Nanofiltration for drinking water treatment: a review

Hao Guo, Xianhui Li, Wulin Yang, Zhikan Yao, Ying Mei, Lu Elfa Peng, Zhe Yang, Senlin Shao, Chuyang Y. Tang

PDF(3708 KB)
PDF(3708 KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (5) : 681-698. DOI: 10.1007/s11705-021-2103-5
REVIEW ARTICLE
REVIEW ARTICLE

Nanofiltration for drinking water treatment: a review

Author information +
History +

Abstract

In recent decades, nanofiltration (NF) is considered as a promising separation technique to produce drinking water from different types of water source. In this paper, we comprehensively reviewed the progress of NF-based drinking water treatment, through summarizing the development of materials/fabrication and applications of NF membranes in various scenarios including surface water treatment, groundwater treatment, water reuse, brackish water treatment, and point of use applications. We not only summarized the removal of target major pollutants (e.g., hardness, pathogen, and natural organic matter), but also paid attention to the removal of micropollutants of major concern (e.g., disinfection byproducts, per- and polyfluoroalkyl substances, and arsenic). We highlighted that, for different applications, fit-for-purpose design is needed to improve the separation capability for target compounds of NF membranes in addition to their removal of salts. Outlook and perspectives on membrane fouling control, chlorine resistance, integrity, and selectivity are also discussed to provide potential insights for future development of high-efficiency NF membranes for stable and reliable drinking water treatment.

Graphical abstract

Keywords

nanofiltration / drinking water / disinfection byproducts / micropollutants / selectivity

Cite this article

Download citation ▾
Hao Guo, Xianhui Li, Wulin Yang, Zhikan Yao, Ying Mei, Lu Elfa Peng, Zhe Yang, Senlin Shao, Chuyang Y. Tang. Nanofiltration for drinking water treatment: a review. Front. Chem. Sci. Eng., 2022, 16(5): 681‒698 https://doi.org/10.1007/s11705-021-2103-5

