO3 recovered from lithium-ion battery (LIB) wastes is proposed as a draw solute to treat Li+-containing wastewater from LIB manufacturing through FO filtration. Li-Bet-Tf2N generates a sufficiently high osmotic pressure to drive [Detail] ...


  • Select all
  • EDITORIAL
    Congjie Gao, Nanping Xu, Weihong Xing
  • REVIEW ARTICLE
    Pei Sean Goh, Kar Chun Wong, Tuck Whye Wong, Ahmad Fauzi Ismail

    Polyamide thin film composite membranes have dominated current reverse osmosis market on account of their excellent separation performances compared to the integrally skinned counterparts. Despite their very promising separation performance, chlorine-induced degradation resulted from the susceptibility of polyamide toward chlorine attack has been regarded as the Achilles’s heel of polyamide thin film composite. The free chlorine species present during chlorine treatment can impair membrane performance through chlorination and depolymerization of the polyamide selective layer. From material point of view, a chemically stable membrane is crucial for the sustainable application of membrane separation process as it warrants a longer membrane lifespan and reduces the cost involved in membrane replacement. Various strategies, particularly those involved membrane material optimization and surface modifications, have been established to address this issue. This review discusses membrane degradation by free chlorine attack and its correlation with the surface chemistry of polyamide. The advancement in the development of chlorine resistant polyamide thin film composite membranes is reviewed based on the state-of-the-art surface modifications and tailoring approaches which include the in situ and post-fabrication membrane modifications using a broad range of functional materials. The challenges and future directions in this field are also highlighted.

  • REVIEW ARTICLE
    Stefano Capizzano, Mirko Frappa, Francesca Macedonio, Enrico Drioli

    One of the problems that most afflicts humanity is the lack of clean water. Water stress, which is the pressure on the quantity and quality of water resources, exists in many places throughout the World. Desalination represents a valid solution to the scarcity of fresh water and several technologies are already well applied and successful (such as reverse osmosis), producing about 100 million m3·d−1 of fresh water. Further advances in the field of desalination can be provided by innovative processes such as membrane distillation. The latter is of particular interest for the treatment of waste currents from conventional desalination processes (for example the retentate of reverse osmosis) as it allows to desalt highly concentrated currents as it is not limited by concentration polarization phenomena. New perspectives have enhanced research activities and allowed a deeper understanding of mass and heat transport phenomena, membrane wetting, polarization phenomena and have encouraged the use of materials particularly suitable for membrane distillation applications. This work summarizes recent developments in the field of membrane distillation, studies for module length optimization, commercial membrane modules developed, recent patents and advancement of membrane material.

  • REVIEW ARTICLE
    Fan Yang, Junhui Huang, Lijun Deng, Yanqiu Zhang, Guodong Dang, Lu Shao

    Poly(aryl sulfone) as a typical membrane material has been widely used due to excellent mechanical, chemical and thermal stability. However, the inherent hydrophobicity of poly(aryl sulfone) based membranes bears with the fouling issue during applications, which makes the membrane tending to adsorb contaminants on the surface so as to result in decreased separation performance and lifetime. In this critical review, we give a comprehensive overview on characterizations of hydrophilic membrane and diverse hydrophilic modification approaches of poly(aryl sulfone) membranes, predominantly including bulky, blending and surface modification technology. The discussions on the different modification methods have been provided in-depth. Besides, focusing on modification methods and performance of modified membranes, the related mechanisms for the performance enhancement are discussed too. At last, the perspectives are provided to guide the future directions to develop novel technology to manipulate the hydrophilicity of poly(aryl sulfone) membranes toward diverse practical and multi-functional applications.

