Kinetics of platinum nanoparticles nucleation in polyol synthesis over a wide pH range and properties of Pt/C catalysts

Vladimir Guterman , Kirill Paperzh , Ilya Kantsypa , Elena Vetrova , Anatoly Metelitsa , Ilya Pankov , Yulia Pankova

Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (6) : 51

PDF (5118KB)
Front. Chem. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (6) : 51 DOI: 10.1007/s11705-025-2559-9
RESEARCH ARTICLE

Kinetics of platinum nanoparticles nucleation in polyol synthesis over a wide pH range and properties of Pt/C catalysts

Author information +
History +
PDF (5118KB)

Abstract

This article presents a novel, facile method for studying the kinetics of liquid-phase synthesis of precious metal nanoparticles. The method is particularly suitable for use in concentrated solutions and under conditions involving gas purging and medium stirring. It is based on the continuous measurement of changes in the solution’s color components and the potential of an indicator electrode during the synthesis process. The method was applied to investigate the effect of solution pH on the kinetics of polyol synthesis of Pt nanoparticles and Pt/C electrocatalysts. The obtained Pt/C electrocatalysts demonstrate high structural-morphological and electrochemical characteristics, surpassing commercial analogs. The simplicity and efficiency of the “kinetic control” technique makes it promising for use in various liquid-phase synthesis technologies.

Graphical abstract

Keywords

kinetics of liquid-phase synthesis / nanoparticles nucleation / platinum supported electrocatalysts / polyol synthesis / colloidal nanoparticles / oxygen reduction reaction

Cite this article

Download citation ▾
Vladimir Guterman, Kirill Paperzh, Ilya Kantsypa, Elena Vetrova, Anatoly Metelitsa, Ilya Pankov, Yulia Pankova. Kinetics of platinum nanoparticles nucleation in polyol synthesis over a wide pH range and properties of Pt/C catalysts. Front. Chem. Sci. Eng., 2025, 19(6): 51 DOI:10.1007/s11705-025-2559-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Serna-GallénPMužinaK. Metallic nanoparticles at the forefront of research: novel trends in catalysis and plasmonics. Nano Materials Science, 2024, in press

[2]

Jeyaraj M , Gurunathan S , Qasim M , Kang M H , Kim J H . A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomaterials, 2019, 9(12): 1719

[3]

Dlamini N G , Basson A K , Pullabhotla V S R . Synthesis and characterization of various bimetallic nanoparticles and their application. Applied Nanoscience, 2023, 4(1): 1–24

[4]

Mishra K , Devi N , Siwal S S , Thakur V K . Insight perspective on the synthesis and morphological role of the noble and non-noble metal-based electrocatalyst in fuel cell application. Applied Catalysis B: Environmental, 2023, 334: 122820

[5]

Zhang C , Shen X , Pan Y , Peng Z . A review of Pt-based electrocatalysts for oxygen reduction reaction. Frontiers in Energy, 2017, 11(3): 268–285

[6]

Stacy J , Regmi Y N , Leonard B , Fan M . The recent progress and future of oxygen reduction reaction catalysis: a review. Renewable & Sustainable Energy Reviews, 2017, 69(C): 401–414

[7]

Adzic R . Recent advances in the kinetics of oxygen reduction. In: Electrocatalysis. New York: Brookhaven National Laboratory, 1998, 197–243

[8]

Wang J , Kong H , Zhang J , Hao Y , Shao Z , Ciucci F . Carbon-based electrocatalysts for sustainable energy applications. Progress in Materials Science, 2021, 116: 100717

[9]

Banham D , Ye S . Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: an industrial perspective. ACS Energy Letters, 2017, 2(3): 629–638

[10]

Garlyyev B , Kratzl K , Rück M , Michalička J , Fichtner J , Macak J M , Kratky T , Günther S , Cokoja M , Bandarenka A S . . Optimizing the size of platinum nanoparticles for enhanced mass activity in the electrochemical oxygen reduction reaction. Angewandte Chemie International Edition, 2019, 58(28): 9596–9600

[11]

Xin L , Yang F , Rasouli S , Qiu Y , Li Z F , Uzunoglu A , Sun C J , Liu Y , Ferreira P , Li W . . Understanding Pt nanoparticle anchoring on graphene supports through surface functionalization. ACS Catalysis, 2016, 6(4): 2642–2653

[12]

