A review on membrane distillation in process engineering: design and exergy equations, materials and wetting problems

Stefano Capizzano , Mirko Frappa , Francesca Macedonio , Enrico Drioli

Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (5) : 592 -613.

PDF (976KB)
Front. Chem. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (5) : 592 -613. DOI: 10.1007/s11705-021-2105-3
REVIEW ARTICLE
REVIEW ARTICLE

A review on membrane distillation in process engineering: design and exergy equations, materials and wetting problems

Author information +
History +
PDF (976KB)

Abstract

One of the problems that most afflicts humanity is the lack of clean water. Water stress, which is the pressure on the quantity and quality of water resources, exists in many places throughout the World. Desalination represents a valid solution to the scarcity of fresh water and several technologies are already well applied and successful (such as reverse osmosis), producing about 100 million m3·d−1 of fresh water. Further advances in the field of desalination can be provided by innovative processes such as membrane distillation. The latter is of particular interest for the treatment of waste currents from conventional desalination processes (for example the retentate of reverse osmosis) as it allows to desalt highly concentrated currents as it is not limited by concentration polarization phenomena. New perspectives have enhanced research activities and allowed a deeper understanding of mass and heat transport phenomena, membrane wetting, polarization phenomena and have encouraged the use of materials particularly suitable for membrane distillation applications. This work summarizes recent developments in the field of membrane distillation, studies for module length optimization, commercial membrane modules developed, recent patents and advancement of membrane material.

Graphical abstract

Keywords

membrane distillation / recent developments / heat and mass transfer / wetting / membrane material

Cite this article

Download citation ▾
Stefano Capizzano, Mirko Frappa, Francesca Macedonio, Enrico Drioli. A review on membrane distillation in process engineering: design and exergy equations, materials and wetting problems. Front. Chem. Sci. Eng., 2022, 16(5): 592-613 DOI:10.1007/s11705-021-2105-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Eckhardt N A, Cominelli E, Galbiati M, Tonelli C. The future of science: food and water for life. Plant Cell, 2009, 21(2): 368–372

[2]

Boretti A, Rosa L. Reassessing the projections of the world water development report. NPJ Clean Water, 2019, 2(1): 1–6

[3]

Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Mariñas B J, Mayers A M. Science and technology for water purification in the coming decades. Nature, 2009, 452(7185): 301–310

[4]

Pinto F S, Marques R C. Desalination projects economic feasibility: a standardization of cost determinants. Renewable & Sustainable Energy Reviews, 2017, 78: 904–915

[5]

GWI and IDA. IDA Water Security Handbook 2018–2019. Oxford (United Kingdom): Media Analytics Ltd., 2018, 4–28

[6]

Kesieme U K, Milne N, Aral H, Cheng C Y, Duke M. Economic analysis of desalination technologies in the context of carbon pricing, and opportunities for membrane distillation. Desalination, 2013, 323: 66–74

[7]

Ali A, Tufa R A, Macedonio F, Curcio E, Drioli E. Membrane technology in renewable-energy-driven desalination. Renewable & Sustainable Energy Reviews, 2018, 81: 1–21

[8]

Gryta M. Capillary polypropylene membranes for membrane distillation. Fibers (Basel, Switzerland), 2019, 7(1): 1

[9]

Curcio E, Criscuoli A, Drioli E. Membrane crystallizers. Industrial & Engineering Chemistry Research, 2001, 40(12): 2679–2684

[10]

Drioli E, Criscuoli A, Curcio E. Membrane contactors: Fundamentals, Applications and Potentialities. 1st ed. Amsterdam: Elsevier, 2006, 24

[11]

Macedonio F, Drioli E. Special issue of desalination journal on “membrane engineering for desalination in the mining and extraction industry”. Desalination, 2018, 440: 1

[12]

Quinst-Jensen C A, Macedonio F, Drioli E. Integrated membrane desalination systems with membrane crystallization units for resource recovery: a new approach for Mining from the sea. Crystals, 2016, 6(4): 36