  • REVIEW ARTICLE
    Yan Zhao, Yangbo Qiu, Natalie Mamrol, Longfei Ren, Xin Li, Jiahui Shao, Xing Yang, Bart van der Bruggen

    Discharged hospital wastewater contains various pathogenic microorganisms, antibiotic groups, toxic organic compounds, radioactive elements, and ionic pollutants. These contaminants harm the environment and human health causing the spread of disease. Thus, effective treatment of hospital wastewater is an urgent task for sustainable development. Membranes, with controllable porous and nonporous structures, have been rapidly developed for molecular separations. In particular, membrane bioreactor (MBR) technology demonstrated high removal efficiency toward organic compounds and low waste sludge production. To further enhance the separation efficiency and achieve material recovery from hospital waste streams, novel concepts of MBRs and their applications are rapidly evolved through hybridizing novel membranes (non hydrophilic ultrafiltration/microfiltration) into the MBR units (hybrid MBRs) or the MBR as a pretreatment step and integrating other membrane processes as subsequent secondary purification step (integrated MBR-membrane systems). However, there is a lack of reviews on the latest advancement in MBR technologies for hospital wastewater treatment, and analysis on its major challenges and future trends. This review started with an overview of main pollutants in common hospital wastewater, followed by an understanding on the key performance indicators/criteria in MBR membranes (i.e., solute selectivity) and processes (e.g., fouling). Then, an in-depth analysis was provided into the recent development of hybrid MBR and integrated MBR-membrane system concepts, and applications correlated with wastewater sources, with a particular focus on hospital wastewaters. It is anticipated that this review will shed light on the knowledge gaps in the field, highlighting the potential contribution of hybrid MBRs and integrated MBR-membrane systems toward global epidemic prevention.

  • REVIEW ARTICLE
    Linwei Zhu, Chun Ding, Tengyang Zhu, Yan Wang

    During the last decades, the utilization of osmotic pressure-driven forward osmosis technology for wastewater treatment has drawn great interest, due to its high separation efficiency, low membrane fouling propensity, high water recovery and relatively low energy consumption. This review paper summarizes the implementation of forward osmosis technology for various wastewater treatment including municipal sewage, landfill leachate, oil/gas exploitation wastewater, textile wastewater, mine wastewater, and radioactive wastewater. However, membrane fouling is still a critical issue, which affects water flux stability, membrane life and operating cost. Different membrane fouling types and corresponding fouling mechanisms, including organic fouling, inorganic fouling, biofouling and combined fouling are therefore further discussed. The fouling control strategies including feed pre-treatment, operation condition optimization, membrane selection and modification, membrane cleaning and tailoring the chemistry of draw solution are also reviewed comprehensively. At the end of paper, some recommendations are proposed.

  • REVIEW ARTICLE
    Hao Guo, Xianhui Li, Wulin Yang, Zhikan Yao, Ying Mei, Lu Elfa Peng, Zhe Yang, Senlin Shao, Chuyang Y. Tang

    In recent decades, nanofiltration (NF) is considered as a promising separation technique to produce drinking water from different types of water source. In this paper, we comprehensively reviewed the progress of NF-based drinking water treatment, through summarizing the development of materials/fabrication and applications of NF membranes in various scenarios including surface water treatment, groundwater treatment, water reuse, brackish water treatment, and point of use applications. We not only summarized the removal of target major pollutants (e.g., hardness, pathogen, and natural organic matter), but also paid attention to the removal of micropollutants of major concern (e.g., disinfection byproducts, per- and polyfluoroalkyl substances, and arsenic). We highlighted that, for different applications, fit-for-purpose design is needed to improve the separation capability for target compounds of NF membranes in addition to their removal of salts. Outlook and perspectives on membrane fouling control, chlorine resistance, integrity, and selectivity are also discussed to provide potential insights for future development of high-efficiency NF membranes for stable and reliable drinking water treatment.

  • RESEARCH ARTICLE
    Feng Zhang, Lu Tan, Li Gong, Shuqi Liu, Wangxi Fang, Zhenggong Wang, Shoujian Gao, Jian Jin

    Layer-by-layer assembly is a versatile technique for fabricating nanofiltration membranes, where multiple layers of polyelectrolytes are usually required to achieve reasonable separation performance. In this work, an ionic strength directed self-assembly procedure is described for the preparation of nanofiltration membranes consisting of only a single bilayer of poly(diallyldimethylammoniumchloride) and poly(sodium-4-styrenesulfoate). The influence of background ionic strength as well as membrane substrate properties on the formation of single-bilayer membranes are systematically evaluated. Such a simplified polyelectrolyte deposition procedure results in membranes having outstanding separation performance with permeating flux of 14.2 ± 1.5 L∙m–2∙h–1∙bar–1 and Na2SO4 rejection of 97.1% ± 0.8% under a low applied pressure of 1 bar. These results surpass the ones for conventional multilayered polyelectrolyte membranes. This work encompasses an investigation of ionic strength induced coiling of the polyelectrolyte chains and emphasizes the interplay between-polyelectrolyte chain configuration and substrate pore profile. It thus introduces a new concept on the control of membrane fabrication process toward high performance nanofiltration.