References

[1]
Johnson N, Revenga C, Echeverria J. Managing water for people and nature. Science, 2001, 292(5519): 1071–1072
CrossRef Google scholar
[2]
Mekonnen M M, Hoekstra A Y. Four billion people facing severe water scarcity. Science Advances, 2016, 2(2): e1500323
CrossRef Google scholar
[3]
United Nations. Clean water and sanitation, sustainable development goals. United Nations website, 2015
[4]
Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Mariñas B J, Mayes A M. Science and technology for water purification in the coming decades. Nature, 2008, 452(7185): 301–310
CrossRef Google scholar
[5]
Qasim M, Badrelzaman M, Darwish N N, Darwish N A, Hilal N. Reverse osmosis desalination: a state-of-the-art review. Desalination, 2019, 459: 59–104
CrossRef Google scholar
[6]
Fane A, Tang C, Wang R. Membrane technology for water: microfiltration, ultrafiltration, nanofiltration, and reverse osmosis. Treatise on Water Science. Oxford: Academic Press, 2011
[7]
Schäfer A, Fane A G, Waite T D. Nanofiltration: Principles and Applications. Amsterdam: Elsevier, 2005
[8]
Jye L W, Ismail A F. Nanofiltration Membranes: Synthesis, Characterization, and Applications. 1st ed. Florida: CRC Press, 2016, 15–30
[9]
Lau W J, Ismail A F, Misdan N, Kassim M A. A recent progress in thin film composite membrane: a review. Desalination, 2012, 287: 190–199
CrossRef Google scholar
[10]
Xu G R, Xu J M, Feng H J, Zhao H L, Wu S B. Tailoring structures and performance of polyamide thin film composite (PA-TFC) desalination membranes via sublayers adjustment: a review. Desalination, 2017, 417: 19–35
CrossRef Google scholar
[11]
Gohil J M, Ray P. Ray P. A review on semi-aromatic polyamide TFC membranes prepared by interfacial polymerization: potential for water treatment and desalination. Separation and Purification Technology, 2017, 181: 159–182
CrossRef Google scholar
[12]
Zhang R, Su Y, Zhao X, Li Y, Zhao J, Jiang Z. A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine). Journal of Membrane Science, 2014, 470: 9–17
CrossRef Google scholar
[13]
Ng L Y, Mohammad A W, Ng C Y. A review on nanofiltration membrane fabrication and modification using polyelectrolytes: effective ways to develop membrane selective barriers and rejection capability. Advances in Colloid and Interface Science, 2013, 197–198: 85–107
CrossRef Google scholar
[14]
Li C, Sun W, Lu Z, Ao X, Li S. Ceramic nanocomposite membranes and membrane fouling: a review. Water Research, 2020, 175: 115674
CrossRef Google scholar
[15]
Zhao Y, Tong X, Chen Y. Fit-for-purpose design of nanofiltration membranes for simultaneous nutrient recovery and micropollutant removal. Environmental Science & Technology, 2021, 55(5): 3352–3361
CrossRef Google scholar
[16]
World Health Organization. Guidelines for Drinking-Water Quality. 4th ed. Geneva: World Health Organization, 2011, 117–230
[17]
Van der Bruggen B, Mänttäri M, Nyström M. Drawbacks of applying nanofiltration and how to avoid them: a review. Separation and Purification Technology, 2008, 63(2): 251–263
CrossRef Google scholar
[18]
Shon H K, Phuntsho S, Chaudhary D S, Vigneswaran S, Cho J. Nanofiltration for water and wastewater treatment: a mini review. Drinking Water Engineering and Science, 2013, 6(1): 47–53
CrossRef Google scholar
[19]
Mohammad A W, Teow Y H, Ang W L, Chung Y T, Oatley-Radcliffe D L, Hilal N. Nanofiltration membranes review: recent advances and future prospects. Desalination, 2015, 356: 226–254
CrossRef Google scholar
[20]
Tul Muntha S, Kausar A, Siddiq M. Advances in polymeric nanofiltration membrane: a review. Polymer-Plastics Technology and Engineering, 2017, 56(8): 841–856
CrossRef Google scholar
[21]
Zhao Y, Tong T, Wang X, Lin S, Reid E M, Chen Y. Differentiating solutes with precise nanofiltration for next generation environmental separations: a review. Environmental Science & Technology, 2021, 55(3): 1359–1376
CrossRef Google scholar
[22]
Yang Z, Guo H, Tang C Y. The upper bound of thin-film composite (TFC) polyamide membranes for desalination. Journal of Membrane Science, 2019, 590: 117297
CrossRef Google scholar
[23]
Lau W J, Gray S, Matsuura T, Emadzadeh D, Paul Chen J, Ismail A F. A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches. Water Research, 2015, 80: 306–324
CrossRef Google scholar
[24]
Yang Z, Guo H, Yao Z K, Mei Y, Tang C Y. Hydrophilic silver nanoparticles induce selective nanochannels in thin film nanocomposite polyamide membranes. Environmental Science & Technology, 2019, 53(9): 5301–5308
CrossRef Google scholar
[25]
Zhang T, Li Z, Wang W, Wang Y, Gao B, Wang Z. Enhanced antifouling and antimicrobial thin film nanocomposite membranes with incorporation of palygorskite/titanium dioxide hybrid material. Journal of Colloid and Interface Science, 2019, 537: 1–10
CrossRef Google scholar
[26]
Yang Z, Sun P F, Li X, Gan B, Wang L, Song X, Park H D, Tang C Y. A critical review on thin-film nanocomposite membranes with interlayered structure: mechanisms, recent developments, and environmental applications. Environmental Science & Technology, 2020, 54(24): 15563–15583
CrossRef Google scholar
[27]
Wang J J, Yang H C, Wu M B, Zhang X, Xu Z K. Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(31): 16289–16295
CrossRef Google scholar
[28]
Karan S, Jiang Z, Livingston A G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science, 2015, 348(6241): 1347–1351
CrossRef Google scholar
[29]
Yang Z, Wang F, Guo H, Peng L E, Ma X H, Song X H, Wang Z, Tang C Y. Mechanistic insights into the role of polydopamine interlayer toward improved separation performance of polyamide nanofiltration membranes. Environmental Science & Technology, 2020, 54(18): 11611–11621
CrossRef Google scholar