[13]

Chabanon E, Mangin D, Charcosset C. Membranes and crystallization processes: state of the art and prospects. Journal of Membrane Science, 2016, 509: 57–67

[14]

Macedonio F, Quist-Jensen C A, Al-Harbi O, Alromaih H, Al-Jlil S A, Al Shabouna F, Drioli E. Thermodynamic modeling of brine and its use in membrane crystallizer. Desalination, 2013, 323: 83–92

[15]

Biniaz P, Torabi Ardekani N, Makarem M A, Rahimpour M R. Water and wastewater treatment systems by novel integrated membrane distillation (MD). ChemEngineering, 2019, 3(1): 8

[16]

Zaragoza G, Andrés-Mañas J A, Ruiz-Aguirre A. Commercial scale membrane distillation for solar desalination. NPJ Clean Water, 2018, 1(1): 1–6

[17]

Guillén-Burrieza E, Blanco J, Zaragoza G, Alarcón D C, Palenzuela P, Ibarra M, Gernjak W. Experimental analysis of an air gap membrane distillation solar desalination pilot system. Journal of Membrane Science, 2011, 379(1–2): 386–396

[18]

Koschikowski J, Wieghaus M, Rommel M, Ortin V S, Suarez B P, Rodríguez J R. Experimental investigations on solar driven stand-alone membrane distillation systems for remote areas. Desalination, 2009, 248(1–3): 125–131

[19]

Schwantes R, Bauer L, Chavan K, Dücker D, Felsmann C, Pfafferott J. Air gap membrane distillation for hypersaline brine concentration: Operational analysis of a full-scale module–New strategies for wetting mitigation. Desalination, 2018, 444: 13–25

[20]

Ruiz-Aguirre A, Andrés-Mañas J A, Fernández-Sevilla J M, Zaragoza G. Experimental characterization and optimization of multi-channel spiral wound air gap membrane distillation modules for seawater desalination. Separation and Purification Technology, 2018, 205: 212–222

[21]

Mohamed E S, Boutikos P, Mathioulakis E, Belessiotis V. Experimental evaluation of the performance and energy efficiency of a vacuum multi-effect membrane distillation system. Desalination, 2017, 408: 70–80

[22]

Drioli E, Ali A, Macedonio F. Membrane distillation: Recent developments and perspectives. Desalination, 2015, 356: 56–84

[23]

Khayet M. Membranes and theoretical modeling of membrane distillation: a review. Advances in Colloid and Interface Science, 2011, 164(1–2): 56–88

[24]

Martínez L, Florido-Díaz F J, Hernandez A, Prádanos P. Characterisation of three hydrophobic porous membranes used in membrane distillation: modelling and evaluation of their water vapour permeabilities. Journal of Membrane Science, 2002, 203(1–2): 15–27

[25]

Izquierdo-Gil M A, Garcıa-Payo M C, Fernández-Pineda C. Air gap membrane distillation of sucrose aqueous solutions. Journal of Membrane Science, 1999, 155(2): 291–307

[26]

Al-Obaidani S, Curcio E, Macedonio F, Di Profio G, Al-Hinai H, Drioli E. Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation. Journal of Membrane Science, 2008, 323(1): 85–98

[27]

Picard C, Larbot A, Guida-Pietrasanta F, Boutevin B, Ratsimihety A. Grafting of ceramic membranes by fluorinated silanes: hydrophobic features. Separation and Purification Technology, 2001, 25(1–3): 65–69

[28]

Dafinov A, Garcia-Valls R, Font J. Modification of ceramic membranes by alcohol adsorption. Journal of Membrane Science, 2002, 196(1): 69–77

[29]

Ko C C, Ali A, Drioli E, Tung K L, Chen C H, Chen Y R, Macedonio F. Performance of ceramic membrane in vacuum membrane distillation and in vacuum membrane crystallization. Desalination, 2018, 440: 48–58

[30]