Rahman M M , Inaba K , Batnyagt G , Saikawa M , Kato Y , Awata R , Delgertsetsega B , Kaneta Y , Higashi K , Uruga T . . Synthesis of catalysts with fine platinum particles supported by high-surface-area activated carbons and optimization of their catalytic activities for polymer electrolyte fuel cells. RSC Advances, 2021, 11(33): 20601–20611

[13]

Liu H , Zhao J , Li X . Controlled synthesis of carbon-supported Pt-based electrocatalysts for proton exchange membrane fuel cells. Electrochemical Energy Reviews, 2022, 5(4): 1–52

[14]

Danilenko M V , Guterman V E , Paperzh K O , Alekseenko A A , Pankov I V . CO effect on the dynamics of platinum nucleation/growth under the liquid-phase synthesis of Pt/C electrocatalysts. Journal of the Electrochemical Society, 2022, 169(9): 092501

[15]

Danilenko M V , Guterman V E , Vetrova E V , Metelitsa A V , Paperzh K O , Pankov I V , Safronenko O I . Nucleation/growth of the platinum nanoparticles under the liquid phase synthesis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630: 127525

[16]

Liu Z , Ling X Y , Lee J Y , Su X , Gan L M . Nanosized Pt and PtRu colloids as precursors for direct methanolfuel cell catalysts. Journal of Materials Chemistry, 2003, 13(12): 3049–3052

[17]

Lv H , Li D , Strmcnik D , Paulikas A P , Markovic N M , Stamenkovic V R . Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction. Nano Energy, 2016, 29: 149–165

[18]

Bedia J , Lemus J , Calvo L , Rodriguez J J , Gilarranz M A . Effect of the operating conditions on the colloidal and microemulsion synthesis of Pt in aqueous phase. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 525: 77–84

[19]

Fievet F , Ammar-Merah S , Brayner R , Chau F , Giraud M , Mammeri F , Peron J , Piquemal J Y , Sicard L , Viau G . The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chemical Society Reviews, 2018, 47(14): 5187–5233

[20]

Schröder J , Neumann S , Quinson J , Arenz M , Kunz S . Anion dependent particle size control of platinum nanoparticles synthesized in ethylene glycol. Nanomaterials, 2021, 11(8): 2092

[21]

Schrader I , Warneke J , Neumann S , Grotheer S , Swane A A , Kirkensgaard J J K , Arenz M , Kunz S . Surface chemistry of “unprotected” nanoparticles: a spectroscopic investigation on colloidal particles. Journal of Physical Chemistry C, 2015, 119(31): 17655–17661

[22]

Khulbe R , Kandpal A , Prasad J , Chandra B , Kandpal N D . Polyol synthesis of nanoparticles: a decade of advancements and insights. Asian Journal of Chemistry, 2023, 35(11): 2618–2630

[23]

Quinson J , Jensen K M Ø . From platinum atoms in molecules to colloidal nanoparticles: a review on reduction, nucleation and growth mechanisms. Advances in Colloid and Interface Science, 2020, 286: 102300

[24]

Quinson J , Kunz S , Arenz M . Surfactant-free colloidal syntheses of precious metal nanoparticles for improved catalysts. ACS Catalysis, 2023, 13(7): 4903–4937

[25]

Handwerk D R , Shipman P D , Whitehead C B , Özkar S , Finke R G . Mechanism-enabled population balance modeling of particle formation en route to particle average size and size distribution understanding and control. Journal of the American Chemical Society, 2019, 141(40): 15827–15839

[26]

Danilenko M V , Guterman V E , Novomlinskiy I N , Pankov I V . The effect of a gas atmosphere on the formation of colloidal platinum nanoparticles in liquid phase synthesis. Colloid & Polymer Science, 2023, 301(5): 433–443

[27]

Guterman V , Paperzh K , Novomlinskaya I , Kantsypa I , Khudoley A , Astravukh Y , Pankov I , Nikulin A . Advances in liquid-phase synthesis: monitoring of kinetics for platinum nanoparticles formation, and Pt/C electrocatalysts with monodispersive nanoparticles for oxygen reduction. Catalysts, 2024, 14(10): 728

[28]

Xu S , Kim Y , Park J , Higgins D , Shen S J , Schindler P , Thian D , Provine J , Torgersen J , Graf T . . Extending the limits of Pt/C catalysts with passivation-gas-incorporated atomic layer deposition. Nature Catalysis, 2018, 1(8): 624–630

[29]

HirschR. Exploring Colour Photography: A Complete Guide. London: Laurence King Publishing, 2005, 352

[30]