[30]
Pacheco F A, Pinnau I, Reinhard M, Leckie J O. Characterization of isolated polyamide thin films of RO and NF membranes using novel TEM techniques. Journal of Membrane Science, 2010, 358(1): 51–59
CrossRef Google scholar
[31]
Guo H, Yao Z, Yang Z, Ma X, Wang J, Tang C Y. A one-step rapid assembly of thin film coating using green coordination complexes for enhanced removal of trace organic contaminants by membranes. Environmental Science & Technology, 2017, 51(21): 12638–12643
CrossRef Google scholar
[32]
Yang Z, Ma X H, Tang C Y. Recent development of novel membranes for desalination. Desalination, 2018, 434: 37–59
CrossRef Google scholar
[33]
Zhang H, He Q, Luo J, Wan Y, Darling S B. Sharpening nanofiltration: strategies for enhanced membrane selectivity. ACS Applied Materials & Interfaces, 2020, 12(36): 39948–39966
CrossRef Google scholar
[34]
Raaijmakers M J, Benes N E. Current trends in interfacial polymerization chemistry. Progress in Polymer Science, 2016, 63: 86–142
CrossRef Google scholar
[35]
Thakur V K, Voicu S I. Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohydrate Polymers, 2016, 146: 148–165
CrossRef Google scholar
[36]
Narbaitz R M, Rana D, Dang H T, Morrissette J, Matsuura T, Jasim S Y, Tabe S, Yang P. Pharmaceutical and personal care products removal from drinking water by modified cellulose acetate membrane: field testing. Chemical Engineering Journal, 2013, 225: 848–856
CrossRef Google scholar
[37]
Lalia B S, Kochkodan V, Hashaikeh R, Hilal N. A review on membrane fabrication: structure, properties and performance relationship. Desalination, 2013, 326: 77–95
CrossRef Google scholar
[38]
Van der Bruggen B, Daems B, Wilms D, Vandecasteele C. Mechanisms of retention and flux decline for the nanofiltration of dye baths from the textile industry. Separation and Purification Technology, 2001, 22–23(1-2): 519–528
CrossRef Google scholar
[39]
Zeng C, Tanaka S, Suzuki Y, Fujii S. Impact of feed water pH and membrane material on nanofiltration of perfluorohexanoic acid in aqueous solution. Chemosphere, 2017, 183: 599–604
CrossRef Google scholar
[40]
Yao Y, Zhang P, Jiang C, DuChanois R M, Zhang X, Elimelech M. High performance polyester reverse osmosis desalination membrane with chlorine resistance. Nature Sustainability, 2021, 4(2): 138–146
CrossRef Google scholar
[41]
Zheng J, Liu Y, Zhu J, Jin P, Croes T, Volodine A, Yuan S, Van der Bruggen B. Sugar-based membranes for nanofiltration. Journal of Membrane Science, 2021, 619: 118786
CrossRef Google scholar
[42]
Soroko I, Bhole Y, Livingston A G. Environmentally friendly route for the preparation of solvent resistant polyimide nanofiltration membranes. Green Chemistry, 2011, 13(1): 162–168
CrossRef Google scholar
[43]
Sairam M, Loh X, Bhole Y, Sereewatthanawut I, Li K, Bismarck A, Steinke J, Livingston A. Spiral-wound polyaniline membrane modules for organic solvent nanofiltration (OSN). Journal of Membrane Science, 2010, 349(1–2): 123–129
CrossRef Google scholar
[44]
Wang K, Xu L, Li K, Liu L, Zhang Y, Wang J. Development of polyaniline conductive membrane for electrically enhanced membrane fouling mitigation. Journal of Membrane Science, 2019, 570: 371–379
CrossRef Google scholar
[45]
Cheng W, Liu C, Tong T, Epsztein R, Sun M, Verduzco R, Ma J, Elimelech M. Selective removal of divalent cations by polyelectrolyte multilayer nanofiltration membrane: role of polyelectrolyte charge, ion size, and ionic strength. Journal of Membrane Science, 2018, 559: 98–106
CrossRef Google scholar
[46]
Yang S, Wang J, Fang L, Lin H, Liu F, Tang C Y. Electrosprayed polyamide nanofiltration membrane with intercalated structure for controllable structure manipulation and enhanced separation performance. Journal of Membrane Science, 2020, 602: 117971
CrossRef Google scholar
[47]
Mazzoni C, Orlandini F, Bandini S. Role of electrolyte type on TiO2-ZrO2 nanofiltration membranes performances. Desalination, 2009, 240(1–3): 227–235
CrossRef Google scholar
[48]
Nishihora R K, Rachadel P L, Quadri M G N, Hotza D. Manufacturing porous ceramic materials by tape casting—a review. Journal of the European Ceramic Society, 2018, 38(4): 988–1001
CrossRef Google scholar
[49]
Xing W H. Ceramic Membranes, in Membrane-Based Separations in Metallurgy. 1st ed. Amsterdam: Elsevier, 2017, 357–370
[50]
Samaei S M, Gato-Trinidad S, Altaee A. The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters—a review. Separation and Purification Technology, 2018, 200: 198–220
CrossRef Google scholar
[51]
Zhu J, Hou J, Uliana A, Zhang Y, Tian M, Van der Bruggen B. The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(9): 3773–3792
CrossRef Google scholar
[52]
Ding L, Li L, Liu Y, Wu Y, Lu Z, Deng J, Wei Y, Caro J, Wang H. Effective ion sieving with Ti3C2Tx mxene membranes for production of drinking water from seawater. Nature Sustainability, 2020, 3(4): 296–302
CrossRef Google scholar
[53]
Hu M, Mi B. Enabling graphene oxide nanosheets as water separation membranes. Environmental Science & Technology, 2013, 47(8): 3715–3723
CrossRef Google scholar
[54]
Liu C, Jiang Y, Nalaparaju A, Jiang J, Huang A. Post-synthesis of a covalent organic framework nanofiltration membrane for highly efficient water treatment. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(42): 24205–24210
CrossRef Google scholar
[55]
Deng J, Lu Z, Ding L, Li Z K, Wei Y, Caro J, Wang H. Fast electrophoretic preparation of large-area two-dimensional titanium carbide membranes for ion sieving. Chemical Engineering Journal, 2021, 408: 127806
CrossRef Google scholar
[56]
Asif M B, Zhang Z. Ceramic membrane technology for water and wastewater treatment: a critical review of performance, full-scale applications, membrane fouling and prospects. Chemical Engineering Journal, 2021, 418: 129481