Chen X, Gao X, Fu K, Qiu M, Xiong F, Ding D, Cui Z, Wang Z, Fan Y, Drioli E. Tubular hydrophobic ceramic membrane with asymmetric structure for water desalination via vacuum membrane distillation process. Desalination, 2018, 443: 212–220

[31]

Ali A, Macedonio F, Drioli E, Aljlil S, Alharbi O A. Experimental and theoretical evaluation of temperature polarization phenomenon in direct contact membrane distillation. Chemical Engineering Research & Design, 2013, 91(10): 1966–1977

[32]

Drioli E, Giorno L, Fontananova E. Comprehensive Membrane Science and Engineering. 2nd ed. Oxford: Elsevier, 2017: 282–296

[33]

Ravi J, Othman M H D, Matsuura T, Ro’il Bilad M, El-badawy T H, Aziz F, Ismail A F, Rahman M A, Jaafar J. Polymeric membranes for desalination using membrane distillation: a review. Desalination, 2020, 490: 114530

[34]

Yao M, Tijing L D, Naidu G, Kim S H, Matsuyama H, Fane A G, Shon H K. A review of membrane wettability for the treatment of saline water deploying membrane distillation. Desalination, 2020, 479: 114312

[35]

Alkhudhiri A, Hilal N. Emerging Technologies for Sustainable Desalination Handbook. 1st ed. Oxford: Butterworth-Heinemann, 2018, 55–106

[36]

Cohen Y. Materials and Energy: Volume 17. Advances in Water Desalination Technologies. Singapore: World Scientific Publishing Co. Pte. Ltd., 2021, 227–261

[37]

Alhathal Alanezi A, Abdallah H, El-Zanati E, Ahmad A, Sharif A O. Performance investigation of O-ring vacuum membrane distillation module for water desalination. Journal of Chemistry, 2016: 9378460

[38]

Gude G. Emerging Technologies for Sustainable Desalination Handbook. Burlington: Butterworth-Heinemann, 2018, 55–98

[39]

Franken A C, Nolten J A, Mulder M H, Bargeman D, Smolders C A. Wetting criteria for the applicability of membrane distillation. Journal of Membrane Science, 1987, 33(3): 315–328

[40]

Tijing L D, Woo Y C, Choi J S, Lee S, Kim S H, Shon H K. Fouling and its control in membrane distillation—a review. Journal of Membrane Science, 2015, 475: 215–244

[41]

Rezaei M, Warsinger D M, Duke M C, Matsuura T, Samhaber W M. Wetting phenomena in membrane distillation: mechanisms, reversal, and prevention. Water Research, 2018, 139: 329–352

[42]

Summers E K, Arafat H A, Lienhard J H. Energy efficiency comparison of single-stage membrane distillation (MD) desalination cycles in different configurations. Desalination, 2012, 290: 54–66

[43]

Ding Z, Liu L, Li Z, Ma R, Yang Z. Experimental study of ammonia removal from water by membrane distillation (MD): the comparison of three configurations. Journal of Membrane Science, 2006, 286(1–2): 93–103

[44]

Basile A. Handbook of Membrane Reactors. Volume 2: Reactor Types and Industrial Applications. 1st ed. Philadelphia: Woodhead Publishing, 2013, 78–81

[45]

Bagger-Jørgensen R, Meyer A S, Varming C, Jonsson G. Recovery of volatile aroma compounds from black currant juice by vacuum membrane distillation. Journal of Food Engineering, 2004, 64(1): 23–31

[46]

Wang L H, Pyatkovskyy T, Yousef A, Zeng X A, Sastry S K. Mechanism of Bacillus subtilis spore inactivation induced by moderate electric fields. Innovative Food Science & Emerging Technologies, 2020, 62: 102349

[47]

Ali A, Quist-Jensen C A, Macedonio F, Drioli E. On designing of membrane thickness and thermal conductivity for large scale membrane distillation modules. Journal of Membrane Science and Research, 2016, 2(4): 179–185