  • RESEARCH ARTICLE
    Guiqin Bai, Jianzhong Xia, Bing Cao, Rui Zhang, Junquan Meng, Pei Li

    Pervaporation desalination has a unique advantage to recycle concentrated salt solutions. The merit can be applied to treat alkaline wastewater if the membrane has superior alkali-resistance. In this paper, we used polyethylene microfiltration membrane as the substrate and deposited a glutaraldehyde crosslinked sodium carboxymethylcellulose layer by spray-coating. Pervaporation flux of the composite membrane reached 35 ± 2 kg·m–2·h–1 with a sodium chloride rejection of 99.9% ± 0.1% when separating a 3.5 wt-% sodium chloride solution at 70 °C. The desalination performance was stable after soaking the membrane in a 20 wt-% NaOH solution at room temperature for 9 d and in a 10 wt-% NaOH solution at 60 °C for 80 h. Moreover, the membrane was stable in 4 wt-% sulfuric acid and a 500 mg·L−1 sodium hypochlorite solution. In a process of concentrating a NaOH solution from 5 to 10 wt-% at 60 °C, an average water flux of 23 kg·m–2·h–1 with a NaOH rejection over 99.98% was obtained.

  • RESEARCH ARTICLE
    Jun Pan, Lixun Zhang, Zhaohui Wang, Shi-Peng Sun, Zhaoliang Cui, Naser Tavajohi

    A non-toxic and environmentally safe diluent, acetyl tributyl citrate, was employed to prepare poly(vinylidene fluoride)-co-hexafluoropropylene membranes via thermally induced phase separation. Effects of the polymer concentration on the phase diagram, membrane morphology, hydrophobicity, pore size, porosity and mechanical properties (tensile stress and elongation at break) were investigated. The results showed that the pore size and porosity tended to decrease with increasing polymer concentration, whereas the contact angle, liquid entry pressure and mechanical properties showed the opposite trend. In direct contact membrane distillation operation with 3.5 wt-% sodium chloride solution as the feed solution, the prepared membranes performed high salt rejection (>99.9%). Furthermore, the prepared membranes retained excellent performance in long-term stability tests regarding the permeate flux and salt rejection.

  • RESEARCH ARTICLE
    Dean Xu, Tong Ding, Yuqing Sun, Shilong Li, Wenheng Jing

    Catalytic ozonation technology has attracted copious attention in water purification owing to its favorable oxidative degradation of pollutants and mitigation of membrane fouling capacity. However, its extensive industrial application has been restricted by the low ozone utilization and limited mass transfer of the short-lived radical species. Interlayer space-confined catalysis has been theoretically proven to be a viable strategy for achieving high catalytic efficiency. Here, a two-dimensional MnO2-incorporated ceramic membrane with tunable interspacing, which was obtained via the intercalation of a carbon nanotube, was designed as a catalytic ozonation membrane reactor for degrading methylene blue. Benefiting from the abundant catalytic active sites on the surface of two-dimensional MnO2 as well as the ultralow mass transfer resistance of fluids due to the nanolayer confinement, an excellent mineralization effect, i.e., 1.2 mg O3(aq) mg–1 TOC removal (a total organic carbon removal rate of 71.5%), was achieved within a hydraulic retention time of 0.045 s of pollutant degradation. Further, the effects of hydraulic retention time and interlayer spacing on methylene blue removal were investigated. Moreover, the mechanism of the catalytic ozonation employing catalytic ozonation membrane was proposed based on the contribution of the Mn(III/IV) redox pair to electron transfer to generate the reactive oxygen species. This innovative two-dimensional confinement catalytic ozonation membrane could act as a nanoreactor and separator to efficiently oxidize organic pollutants and enhance the control of membrane fouling during water purification.