CrossRef Google scholar
[57]
Li X, Liu Y, Wang J, Gascon J, Li J, Van der Bruggen B. Metal-organic frameworks based membranes for liquid separation. Chemical Society Reviews, 2017, 46(23): 7124–7144
CrossRef Google scholar
[58]
Al-Hamadani Y A J, Jun B M, Yoon M, Taheri-Qazvini N, Snyder S A, Jang M, Heo J, Yoon Y. Applications of mxene-based membranes in water purification: a review. Chemosphere, 2020, 254: 126821
CrossRef Google scholar
[59]
Shao S, Qu F, Liang H, Chang H, Yu H, Li G. A pilot-scale study of a powdered activated carbon-membrane bioreactor for the treatment of water with a high concentration of ammonia. Environmental Science. Water Research & Technology, 2016, 2(1): 125–133
CrossRef Google scholar
[60]
Schwarzenbach R P, Escher B I, Fenner K, Hofstetter T B, Johnson C A, Von Gunten U, Wehrli B. The challenge of micropollutants in aquatic systems. Science, 2006, 313(5790): 1072–1077
CrossRef Google scholar
[61]
Bei E, Wu X, Qiu Y, Chen C, Zhang X. A tale of two water supplies in China: finding practical solutions to urban and rural water supply problems. Accounts of Chemical Research, 2019, 52(4): 867–875
CrossRef Google scholar
[62]
Crittenden J C, Trussell R R, Hand D W, Howe K J, Tchobanoglous G. Mwh’s Water Treatment: Principles and Design. 3rd ed. New Jersey: John Wiley & Sons, 2012, 165–224
[63]
Cyna B, Chagneau G, Bablon G, Tanghe N. Two years of nanofiltration at the méry-sur-oise plant, france. Desalination, 2002, 147(1): 69–75
CrossRef Google scholar
[64]
Davis M L, Cornwell D A. Introduction to Environmental Engineering. 5th ed. New York: McGraw-Hill, 2012, 250–387
[65]
Huang H, Schwab K, Jacangelo J G. Pretreatment for low pressure membranes in water treatment: a review. Environmental Science & Technology, 2009, 43(9): 3011–3019
CrossRef Google scholar
[66]
Shao S, Liang H, Qu F, Yu H, Li K, Li G. Fluorescent natural organic matter fractions responsible for ultrafiltration membrane fouling: identification by adsorption pretreatment coupled with parallel factor analysis of excitation-emission matrices. Journal of Membrane Science, 2014, 464: 33–42
CrossRef Google scholar
[67]
Liao B, Chang C Y, Chang C C, Liu T W. Performance of a 270000 CMD integrated membrane system for water supply in Taiwan. Desalination and Water Treatment, 2011, 32(1–3): 411–421
CrossRef Google scholar
[68]
Nieuwenhuijsen M J, Toledano M B, Eaton N E, Fawell J, Elliott P. Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: a review. Occupational and Environmental Medicine, 2000, 57(2): 73–85
CrossRef Google scholar
[69]
Singer P C. Formation and control of disinfection by-products in drinking water. Journal of Environmental Engineering, 1994, 120(4): 727–744
CrossRef Google scholar
[70]
Zazouli M A, Kalankesh L R. Removal of precursors and disinfection by-products (DBPs) by membrane filtration from water: a review. Journal of Environmental Health Science & Engineering, 2017, 15(1): 1–10
CrossRef Google scholar
[71]
Ersan M S, Ladner D A, Karanfil T. The control of N-nitrosodimethylamine, halonitromethane, and trihalomethane precursors by nanofiltration. Water Research, 2016, 105: 274–281
CrossRef Google scholar
[72]
Peltier S, Cotte M, Gatel D, Herremans L, Cavard J. Nanofiltration: improvements of water quality in a large distribution system. Water Science and Technology: Water Supply, 2003, 3(1–2): 193–200
CrossRef Google scholar
[73]
Lin D, Liang H, Li G. Factors affecting the removal of bromate and bromide in water by nanofiltration. Environmental Science and Pollution Research International, 2020, 27(20): 24639–24649
CrossRef Google scholar
[74]
Chellam S. Effects of nanofiltration on trihalomethane and haloacetic acid precursor removal and speciation in waters containing low concentrations of bromide ion. Environmental Science & Technology, 2000, 34(9): 1813–1820
CrossRef Google scholar
[75]
Ohkouchi Y, Yata Y, Bun R, Itoh S. Chlorine requirement for biologically stable drinking water after nanofiltration. Water Science and Technology: Water Supply, 2014, 14(3): 405–413
CrossRef Google scholar
[76]
Niu B, Loaiciga H A, Wang Z, Zhan F B, Hong S. Twenty years of global groundwater research: a science citation index expanded-based bibliometric survey (1993–2012). Journal of Hydrology (Amsterdam), 2014, 519: 966–975
CrossRef Google scholar
[77]
Wang Y, Ju L, Xu F, Tian L, Jia R, Song W, Li Y, Liu B. Effect of a nanofiltration combined process on the treatment of high-hardness and micropolluted water. Environmental Research, 2020, 182: 109063
CrossRef Google scholar
[78]
Hadley P W, Newell C J. Groundwater remediation: the next 30 years. Ground Water, 2012, 50(5): 669–678
CrossRef Google scholar
[79]
Sen M, Manna A, Pal P. Removal of arsenic from contaminated groundwater by membrane-integrated hybrid treatment system. Journal of Membrane Science, 2010, 354(1–2): 108–113
CrossRef Google scholar
[80]
Lu D, Sha S, Luo J, Huang Z, Jackie X Z. Treatment train approaches for the remediation of per-and polyfluoroalkyl substances (PFAS): a critical review. Journal of Hazardous Materials, 2020, 386: 121963
CrossRef Google scholar
[81]
Schaep J, Van der Bruggen B, Uytterhoeven S, Croux R, Vandecasteele C, Wilms D, Van Houtte E, Vanlerberghe F. Removal of hardness from groundwater by nanofiltration. Desalination, 1998, 119(1–3): 295–301
CrossRef Google scholar
[82]
Van der Bruggen B, Vandecasteele C. Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environmental Pollution, 2003, 122(3): 435–445
CrossRef Google scholar
[83]
Krieg H, Modise S, Keizer K, Neomagus H. Salt rejection in nanofiltration for single and binary salt mixtures in view of sulphate removal. Desalination, 2005, 171(2): 205–215