[48]

Wang P, Teoh M M, Chung T S. Morphological architecture of dual-layer hollow fiber for membrane distillation with higher desalination performance. Water Research, 2011, 45(17): 5489–5500

[49]

Khayet M, Mengual J I, Matsuura T. Porous hydrophobic/hydrophilic composite membranes: application in desalination using direct contact membrane distillation. Journal of Membrane Science, 2005, 252(1–2): 101–113

[50]

Deshmukh A, Elimelech M. Understanding the impact of membrane properties and transport phenomena on the energetic performance of membrane distillation desalination. Journal of Membrane Science, 2017, 539: 458–474

[51]

Lawson K W, Loyd D R. Membrane distillation. Journal of Membrane Science, 1997, 24(1): 1–25

[52]

Wang K Y, Foo S W, Chung T S. Mixed matrix PVDF hollow fiber membranes with nanoscale pores for desalination through direct contact membrane distillation. Industrial & Engineering Chemistry Research, 2009, 48(9): 4474–4483

[53]

Eykens L, De Sitter K, Dotremont C, Pinoy L, Van der Bruggen B. How to optimize the membrane properties for membrane distillation: a review. Industrial & Engineering Chemistry Research, 2016, 55(35): 9333–9343

[54]

Schneider K, Hölz W, Wollbeck R, Ripperger S. Membranes and modules for transmembrane distillation. Journal of Membrane Science, 1988, 39(1): 25–42

[55]

Tang Y, Li N, Liu A, Ding S, Yi C, Liu H. Effect of spinning conditions on the structure and performance of hydrophobic PVDF hollow fiber membranes for membrane distillation. Desalination, 2012, 287: 326–339

[56]

Gryta M. Fouling in direct contact membrane distillation process. Journal of Membrane Science, 2008, 325(1): 383–394

[57]

Du H, Li J, Zhang J, Su G, Li X, Zhao Y. Separation of hydrogen and nitrogen gases with porous graphene membrane. Journal of Physical Chemistry C, 2011, 115(47): 23261–23266

[58]

Basile A, Cassano A, Rastogi N K. Advances in Membrane Technologies for Water Treatment: Materials, Processes and applications. 1st ed. Cambridge: Woodhead Publishing, 2015, 605–624

[59]

Lin J C, Lee D J, Huang C. Membrane fouling mitigation: membrane cleaning. Separation Science and Technology, 2010, 45(7): 858–872

[60]

Norafifah H, Noordin M Y, Wong K Y, Izman S, Ahmad A A. A study of operational factors for reducing the fouling of hollow fiber membranes during wastewater filtration. Procedia CIRP, 2015, 26: 781–785

[61]

Shahkaramipour N, Tran T N, Ramanan S, Lin H. Membranes with surface-enhanced antifouling properties for water purification. Membranes, 2017, 7(1): 13

[62]

Teoh M M, Chung T S, Yeo Y S. Dual-layer PVDF/PTFE composite hollow fibers with a thin macrovoid-free selective layer for water production via membrane distillation. Chemical Engineering Journal, 2011, 171(2): 684–691

[63]

Teoh M M, Chung T S. Membrane distillation with hydrophobic macrovoid-free PVDF-PTFE hollow fiber membranes. Separation and Purification Technology, 2009, 66(2): 229–236

[64]

Zou L, Gusnawan P, Jiang Y B, Zhang G, Yu J. Macrovoid-inhibited PVDF hollow fiber membranes via spinning process delay for direct contact membrane distillation. ACS Applied Materials & Interfaces, 2020, 12(25): 28655–28668

[65]

Mansourizadeh A, Ismail A F. Hollow fiber gas-liquid membrane contactors for acid gas capture: a review. Journal of Hazardous Materials, 2009, 171(1–3): 38–53

[66]

Drioli E, Giorno L. Encyclopedia of Membranes. 1st ed. Berlin: Springer, 2016, 1009–1012

[67]