Quinson J , Kacenauskaite L , Bucher J , Simonsen S B , Theil Kuhn L , Oezaslan M , Kunz S , Arenz M . Controlled synthesis of surfactant-free water-dispersible colloidal platinum nanoparticles by the Co4Cat process. ChemSusChem, 2019, 12(6): 1229–1239

[31]

Kacenauskaite L , Quinson J , Schultz H , Kirkensgaard J J K , Kunz S , Vosch T , Arenz M . UV-induced synthesis and stabilization of surfactant-free colloidal Pt nanoparticles with controlled particle size in ethylene glycol. ChemNanoMat:Chemistry of Nanomaterials for Energy, Biology and More, 2017, 3(2): 89–93

[32]

Quinson J , Neumann S , Kacenauskaite L , Bucher J , Kirkensgaard J J K , Simonsen S B , Theil Kuhn L , Zana A , Vosch T , Oezaslan M , Kunz S , Arenz M . Solvent-dependent growth and stabilization mechanisms of surfactant-free colloidal Pt nanoparticles. Chemistry, 2020, 26(41): 9012–9023

[33]

Bock C , Paquet C , Couillard M , Botton G A , MacDougall B R . Size-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism. Journal of the American Chemical Society, 2004, 126(25): 8028–8037

[34]

Quinson J , Inaba M , Neumann S , Swane A A , Bucher J , Simonsen S B , Theil Kuhn L , Kirkensgaard J J K , Jensen K M , Oezaslan M , Kunz S , Arenz M . Investigating particle size effects in catalysis by applying a size-controlled and surfactant-free synthesis of colloidal nanoparticles in alkaline ethylene glycol: case study of the oxygen reduction reaction on Pt. ACS Catalysis, 2018, 8(7): 6627–6635

[35]

Thanh N T K , Maclean N , Mahiddine S . Mechanisms of nucleation and growth of nanoparticles in solution. Chemical Reviews, 2014, 114(15): 7610–7630

[36]

Quinson J , Dworzak A , Simonsen S B , Theil Kuhn L , Jensen K M Ø , Zana A , Oezaslan M , Kirkensgaard J J K , Arenz M . Surfactant-free synthesis of size controlled platinum nanoparticles: insights from in situ studies. Applied Surface Science, 2021, 549: 149263

[37]

Kobayashi M , Yamaguchi H , Suzuki T , Obora Y . Cross β-alkylation of primary alcohols catalysed by DMF-stabilized iridium nanoparticles. Organic & Biomolecular Chemistry, 2021, 19(9): 1950–1954

[38]

Chen S , Yang Q , Wang H , Zhang S , Li J , Wang Y , Chu W , Ye Q , Song L . Initial reaction mechanism of platinum nanoparticle in methanol-water system and the anomalous catalytic effect of water. Nano Letters, 2015, 15(9): 5961–5968

[39]

Xia Y , Xiong Y , Lim B , Skrabalak S E . Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics. Angewandte Chemie International Edition, 2009, 48(1): 60–103

[40]

Fang B , Chaudhari N K , Kim M S , Jung H K , Yu J S . Homogeneous deposition of platinum nanoparticles on carbon black for proton exchange membrane fuel cell. Journal of the American Chemical Society, 2009, 131(42): 15330–15338

[41]

Briskeby S T , Tsypkin M , Tunold R , Sunde S . Preparation of electrocatalysts by reduction of precursors with sodium citrate. RSC Advances, 2014, 4(83): 44185–44192

[42]

Lv Y , Liu H , Li J , Chen J , Song Y . A convenient protocol for the evaluation of commercial Pt/C electrocatalysts toward oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2020, 870: 114172

[43]

Paperzh K , Bayan Y , Gerasimov E , Pankov I , Konstantinov A , Menshchikov V , Mauer D , Beskopylny Y , Alekseenk A . High-performance electrocatalyst for PEMFC cathode: combination of ultra-small platinum nanoparticles and N-doped carbon support. Carbon Trends, 2024, 16: 100383

[44]

Li Y , Zhu X , Chen Y , Zhang S , Li J , Liu J . Rapid synthesis of highly active Pt/C catalysts with various metal loadings from single batch platinum colloid. Journal of Energy Chemistry, 2020, 47: 138–145

[45]

Sharma R , Wang Y , Li F , Chamier J , Andersen S M . Particle size-controlled growth of carbon-supported platinum nanoparticles (Pt/C) through water-assisted polyol synthesis. ACS Omega, 2019, 4(13): 15711–15720

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (5118KB)

Supplementary files

FCE-25015-OF-GV_suppl_1

512

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/