CrossRef Google scholar
[84]
Tu K L, Nghiem L D, Chivas A R. Coupling effects of feed solution pH and ionic strength on the rejection of boron by NF/RO membranes. Chemical Engineering Journal, 2011, 168(2): 700–706
CrossRef Google scholar
[85]
Boo C, Wang Y, Zucker I, Choo Y, Osuji C O, Elimelech M. High performance nanofiltration membrane for effective removal of perfluoroalkyl substances at high water recovery. Environmental Science & Technology, 2018, 52(13): 7279–7288
CrossRef Google scholar
[86]
Smedley P L, Kinniburgh D G. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 2002, 17(5): 517–568
CrossRef Google scholar
[87]
Straif K, Benbrahim-Tallaa L, Baan R, Grosse Y, Secretan B, El Ghissassi F, Bouvard V, Guha N, Freeman C, Galichet L, Cogliano V. A review of human carcinogens—part C: metals, arsenic, dusts, and fibres. Lancet. Oncology, 2009, 10(5): 453–454
CrossRef Google scholar
[88]
Figoli A, Fuoco I, Apollaro C, Chabane M, Mancuso R, Gabriele B, De Rosa R, Vespasiano G, Barca D, Criscuoli A. Arsenic-contaminated groundwaters remediation by nanofiltration. Separation and Purification Technology, 2020, 238: 116461
CrossRef Google scholar
[89]
Siddique T, Dutta N K, Roy Choudhury N. Nanofiltration for arsenic removal: challenges, recent developments, and perspectives. Nanomaterials (Basel, Switzerland), 2020, 10(7): 1323
CrossRef Google scholar
[90]
Košutić K, Furač L, Sipos L, Kunst B. Removal of arsenic and pesticides from drinking water by nanofiltration membranes. Separation and Purification Technology, 2005, 42(2): 137–144
CrossRef Google scholar
[91]
Pal P, Chakrabortty S, Linnanen L. A nanofiltration-coagulation integrated system for separation and stabilization of arsenic from groundwater. Science of the Total Environment, 2014, 476: 601–610
CrossRef Google scholar
[92]
Chang F F, Liu W J, Wang X M. Comparison of polyamide nanofiltration and low-pressure reverse osmosis membranes on As(III) rejection under various operational conditions. Desalination, 2014, 334(1): 10–16
CrossRef Google scholar
[93]
Boussouga Y A, Frey H, Schäfer A I. Removal of arsenic(V) by nanofiltration: impact of water salinity, pH and organic matter. Journal of Membrane Science, 2021, 618: 118631
CrossRef Google scholar
[94]
Zhao C, Zhang J, He G, Wang T, Hou D, Luan Z. Perfluorooctane sulfonate removal by nanofiltration membrane the role of calcium ions. Chemical Engineering Journal, 2013, 233: 224–232
CrossRef Google scholar
[95]
Xiao F, Simcik M F, Halbach T R, Gulliver J S. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in soils and groundwater of a us metropolitan area: migration and implications for human exposure. Water Research, 2015, 72: 64–74
CrossRef Google scholar
[96]
Barzen-Hanson K A, Roberts S C, Choyke S, Oetjen K, McAlees A, Riddell N, McCrindle R, Ferguson P L, Higgins C P, Field J A. Discovery of 40 classes of per- and polyfluoroalkyl substances in historical aqueous film-forming foams (AFFFs) and AFFF-impacted groundwater. Environmental Science & Technology, 2017, 51(4): 2047–2057
CrossRef Google scholar
[97]
MacInnis J J, Lehnherr I, Muir D C, St. Pierre K A, St. Louis V L, Spencer C, De Silva A O. Fate and transport of perfluoroalkyl substances from snowpacks into a lake in the high arctic of Canada. Environmental Science & Technology, 2019, 53(18): 10753–10762
CrossRef Google scholar
[98]
Wang F, Liu W, Jin Y, Dai J, Yu W, Liu X, Liu L. Transcriptional effects of prenatal and neonatal exposure to pfos in developing rat brain. Environmental Science & Technology, 2010, 44(5): 1847–1853
CrossRef Google scholar
[99]
Briels N, Ciesielski T M, Herzke D, Jaspers V L. Developmental toxicity of perfluorooctanesulfonate (PFOS) and its chlorinated polyfluoroalkyl ether sulfonate alternative F-53B in the domestic chicken. Environmental Science & Technology, 2018, 52(21): 12859–12867
CrossRef Google scholar
[100]
Wang T, Zhao C, Li P, Li Y, Wang J. Fabrication of novel poly(m-phenylene isophthalamide) hollow fiber nanofiltration membrane for effective removal of trace amount perfluorooctane sulfonate from water. Journal of Membrane Science, 2015, 477: 74–85
CrossRef Google scholar
[101]
Franke V, McCleaf P, Lindegren K, Ahrens L. Efficient removal of per-and polyfluoroalkyl substances (PFASS) in drinking water treatment: nanofiltration combined with active carbon or anion exchange. Environmental Science. Water Research & Technology, 2019, 5(11): 1836–1843
CrossRef Google scholar
[102]
Zhao C, Zhang T, Hu G, Ma J, Song R, Li J. Efficient removal of perfluorooctane sulphonate by nanofiltration: insights into the effect and mechanism of coexisting inorganic ions and humic acid. Journal of Membrane Science, 2020, 610: 118176
CrossRef Google scholar
[103]
Guo H, Zhang J, Peng L E, Li X, Chen Y, Yao Z, Fan Y, Shih K, Tang C Y. High-efficiency capture and recovery of anionic perfluoroalkyl substances from water using PVA/PDDA nanofibrous membranes with near-zero energy consumption. Environmental Science & Technology Letters, 2021, 8(4): 350–355
CrossRef Google scholar
[104]
Werber J R, Deshmukh A, Elimelech M. The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environmental Science & Technology Letters, 2016, 3(4): 112–120
CrossRef Google scholar
[105]
Tang C Y, Yang Z, Guo H, Wen J J, Nghiem L D, Cornelissen E. Potable water reuse through advanced membrane technology. Environmental Science & Technology, 2018, 52(18): 10215–10223
CrossRef Google scholar
[106]
Public Utilities Board (PUB) of Singapore. Four national taps. PUB webisite, 2015
[107]
Orange County Water District (OCWD). Water factory 21. OCWD website, 2000