Schofield R W, Fane A G, Fell C J. Gas and vapour transport through microporous membranes. I. Knudsen-Poiseuille transition. Journal of Membrane Science, 1990, 53(1–2): 159–171

[68]

Guijt C M, Meindersma G W, Reith T, De Haan A B. Air gap membrane distillation: 2. Model validation and hollow fibre module performance analysis. Separation and Purification Technology, 2005, 43(3): 245–255

[69]

McGaughey A L, Gustafson R D, Childress A E. Effect of long-term operation on membrane surface characteristics and performance in membrane distillation. Journal of Membrane Science, 2017, 543: 143–150

[70]

Gryta M. Long-term performance of membrane distillation process. Journal of Membrane Science, 2005, 265(1–2): 153–159

[71]

Srisurichan S, Jiraratananon R, Fane A G. Mass transfer mechanisms and transport resistances in direct contact membrane distillation process. Journal of Membrane Science, 2006, 277(1–2): 186–194

[72]

Martínez-Díez L, Vazquez-Gonzalez M I. Temperature and concentration polarization in membrane distillation of aqueous salt solutions. Journal of Membrane Science, 1999, 156(2): 265–273

[73]

Asghari M, Dehghani M, Riasat Harami H, Mohammadi A H. Effects of operating parameters in sweeping gas membrane distillation process: numerical simulation of Persian Gulf seawater desalination. Journal of Water and Environmental Nanotechnology, 2018, 3(2): 128–140

[74]

Ali A, Quist-Jensen C A, Macedonio F, Drioli E. Optimization of module length for continuous direct contact membrane distillation process. Chemical Engineering and Processing, 2016, 110: 188–200

[75]

Ali A, Tsai J H, Tung K L, Drioli E, Macedonio F. Designing and optimization of continuous direct contact membrane distillation process. Desalination, 2018, 426: 97–107

[76]

Cerci Y. Exergy analysis of a reverse osmosis desalination plant in California. Desalination, 2002, 142(3): 257–266

[77]

Macedonio F, Curcio E, Drioli E. Integrated membrane systems for seawater desalination: energetic and exergetic analysis, economic evaluation, experimental study. Desalination, 2007, 203(1–3): 260–276

[78]

Macedonio F, Drioli E. An exergetic analysis of a membrane desalination system. Desalination, 2010, 261(3): 293–299

[79]

Macedonio F, Criscuoli A, Gzara L, Albeirutty M, Drioli E. Water and salts recovery from desalination brines: an exergy evaluation. Journal of Environmental Chemical Engineering, 2021, 9(5): 105884

[80]

Drioli E, Curcio E, Di Profio G, Macedonio F, Criscuoli A. Integrating membrane contactors technology and pressure-driven membrane operations for seawater desalination: energy, exergy and costs analysis. Chemical Engineering Research & Design, 2006, 84(3): 209–220

[81]

Shukuya M, Hammache A. Introduction to the concept of exergy-for a better understanding of low-temperature-heating and high-temperature-cooling systems. VTT Technical Research Centre of Finland, VTT Tiedotteita—Research Notes No. 2158, 2002, 1–61

[82]

Ali A, Quist-Jensen C A, Drioli E, Macedonio F. Evaluation of integrated microfiltration and membrane distillation/crystallization processes for produced water treatment. Desalination, 2018, 434: 161–168

[83]

Tufa R A, Noviello Y, Di Profio G, Macedonio F, Ali A, Drioli E, Fontananova E, Bouzek K, Curcio E. Integrated membrane distillation-reverse electrodialysis system for energy-efficient seawater desalination. Applied Energy, 2019, 253: 113551

[84]

Perrotta M L, Saielli G, Casella G, Macedonio F, Giorno L, Drioli E, Gugliuzza A. An ultrathin suspended hydrophobic porous membrane for high-efficiency water desalination. Applied Materials Today, 2017, 9: 1–9

[85]