  • RESEARCH ARTICLE
    Shanshan Zhang, Jiemei Zhou, Zhaogen Wang, Jianzhong Xia, Yong Wang

    Selective swelling of block copolymers of polysulfone-b-poly(ethylene glycol) is an emerging strategy to prepare new types of polysulfone ultrafiltration membranes. Herein, we prepared nanoporous polysulfone-b-poly(ethylene glycol) ultrafiltration membranes by selective swelling and further promoted their porosity and ultrafiltration performances by using CaCO3 nanoparticles as the sacrificial nanofillers. Different contents of CaCO3 nanoparticles were doped into the solution of polysulfone-b-poly(ethylene glycol), and thus obtained suspensions were used to prepare both self-supported and bi-layered composite structures. Selective swelling was performed on the obtained block copolymer structures in the solvent pair of ethanol/acetone, producing nanoporous membranes with poly(ethylene glycol) lined along pore walls. The CaCO3 nanoparticles dispersed in polysulfone-b-poly(ethylene glycol) were subsequently etched away by hydrochloric acid and the spaces initially occupied by CaCO3 provided extra pores to the block copolymer layers. The porosity of the membranes was increased with increasing CaCO3 content up to 41%, but further increase in the CaCO3 content led to partial collapse of the membrane. The sacrificial CaCO3 particles provided extra pores and enhanced the connectivity between adjacent pores. Consequently, the membranes prepared under optimized conditions exhibited up to 80% increase in water permeance with slight decrease in rejection compared to neat membranes without the use of sacrificial CaCO3 particles.

  • RESEARCH ARTICLE
    Rongzhen Chen, Xinfei Dong, Qingchun Ge

    As draw solute is the core element of forward osmosis (FO) technology, here Li-Bet-Tf2N synthesized from a customized ionic liquid betainium bis(trifluoromethylsulfonyl)imide ([Hbet][Tf2N]) and Li2CO3 recovered from lithium-ion battery (LIB) wastes is proposed as a novel draw solute to treat Li+-containing wastewater from LIB manufacturing through FO filtration. Having high dissociation ability and an extended structure, Li-Bet-Tf2N generates a sufficiently high osmotic pressure to drive the FO filtration efficiently along with insignificant reverse solute diffusion. Li-Bet-Tf2N produces a water flux of 21.3 L·(m2·h)−1 at 1.0 mol∙L–1 against deionized water, surpassing conventional NaCl and MgCl2 draw solutes with a higher water recovery efficiency and a smaller solute loss. Li-Bet-Tf2N induces a more stable and higher water permeation flux with a 10.0% water flux decline than NaCl and MgCl2 for which the water fluxes decline 16.7% and 16.4%, respectively, during the treatment of 2000 mg∙L–1 Li+-containing wastewater for 12 h. More remarkably, unlike other draw solutes which require intensive energy input and complicated processes in recycling, Li-Bet-Tf2N is easily separated from water via solvent extraction. Reproducible results are achieved with the recycled Li-Bet-Tf2N. Li-Bet-Tf2N thus demonstrates a novel class of draw solute with great potentials to treat wastewater economically.

  • RESEARCH ARTICLE
    Arif Hussain, Haiyang Yan, Noor Ul Afsar, Chenxiao Jiang, Yaoming Wang, Tongwen Xu

    Bipolar membrane electrodialysis (BMED) is considered a state-of-the-art technology for the conversion of salts into acids and bases. However, the low concentration of base generated from a traditional BMED process may limit the viability of this technology for a large-scale application. Herein, we report an especially designed multistage-batch (two/three-stage-batch) BMED process to increase the base concentration by adjusting different volume ratios in the acid (Vacid), base (Vbase), and salt compartments (Vsalt). The findings indicated that performance of the two-stage-batch with a volume ratio of Vacid:Vbase:Vsalt = 1:1:5 was superior in comparison to the three-stage-batch with a volume ratio of Vacid:Vbase:Vsalt = 1:1:2. Besides, the base concentration could be further increased by exchanging the acid produced in the acid compartment with fresh water in the second stage-batch process. With the two-stage-batch BMED, the maximum concentration of the base can be obtained up to 3.40 mol∙L–1, which was higher than the most reported base production by BMED. The low energy consumption and high current efficiency further authenticate that the designed process is reliable, cost-effective, and more productive to convert saline water into valuable industrial commodities.