[108]
Public Utilities Board (PUB) of Singapore. Newater. PUB website, 2003
[109]
Yangali-Quintanilla V, Maeng S K, Fujioka T, Kennedy M, Amy G. Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse. Journal of Membrane Science, 2010, 362(1): 334–345
CrossRef Google scholar
[110]
Tang C, Chen V. Nanofiltration of textile wastewater for water reuse. Desalination, 2002, 143(1): 11–20
CrossRef Google scholar
[111]
Riera-Torres M, Gutiérrez-Bouzán C, Crespi M. Combination of coagulation-flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination, 2010, 252(1): 53–59
CrossRef Google scholar
[112]
Taheran M, Brar S K, Verma M, Surampalli R Y, Zhang T C, Valero J R. Membrane processes for removal of pharmaceutically active compounds (PHACs) from water and wastewaters. Science of the Total Environment, 2016, 547: 60–77
CrossRef Google scholar
[113]
Loos R, Carvalho R, Antonio D C, Comero S, Locoro G, Tavazzi S, Paracchini B, Ghiani M, Lettieri T, Blaha L, Eu-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Research, 2013, 47(17): 6475–6487
CrossRef Google scholar
[114]
Garcia-Ivars J, Martella L, Massella M, Carbonell-Alcaina C, Alcaina-Miranda M I, Iborra-Clar M I. Nanofiltration as tertiary treatment method for removing trace pharmaceutically active compounds in wastewater from wastewater treatment plants. Water Research, 2017, 125: 360–373
CrossRef Google scholar
[115]
Kim S, Chu K H, Al-Hamadani Y A J, Park C M, Jang M, Kim D H, Yu M, Heo J, Yoon Y. Removal of contaminants of emerging concern by membranes in water and wastewater: a review. Chemical Engineering Journal, 2018, 335: 896–914
CrossRef Google scholar
[116]
Bellona C, Drewes J E, Xu P, Amy G. Factors affecting the rejection of organic solutes during NF/RO treatment—a literature review. Water Research, 2004, 38(12): 2795–2809
CrossRef Google scholar
[117]
Warsinger D M, Chakraborty S, Tow E W, Plumlee M H, Bellona C, Loutatidou S, Karimi L, Mikelonis A M, Achilli A, Ghassemi A, A review of polymeric membranes and processes for potable water reuse. Progress in Polymer Science, 2018, 81: 209–237
CrossRef Google scholar
[118]
Guo H, Peng L E, Yao Z, Yang Z, Ma X, Tang C Y. Non-polyamide based nanofiltration membranes using green metal-organic coordination complexes: implications for the removal of trace organic contaminants. Environmental Science & Technology, 2019, 53(5): 2688–2694
CrossRef Google scholar
[119]
Steinle-Darling E, Reinhard M. Nanofiltration for trace organic contaminant removal: structure, solution, and membrane fouling effects on the rejection of perfluorochemicals. Environmental Science & Technology, 2008, 42(14): 5292–5297
CrossRef Google scholar
[120]
Dai R, Wang X, Tang C Y, Wang Z. Dually charged MOF-based thin-film nanocomposite nanofiltration membrane for enhanced removal of charged pharmaceutically active compounds. Environmental Science & Technology, 2020, 54(12): 7619–7628
CrossRef Google scholar
[121]
Guo H, Deng Y, Tao Z, Yao Z, Wang J, Lin C, Zhang T, Zhu B, Tang C Y. Does hydrophilic polydopamine coating enhance membrane rejection of hydrophobic endocrine-disrupting compounds? Environmental Science & Technology Letters, 2016, 3(9): 332–338
CrossRef Google scholar
[122]
Wijmans J G, Baker R W. The solution-diffusion model: a review. Journal of Membrane Science, 1995, 107(1): 1–21
CrossRef Google scholar
[123]
Nghiem L D, Schäfer A I, Elimelech M. Removal of natural hormones by nanofiltration membranes: measurement, modeling, and mechanisms. Environmental Science & Technology, 2004, 38(6): 1888–1896
CrossRef Google scholar
[124]
Fujioka T, Khan S J, McDonald J A, Nghiem L D. Nanofiltration of trace organic chemicals: a comparison between ceramic and polymeric membranes. Separation and Purification Technology, 2014, 136: 258–264
CrossRef Google scholar
[125]
Dai R, Guo H, Tang C Y, Chen M, Li J, Wang Z. Hydrophilic selective nanochannels created by metal organic frameworks in nanofiltration membranes enhance rejection of hydrophobic endocrine-disrupting compounds. Environmental Science & Technology, 2019, 53(23): 13776–13783
CrossRef Google scholar
[126]
Yang Z, Zhou Z, Guo H, Yao Z, Ma X H, Song X, Feng S P, Tang C Y. Tannic acid/Fe3+ nanoscaffold for interfacial polymerization: toward enhanced nanofiltration performance. Environmental Science & Technology, 2018, 52(16): 9341–9349
CrossRef Google scholar
[127]
Medema G, Heijnen L, Elsinga G, Italiaander R, Brouwer A. Presence of sars-coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the netherlands. Environmental Science & Technology Letters, 2020, 7(7): 511–516
CrossRef Google scholar
[128]
Pype M L, Lawrence M G, Keller J, Gernjak W. Reverse osmosis integrity monitoring in water reuse: the challenge to verify virus removal—a review. Water Research, 2016, 98: 384–395
CrossRef Google scholar
[129]
Mi B, Eaton C L, Kim J H, Colvin C K, Lozier J C, Mariñas B J. Removal of biological and non-biological viral surrogates by spiral-wound reverse osmosis membrane elements with intact and compromised integrity. Water Research, 2004, 38(18): 3821–3832
CrossRef Google scholar
[130]
Hornstra L M, Rodrigues da Silva T, Blankert B, Heijnen L, Beerendonk E, Cornelissen E R, Medema G. Monitoring the integrity of reverse osmosis membranes using novel indigenous freshwater viruses and bacteriophages. Environmental Science. Water Research & Technology, 2019, 5(9): 1535–1544
CrossRef Google scholar
[131]
Fujioka T, Boivin S. Assessing the passage of particles through polyamide reverse osmosis membranes. Separation and Purification Technology, 2019, 226: 8–12
CrossRef Google scholar
[132]