Eykens L, Hitsov I, De Sitter K, Dotremont C, Pinoy L, Nopens I, Van der Bruggen B. Influence of membrane thickness and process conditions on direct contact membrane distillation at different salinities. Journal of Membrane Science, 2016, 498: 353–364

[86]

Woo Y C, Tijing L D, Shim W G, Choi J S, Kim S H, He T, Drioli E, Shon H K. Water desalination using graphene-enhanced electrospun nanofiber membrane via air gap membrane distillation. Journal of Membrane Science, 2016, 520: 99–110

[87]

Celebi K, Buchheim J, Wyss R M, Droudian A, Gasser P, Shorubalko I, Kye J I, Lee C, Park H G. Ultimate permeation across atomically thin porous graphene. Science, 2014, 344(6181): 289–292

[88]

Mi B. Graphene oxide membranes for ionic and molecular sieving. Science, 2014, 343(6172): 740–742

[89]

Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S, Mahurin S M. Water desalination using nanoporous single-layer graphene. Nature Nanotechnology, 2015, 10(5): 459–464

[90]

Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Superior thermal conductivity of single-layer graphene. Nano Letters, 2008, 8(3): 902–907

[91]

Ho C Y, Powell R W, Liley P E. Thermal conductivity of the elements. Journal of Physical and Chemical Reference Data, 1972, 1(2): 279–421

[92]

Grasso G, Galiano F, Yoo M J, Mancuso R, Park H B, Gabriele B, Figoli A, Drioli E. Development of graphene-PVDF composite membranes for membrane distillation. Journal of Membrane Science, 2020, 604: 118017

[93]

Woo Y C, Kim Y, Shim W G, Tijing L D, Yao M, Nghiem L D, Choi J S, Kim S H, Shon H K. Graphene/PVDF flat-sheet membrane for the treatment of RO brine from coal seam gas produced water by air gap membrane distillation. Journal of Membrane Science, 2016, 513: 74–84

[94]

Gontarek E, Macedonio F, Militano F, Giorno L, Lieder M, Politano A, Drioli E, Gugliuzza A. Adsorption-assisted transport of water vapour in super-hydrophobic membranes filled with multilayer graphene platelets. Nanoscale, 2019, 11(24): 11521–11529

[95]

Frappa M, Castillo A D, Macedonio F, Politano A, Drioli E, Bonaccorso F, Pellegrini V, Gugliuzza A. A few-layer graphene for advanced composite PVDF membranes dedicated to water desalination: a comparative study. Nanoscale Advances, 2020, 2(10): 4728–4739

[96]

Gugliuzza A, Macedonio F, Politano A, Drioli E. Prospects of 2D materials-based membranes in water desalination. Chemical Engineering Transactions, 2019, 73: 265–270

[97]

Macedonio F, Politano A, Drioli E, Gugliuzza A. Bi2Se3-assisted membrane crystallization. Materials Horizons, 2018, 5(5): 912–919

[98]

Frappa M, Macedonio F, Gugliuzza A, Jin W, Drioli E. Performance of PVDF based membrane with 2D materials for Membrane Assisted-Crystallization process. Membranes, 2021, 11(5): 302

[99]

Krupenkin T N, Taylor J A, Schneider T M, Yang S. From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces. Langmuir, 2004, 20(10): 3824–3827

[100]

Saffarini R B, Mansoor B, Thomas R, Arafat H A. Effect of temperature-dependent microstructure evolution on pore wetting in PTFE membranes under membrane distillation conditions. Journal of Membrane Science, 2013, 429: 282–294

[101]

Yin Y, Jeong N, Tong T. The effects of membrane surface wettability on pore wetting and scaling reversibility associated with mineral scaling in membrane distillation. Journal of Membrane Science, 2020, 614: 118503

[102]

Gryta M. The application of polypropylene membranes for production of fresh water from brines by membrane distillation. Chemical Papers, 2017, 71(4): 775–784

[103]