Song X, Gan B, Qi S, Guo H, Tang C Y, Zhou Y, Gao C. Intrinsic nanoscale structure of thin film composite polyamide membranes: connectivity, defects, and structure-property correlation. Environmental Science & Technology, 2020, 54(6): 3559–3569
CrossRef Google scholar
[133]
Epsztein R, Shaulsky E, Dizge N, Warsinger D M, Elimelech M. Role of ionic charge density in Donnan exclusion of monovalent anions by nanofiltration. Environmental Science & Technology, 2018, 52(7): 4108–4116
CrossRef Google scholar
[134]
Lhassani A, Rumeau M, Benjelloun D, Pontie M. Selective demineralization of water by nanofiltration application to the defluorination of brackish water. Water Research, 2001, 35(13): 3260–3264
CrossRef Google scholar
[135]
Santafé-Moros A, Gozálvez-Zafrilla J, Lora-García J. Performance of commercial nanofiltration membranes in the removal of nitrate ions. Desalination, 2005, 185(1–3): 281–287
CrossRef Google scholar
[136]
Hilal N, Al-Zoubi H, Mohammad A, Darwish N. Nanofiltration of highly concentrated salt solutions up to seawater salinity. Desalination, 2005, 184(1–3): 315–326
CrossRef Google scholar
[137]
Galanakis C M, Fountoulis G, Gekas V. Nanofiltration of brackish groundwater by using a polypiperazine membrane. Desalination, 2012, 286: 277–284
CrossRef Google scholar
[138]
Walha K, Amar R B, Firdaous L, Quéméneur F, Jaouen P. Brackish groundwater treatment by nanofiltration, reverse osmosis and electrodialysis in Tunisia: performance and cost comparison. Desalination, 2007, 207(1–3): 95–106
CrossRef Google scholar
[139]
Zhang H, Quan X, Fan X, Yi G, Chen S, Yu H, Chen Y. Improving ion rejection of conductive nanofiltration membrane through electrically enhanced surface charge density. Environmental Science & Technology, 2018, 53(2): 868–877
CrossRef Google scholar
[140]
Kotp Y H. High-flux TFN nanofiltration membranes incorporated with camphor-Al2O3 nanoparticles for brackish water desalination. Chemosphere, 2021, 265: 128999
CrossRef Google scholar
[141]
Ang W L, Mohammad A W, Benamor A, Hilal N. Hybrid coagulation-NF membrane processes for brackish water treatment: effect of pH and salt/calcium concentration. Desalination, 2016, 390: 25–32
CrossRef Google scholar
[142]
Ang W L, Mohammad A W, Benamor A, Hilal N, Leo C P. Hybrid coagulation-NF membrane process for brackish water treatment: effect of antiscalant on water characteristics and membrane fouling. Desalination, 2016, 393: 144–150
CrossRef Google scholar
[143]
Sari M A, Chellam S. Electrocoagulation process considerations during advanced pretreatment for brackish inland surface water desalination: nanofilter fouling control and permeate water quality. Desalination, 2017, 410: 66–76
CrossRef Google scholar
[144]
Sarkar S, SenGupta A K. A new hybrid ion exchange-nanofiltration (HIX-NF) separation process for energy-efficient desalination: process concept and laboratory evaluation. Journal of Membrane Science, 2008, 324(1): 76–84
CrossRef Google scholar
[145]
Choi S, Chang B, Kang J H, Diallo M S, Choi J W. Energy-efficient hybrid FCDI-NF desalination process with tunable salt rejection and high water recovery. Journal of Membrane Science, 2017, 541: 580–586
CrossRef Google scholar
[146]
Zhao S, Zou L, Mulcahy D. Brackish water desalination by a hybrid forward osmosis-nanofiltration system using divalent draw solute. Desalination, 2012, 284: 175–181
CrossRef Google scholar
[147]
Cristo C D, Leopardi A. Pollution source identification of accidental contamination in water distribution networks. Journal of Water Resources Planning and Management, 2008, 134(2): 197–202
CrossRef Google scholar
[148]
Wei J, Ye B, Wang W, Yang L, Tao J, Hang Z. Spatial and temporal evaluations of disinfection by-products in drinking water distribution systems in Beijing, China. Science of the Total Environment, 2010, 408(20): 4600–4606
CrossRef Google scholar
[149]
Huang H, Zhu H, Gan W, Chen X, Yang X. Occurrence of nitrogenous and carbonaceous disinfection byproducts in drinking water distributed in Shenzhen, China. Chemosphere, 2017, 188: 257–264
CrossRef Google scholar
[150]
Sobsey M D, Stauber C E, Casanova L M, Brown J M, Elliott M A. Point of use household drinking water filtration: a practical, effective solution for providing sustained access to safe drinking water in the developing world. Environmental Science & Technology, 2008, 42(12): 4261–4267
CrossRef Google scholar
[151]
Peter-Varbanets M, Zurbrügg C, Swartz C, Pronk W. Decentralized systems for potable water and the potential of membrane technology. Water Research, 2009, 43(2): 245–265
CrossRef Google scholar
[152]
Pooi C K, Ng H Y. Review of low-cost point-of-use water treatment systems for developing communities. npj Clean Water, 2018, 1(1): 1–8
[153]
Li H, Chen Y, Zhang J, Dong B. Pilot study on nanofiltration membrane in advanced treatment of drinking water. Water Supply, 2020, 20(6): 2043–2053
CrossRef Google scholar
[154]
Li X, Chua H, Sun J. Advanced drinking water treatment by a NF membrane system. HKIE Transactions, 2002, 9(1): 46–50
CrossRef Google scholar
[155]
Yang H, Sun Y, Zhong W, Wu T, Tian Y, Li S. Pretreatment of locomotive direct drinking water by nanofiltration. In: Third International Conference on Transportation Engineering (ICTE). Reston: American Society of Civil Engineers, 2011, 3262–3267
[156]
Song N, Gao X, Ma Z, Wang X, Wei Y, Gao C. A review of graphene-based separation membrane: materials, characteristics, preparation and applications. Desalination, 2018, 437: 59–72
CrossRef Google scholar
[157]
Liu Y, Zhao Y, Zhang X, Huang X, Liao W, Zhao Y. MoS2-based membranes in water treatment and purification. Chemical Engineering Journal, 2021, 422: 130082
CrossRef Google scholar
[158]