Meng S, Ye Y, Mansouri J, Chen V. Fouling and crystallisation behaviour of superhydrophobic nano-composite PVDF membranes in direct contact membrane distillation. Journal of Membrane Science, 2014, 463: 102–112

[104]

Srisurichan S, Jiraratananon R, Fane A G. Humic acid fouling in the membrane distillation process. Desalination, 2005, 174(1): 63–72

[105]

Lu K J, Chung T S. Membrane Distillation: Membranes, Hybrid Systems and Pilot Studies. Boca Raton: CRC Press, 2019, 167–182

[106]

Razmjou A, Arifin E, Dong G, Mansouri J, Chen V. Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. Journal of Membrane Science, 2012, 415: 850–863

[107]

Ma Z, Hong Y, Ma L, Su M. Superhydrophobic membranes with ordered arrays of nanospiked microchannels for water desalination. Langmuir, 2009, 25(10): 5446–5450

[108]

Su C, Horseman T, Cao H, Christie K, Li Y, Lin S. Robust superhydrophobic membrane for membrane distillation with excellent scaling resistance. Environmental Science & Technology, 2019, 53(20): 11801–11809

[109]

Lin S, Nejati S, Boo C, Hu Y, Osuji C O, Elimelech M. Omniphobic membrane for robust membrane distillation. Environmental Science & Technology Letters, 2014, 1(11): 443–447

[110]

Lu K J, Zuo J, Chang J, Kuan H N, Chung T S. Omniphobic hollow-fiber membranes for vacuum membrane distillation. Environmental Science & Technology, 2018, 52(7): 4472–4480

[111]

Woo Y C, Chen Y, Tijing L D, Phuntsho S, He T, Choi J S, Kim S H, Shon H K. CF4 plasma-modified omniphobic electrospun nanofiber membrane for produced water brine treatment by membrane distillation. Journal of Membrane Science, 2017, 529: 234–242

[112]

Yang H C, Hou J, Chen V, Xu Z K. Janus membranes: exploring duality for advanced separation. Angewandte Chemie International Edition, 2016, 55(43): 13398–13407

[113]

Chen Y, Lu K J, Japip S, Chung T S. Can composite Janus membranes with an ultrathin dense hydrophilic layer resist wetting in membrane distillation? Environmental Science & Technology, 2020, 54(19): 12713–12722

[114]

Timin A S, Gao H, Voronin D V, Gorin D A, Sukhorukov G B. Inorganic/organic multilayer capsule composition for improved functionality and external triggering. Advanced Materials Interfaces, 2017, 4(1): 1600338

[115]

Shi H, He Y, Pan Y, Di H, Zeng G, Zhang L, Zhang C. A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation. Journal of Membrane Science, 2016, 506: 60–70

[116]

McKeen L W. Permeability Properties of Plastics and Elastomers. 3rd ed. Waltham: Elsevier, 2012, 21–37

[117]

Tsai J H, Perrotta M L, Gugliuzza A, Macedonio F, Giorno L, Drioli E, Tung K L, Tocci E. Membrane-assisted crystallization: a molecular view of NaCl nucleation and growth. Applied Sciences (Basel, Switzerland), 2018, 8(11): 2145

[118]

Whelan A. Polymer Technology Dictionary. 1st ed. London: Springer Science & Business Media, 2012, 341

[119]

Bottino A, Capannelli G, Munari S, Turturro A. High performance ultrafiltration membranes cast from LiCl doped solutions. Desalination, 1988, 68(2–3): 167–177

[120]

Mansourizadeh A, Ismail A F. Effect of LiCl concentration in the polymer dope on the structure and performance of hydrophobic PVDF hollow fiber membranes for CO2 absorption. Chemical Engineering Journal, 2010, 165(3): 980–988

[121]

Chen S, Ishii J, Horiuchi S, Yoshizawa-Fujita M, Izgorodina E I. Difference in chemical bonding between lithium and sodium salts: influence of covalency on their solubility. Physical Chemistry Chemical Physics, 2017, 19(26): 17366–17372

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (976KB)

5948

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/