Wang H, Zeng Z, Xu P, Li L, Zeng G, Xiao R, Tang Z, Huang D, Tang L, Lai C, Recent progress in covalent organic framework thin films: fabrications, applications and perspectives. Chemical Society Reviews, 2019, 48(2): 488–516
CrossRef Google scholar
[159]
Peiris R H, Hallé C, Budman H, Moresoli C, Peldszus S, Huck P M, Legge R L. Identifying fouling events in a membrane-based drinking water treatment process using principal component analysis of fluorescence excitation-emission matrices. Water Research, 2010, 44(1): 185–194
CrossRef Google scholar
[160]
Chon K, Cho J. Fouling behavior of dissolved organic matter in nanofiltration membranes from a pilot-scale drinking water treatment plant: an autopsy study. Chemical Engineering Journal, 2016, 295: 268–277
CrossRef Google scholar
[161]
Shao S, Fu W, Li X, Shi D, Jiang Y, Li J, Gong T, Li X. Membrane fouling by the aggregations formed from oppositely charged organic foulants. Water Research, 2019, 159: 95–101
CrossRef Google scholar
[162]
Tang C Y, Chong T, Fane A G. Colloidal interactions and fouling of NF and RO membranes: a review. Advances in Colloid and Interface Science, 2011, 164(1–2): 126–143
CrossRef Google scholar
[163]
Guo W, Ngo H H, Li J. A mini-review on membrane fouling. Bioresource Technology, 2012, 122: 27–34
CrossRef Google scholar
[164]
Jiang S, Li Y, Ladewig B P. A review of reverse osmosis membrane fouling and control strategies. Science of the Total Environment, 2017, 595: 567–583
CrossRef Google scholar
[165]
Kasemset S, Lee A, Miller D J, Freeman B D, Sharma M M. Effect of polydopamine deposition conditions on fouling resistance, physical properties, and permeation properties of reverse osmosis membranes in oil/water separation. Journal of Membrane Science, 2013, 425–426: 208–216
CrossRef Google scholar
[166]
Guo H, Yao Z, Wang J, Yang Z, Ma X, Tang C Y. Polydopamine coating on a thin film composite forward osmosis membrane for enhanced mass transport and antifouling performance. Journal of Membrane Science, 2018, 551: 234–242
CrossRef Google scholar
[167]
Liu M, Chen Q, Wang L, Yu S, Gao C. Improving fouling resistance and chlorine stability of aromatic polyamide thin-film composite ro membrane by surface grafting of polyvinyl alcohol (PVA). Desalination, 2015, 367: 11–20
CrossRef Google scholar
[168]
Guo H, Deng Y, Yao Z, Yang Z, Wang J, Lin C, Zhang T, Zhu B, Tang C Y. A highly selective surface coating for enhanced membrane rejection of endocrine disrupting compounds: mechanistic insights and implications. Water Research, 2017, 121: 197–203
CrossRef Google scholar
[169]
Hoek E M, Bhattacharjee S, Elimelech M. Effect of membrane surface roughness on colloid-membrane DLVO interactions. Langmuir, 2003, 19(11): 4836–4847
CrossRef Google scholar
[170]
Shang C, Pranantyo D, Zhang S. Understanding the roughness-fouling relationship in reverse osmosis: mechanism and implications. Environmental Science & Technology, 2020, 54(8): 5288–5296
CrossRef Google scholar
[171]
Shang W, Sun F, Jia W, Guo J, Yin S, Wong P W, An A K. High-performance nanofiltration membrane structured with enhanced stripe nano-morphology. Journal of Membrane Science, 2020, 600: 117852
CrossRef Google scholar
[172]
Yang Z, Wu Y, Wang J, Cao B, Tang C Y. In situ reduction of silver by polydopamine: a novel antimicrobial modification of a thin-film composite polyamide membrane. Environmental Science & Technology, 2016, 50(17): 9543–9550
CrossRef Google scholar
[173]
Lu X, Feng X, Werber J R, Chu C, Zucker I, Kim J H, Osuji C O, Elimelech M. Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(46): E9793–E9801
CrossRef Google scholar
[174]
Shi D, Liu Y, Fu W, Li J, Fang Z, Shao S. A combination of membrane relaxation and shear stress significantly improve the flux of gravity-driven membrane system. Water Research, 2020, 175: 115694
CrossRef Google scholar
[175]
Gohil J M, Suresh A K. Chlorine attack on reverse osmosis membranes: mechanisms and mitigation strategies. Journal of Membrane Science, 2017, 541: 108–126
CrossRef Google scholar
[176]
Do V T, Tang C Y, Reinhard M, Leckie J O. Effects of chlorine exposure conditions on physiochemical properties and performance of a polyamide membrane-mechanisms and implications. Environmental Science & Technology, 2012, 46(24): 13184–13192
CrossRef Google scholar
[177]
Stolov M, Freger V. Degradation of polyamide membranes exposed to chlorine: an impedance spectroscopy study. Environmental Science & Technology, 2019, 53(5): 2618–2625
CrossRef Google scholar
[178]
Xu J, Wang Z, Yu L, Wang J, Wang S. A novel reverse osmosis membrane with regenerable anti-biofouling and chlorine resistant properties. Journal of Membrane Science, 2013, 435: 80–91
CrossRef Google scholar
[179]
Liang Y, Zhu Y, Liu C, Lee K R, Hung W S, Wang Z, Li Y, Elimelech M, Jin J, Lin S. Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 precision separation. Nature Communications, 2020, 11(1): 1–9
CrossRef Google scholar
[180]
Tan Z, Chen S, Peng X, Zhang L, Gao C. Polyamide membranes with nanoscale turing structures for water purification. Science, 2018, 360(6388): 518–521
CrossRef Google scholar
[181]
Xu J, Wang Z, Wang J, Wang S. Positively charged aromatic polyamide reverse osmosis membrane with high anti-fouling property prepared by polyethylenimine grafting. Desalination, 2015, 365: 398–406
CrossRef Google scholar

Acknowledgments

This work is supported by Senior Research Fellow Scheme of Research Grant Council (Grant No. SRFS2021-7S04) in Hong Kong and Seed Fund for Translational and Applied Research at The University of Hong Kong, China (Grant No. 104006007).

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(3708 KB)

Accesses

Citations

Detail

Sections
Recommended

/